

Decoding the San Jose Semaphore

Mark Snesrud
msnesrud@yahoo.com

Bob Mayo
bob-sjs@bobmayo.com

OVERVIEW

The San Jose Semaphore is a piece of animated public art located atop Adobe’s building
in San Jose, beginning operation on August 7, 2006. It consists of four orange
illuminated discs that rotate every 7.2 seconds, along with a soundtrack available in the
immediate proximity on AM 1680 radio. In addition to the esthetics of the art, the
movements of the discs and the sounds convey an encoded message. This report
describes the successful decoding of that message. More information on the San Jose
Semaphore is available at www.sanjosesemaphore.org.

Introduction
It was a Thursday night in downtown San Jose, where we decided to meet for a beer and
dinner along with a few other friends and co-workers. Not much was going on at the
place where we ate dinner, so we decided to explore the surrounding areas to see if we
could locate a fun place to hang out. As we crossed Almaden Boulevard, the orange
discs of the San Jose Semaphore stood out against the night sky, presenting a display that

The Semaphore atop Adobe's headquarters in San Jose, California.

engaged our curiosity. Not much progress was made on our exploration of San Jose that
night, but two of us decided to try to solve the puzzle that the Semaphore posed.

Scaling the Wall Next to the Elevator
We noticed the online simulcast of the semaphore, but wasn’t sure if contained the
encoded message, too. The simulcast did not behave exactly like the version on the
Adobe building, in that the actual art varied its appearance when airplanes flew over,
while the online simulcast did not. Bob conjectured that we would need to videotape a
few hours of the semaphore, and perhaps even set up a webcam for long term operation.

While it was easy to film the semaphore, capturing a clean audio track from AM 1680
radio was more difficult. Using a simple handheld radio we were not able to get a clean
signal anywhere in the area. Switching to a larger boom-box type of radio helped a little
bit, but was still not good enough if we were counting on it to capture all the data. So
Bob purchased a Grundig G1000A radio, which reviews on the web said was an excellent
radio for receiving weak AM radio stations.

Fig. 1: Filming the Semaphore. The Semaphore was easily
visible throughout the area, although clear reception of the

associated AM radio signal was problematic. Since 24/7 monthly
parking rental was available for this location, we thought we might

leave a vehicle there with a webcam and uplink.

Alas, the Grundig worked better in most locations, but still did not produce a signal we
were satisfied with. Unexpectedly, one of the strongest signals was received far away
from the Adobe building, near a railing that we hypothesize had something to do with
enhancing reception. But the signal was still weak and faded in and out more than we
liked. Next step: a GE SuperRadio, the king of long distance AM radio reception.

Fig 2: A Succession of Radios. Several radios were tried in an
attempt to get a strong AM audio signal. The GE SuperRadio on

the right is specially designed to receive weak signals.

Fig 3: Way out here?
Surprisingly, AM radio reception

was good in this location far behind
the Adobe building, perhaps due to

the railing or other metal objects
acting like antennas.

The GE radio lived up to its claim to fame. When a block away from the semaphore, it
managed to pull in a radio station from Boulder, Colorado instead of the semaphore. But
when close to the semaphore, it locked on and produced an excellent signal. Somehow,
we needed a way to webcast this signal from near the Adobe building. The news rack in
front caught our eye.

This news rack is located close to the semaphore and provides excellent AM radio
reception with the GE SuperRadio, and also has a clear view of the Semaphore. We
wondered: could we install our own newspaper box containing a webcam, the
SuperRadio, and a wireless uplink? Wi-Fi access is available, so…..

But maybe all that was unnecessary. After all, we had the Simulcast to work from. And
deriving data from the Simulcast seemed like a much easier proposition. We found
software that could take snapshots of the simulcast at 10 frames per second, and other
software that could process these into a form that clearly could be recognized by image
processing software we intended to write.

Fig 4: Future home of
webcam and radio? This

spot in front of the semaphore
had excellent AM radio

reception and also a clear
view of the semaphore. And,
conveniently, room for one

more newspaper vending box
to be added.

Furthermore, we noticed that the audio track from the simulcast was clean, and consisted
of six distinct segments. While it would take a great deal of work, we believed we could
automatically recognize these segments.

Clearly, we had our work cut out for us. While we were confident we could use software
to automatically recognize the beeps and words of this audio, it was not something we
would be able to do in an evening. Fortunately Mark had a better solution.

Fig 5: Recognizing the discs.
It appeared to us that we

could write image recognition
software to determine the

movement of the discs. The
images to the left show a

screen captured image along
with the result of minimal

image processing.

Fig. 6: Recognizing the
sounds. Each 7.2 second
period of the soundtrack

began with a 1.8 second beep
with sounds of discs spinning,
another 0.6 second beep, a 1.2
second recording of a spoken

letter, and a 0.9 second
spoken number followed by
two beeps. The first of these
was 0.2 seconds long and was

followed by a 2.5 second
period consisting of a beep

followed by silence.

“I found an XML file” was the utterance that changed all of this. As it turns out, the
simulcast downloaded an XML file containing the current transmission, and we could
reliably fetch this file directly from the Simulcast web site.

Now we were in business. We would not have to plant a fake newspaper box in front of
Adobe after all, nor would we have to face up to the resulting interrogation from
Homeland Security after they blew up our unexplainable black box with a water cannon.
The first of many wrong turns had come to an end.

The Gang of 41
After acquiring a few hours of data, our next task was to find any sort of pattern. We
noticed that disc position is expressed as the number of eight’s of a circle rotated, with
positive numbers indicating clockwise rotation and negative numbers counterclockwise.
The normal range was -8 to +8. But when we plotted these values for one of the discs,
we saw a chart shown in Figure 8.

Fig 7: XML File. After
discovering that an XML file
like this was available from
the Simulcast web site, we

abandoned efforts to decode
the actual semaphore and the

image and sounds of the
simulcast. Unless the data

did not match the actual
semaphore, the file gave us

all we needed.

Every so often the discs restricted their movement for 41 time periods. This looked
significant to us, so we referred to these sections as headers. A number of attempts were
made to find a pattern in the disc movements, but we could not decode a message. After
other false starts, we looked at sound3 and sound4 in each header (Figure 9).

Fig 8: Finding the header. Every so often the discs have a
period of restricted movement, always in the range +1 to +4

rather than the usual range -8 to +8. This turned out to
indicate an important structure we called a “header”.

We noticed that most of the sound3 and sound4 data was always the same in each header,
while other data changed in a way we did not understand. But a small part of the header
had the behavior of an incrementing number: the digits changed in a pattern that repeated
every 10 headers, and after 10 headers the next position to the left changed to its next
pattern. So the natural hypothesis was that this was an incrementing number, and that the
10 patterns saw represented the digits 0 through 9. A character-substitution formula was
developed that mapped the data we saw into these digits and, after some work, also
mapped the other parts of the header into readable ASCII characters. The result is shown
in Figure 10.

Fig 9: An incrementing number? Most of a header
appeared constant, and other parts of it appeared to change in
a way we did not understand. But some places, indicated by
the red bar, appeared to behave like an incrementing counter.

Clearly we have successfully decoded the header, showing it contained a counter and a
seven-letter keyword. After some work, we were also able to demonstrate that the discs
and other sounds in the header could be automatically generated from just the keyword,
telling us that there was no more information in the header for us to decode.

So, at this point we had headers which contained seven-letter keywords, each of which
was followed by a block of data. But what did the keywords mean? Were they random?

Some of the keywords were unusual and not ones that would appear often in normal text.
These allowed us to Google for the keywords and discover they were all from the book
“Ulysses”, by James Joyce. They appeared in the Semaphore’s transmission in the same
order as the book, but some words in the book were skipped over. We wondered why.

It turns out that certain words in the book are eliminated from the words used as
keywords by a set of rules. Words followed by apostrophe “s” are excluded. Some other
words were too, but we didn’t know why. For a while we entertained the possibility that
the message was encoded in the pattern of exclusions, but we could not decode anything
from this. Eventually we discovered that words containing the letters H, P, and X are not
included. These happen to be the 8th, 16th and 24th letters of the alphabet.
Hmmm….what does it all mean?

There’s Something in Here
From our experience in generating the entire header from just the keyword, we learned
that one step in the process was to use a function of sound3 and sound4 to produce the
lower two bits of the discs, and then to set the upper bits to zero. On a hunch, we tried

Fig 10: Decoded Headers. After noticing the counter and
decoding the digits, we were able to apply the decoding to the
entire header. Each header contained a seven-letter keyword,

the purpose of which we did not understand.

the same function to generate the lower bits of the discs in the data block, too, and found
it worked. We didn’t know how to compute the upper bits, though.

We shifted our attention again to sound3 and sound4. Was there any pattern there? We
decided to compute the percentage of (sound3, sound4) pairs that were used versus the
number of combinations that were possible. We found that a large portion was used, but
not all. However, too many were used to give us much hope that each pair represented a
character as in the header, since in that case we would expect to see 26 combinations plus
a few for punctuation, or perhaps 52 plus punctuation if upper and lower case were used.
Our analyses showed many more than that.

After searching the web for words like “Ulysses cipher”, we discovered that Ulysses S.
Grant (no relation to the book Ulysses, of course) was well known for the cryptographic
work of his team in decoding the confederate cipher. While reading about this, we
learned about poly-alphabetic ciphers and the Vigenere cipher. In that cipher, each letter
in the keyword is used in rotation to encode the next character in the message. In our
case, we knew the keyword for each block and, more importantly, that it was seven letters
long.

We decided to take a large block and sort the pairs of sounds into seven bins in rotation,
with the first pair of the block going into bin 0, the second pair into bin 1, etc. According
to the rotation, the eighth pair went into bin 0, and so on. In this way, each bin would
correspond to one letter of the keyword of a Vigenere cipher. If there was a function that
encoded each character according to the associated keyword letter, in rotation ala the
Vigenere cipher, each bin should contain a small number of pairs, corresponding to the
alphabet (26 or 52 plus punctuation). This was not the case, however. Dead end.

Around this time, it was discovered that the last pair of sounds in the block was special,
in that a simple function would always turn it into an alphabetic character, and
furthermore that character was contained in the block’s keyword. That could not be just
random, and gave us more reason to believe that somehow each pair of (sound3, sound4)
pairs in the block was somehow created by the use of the corresponding keyword
character.

Perhaps the discs and the minor sounds (sound1, sound2, sound5, and sound6) somehow
came into play? In the header they were redundant, but we didn’t know if they were or
not for the data blocks. We decided to do a large number of experiments to see if a
particular set of data (such as sound1) could be used to predict another set of data (such
as bit 2 of disc 3). To do this, we wrote a function that checked for consistency. For
instance, figure 11 shows code that tries to construct a table that takes a value A and
predicts the value of B. However, if it finds a value A that maps into two different values
of B, then we know that A cannot be used to predict B.

After many false results, we discovered that the sign of disc 2 (which indicates either
clockwise or counterclockwise rotation) was predicted by a combination of sound1 and
sound2. By manual inspection, we discovered the function and found it used the upper
bit of sound1 and both bits of sound2: “sign = a_1 ^ ((a_1 ^ ~b_1) & (a_1 ^
~b_0))”. A similar function predicted the sign of disc3 from sound5 and sound6.

Further work on decoding the sound3-sound4 pairs had not lead anywhere, so we decided
to continue work finding bits in the discs that might be significant. We focused on bit 2
of disc3, and found that the previous values of the discs (from the previous time period)
along with the current sounds could be used to predict it. After much experimentation,
however, could not find the function. We knew that this problem was similar to the logic
synthesis problem found in designing microprocessors, so we decided to apply some of
those techniques.

We downloaded a classic logic optimization tool, called Espresso, to see if it could do
better. To use as input to the tool, our software produced a table showing the value of bit
2 of disc3 for each combination of previous discs and current sounds. We hoped that
Espresso would be able to grind away on this data and present us with a simple formula,
similar perhaps to the one we found for the sign. With only an underpowered laptop
available for this purpose, we had our result in 14 hours.

There was indeed such an equation. Part of it is shown in Figure 12. It was 4,142 pages
long. This is not the sort of equation we would expect the semaphore designer to choose.
Furthermore, its length indicated it probably was more like a restatement of the data seen
so far, rather than a succinct way to compute bit 2 of disc3. To test this hypothesis, we
substituted a random number for bit 2 of disc3 in our data, and re-ran our process. The
result took 36 hours to compute this time, but produced an equation of similar size. We
don’t know what to make of this, but our hypothesis was that bit 2 of disc3 is either
random, produced by a good-quality hash function, or produced by a number of

Fig 11: Predicting Data. We weren’t sure if the data in the discs or minor
sounds was important, so we used a function like this to see if we could compute

them from other data, showing they were redundant.

exclusive-ors (which are not handled well by Espresso). Or else it contained real data.
We couldn’t tell, and this was another dead end of sorts.

Numerous other ideas were investigated which led nowhere. No new patterns could be
found in the discs or in sounds 1, 2, 5 or 6. Eventually we turned our focus back to the
(sound3, sound4) pairs.

Fig 12: Predicting bit 2 of disc3. This bit is indeed predicted by the
previous discs and the sounds, but only with an absurdly large

equation. To show this equation in its entirety it would require 4,142
pages. We doubt Ben Rubin, the designer of the semaphore, would

have written an equation that long.

The Final Leg
Once we had collected over two weeks of the transmission data, it became possible to
perform frequency analysis on the (sound3, sound4) pairs. We made a table of the
number of occurrences of each pair in the data block portion of the transmission. A
couple of things were immediately obvious.

First, the sign of sound4 did not affect the frequency. This led us to ignore the sign in
subsequent frequency analysis. Second, certain pairs were much more frequent than
other pairs. We spent a lot of time trying to discover a pattern which would explain why
some pairs were very frequent and some pairs never occurred. Unfortunately we were
unsuccessful.

A breakthrough happened when we decided to do frequency analysis on each data block
independently. Most of the data blocks were small and therefore hard to obtain any
meaningful information from. There were however a few larger blocks with 2000 or more
lines of data. These blocks provided important clues.

Each data block seemed to have its own 'signature'. Certain pairs were very common in
one block, but were completely absent in another block. We spent time looking for
patterns in the individual blocks, but again that was unsuccessful.

sound3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 55 0 0 5 0 1 0 15 0 0 0 0 20 0 1 0
2 2 0 28 39 0 0 0 39 0 16 5 3 0 5 0 0
3 53 1 2 20 0 0 0 0 0 3 10 0 4 0 0 0
4 5 98 29 29 13 0 0 1 17 0 0 0 0 23 51 7
5 0 0 11 21 0 0 0 13 0 9 2 0 0 0 0 0
6 66 0 38 5 0 38 23 27 0 1 0 7 0 0 26 14
7 0 0 11 3 0 0 14 0 9 0 15 0 0 0 0 0
8 1 1 5 29 23 5 7 8 2 5 25 0 0 23 0 48
9 55 0 14 2 4 0 3 0 0 17 0 7 0 0 0 0
10 3 21 22 41 1 3 0 17 5 0 0 0 19 0 8 0
11 0 23 9 4 0 0 0 14 0 0 0 0 19 0 0 0
12 23 8 5 0 21 3 7 0 1 17 17 4 16 21 0 38
13 11 0 10 0 13 0 0 0 21 0 0 0 0 22 0 19
14 65 1 5 38 3 0 0 16 0 5 9 0 0 10 0 20
15 58 0 16 0 0 7 11 0 0 22 0 0 0 4 2 0

s
o
u
n
d
4

16 21 32 26 0 5 4 1 0 23 22 22 21 30 0 7 0

Fig 13: Signature for keyword FACTION. This table shows the number of
occurrences of each (sound3, sound4) combination in data block following the header

with keyword FACTION. Different keywords have tables that may look very different.
For example, the table for keyword BUILDER has 56 occurrences of (2, 2) compared
with 0 for FACTION, and 0 occurrences of (1, 3) compared with 53 for FACTION.

We had an idea that the 7-letter keywords in the header were related to the data, and
eventually we were able to confirm it. By comparing two data blocks whose keywords
were similar, we noticed a high correlation of the frequency pairs in each one. For
example, the keywords LEONARD and SNARLED or RUTLAND and ROTUNDA
share 6 out of 7 letters. The frequency pattern of the pairs for these blocks are very
similar.

However, ROTUNDA and WIMBLES share 0 letters, and their frequency patterns are
very different. So we now knew that the letters in the keyword affected the (sound3,
sound4) values. By looking at blocks whose keywords differed by only a single letter,
we tried to identify which pairs seemed to be affected by each letter of the alphabet.
Unfortunately this was not possible since we had not captured enough large data blocks
and the smaller data blocks didn't contain enough pairs to be meaningful.

We finally made a breakthrough when we developed a new way to present the frequency
analysis data. We threw out the smallest data blocks, those with less than 750 entries.
For the medium and large blocks, we normalized the frequency data to make the
frequency of each pair independent of the total number of entries in the data block.

For each (sound3, sound4) pair, we listed the letters in the keyword along with the
normalized frequency of that pair. When we sorted each list based on frequency, some
interesting patterns appeared. All the keywords which contained a certain letter would be
at the top of the list. Then the words which contained another letter would be next on the
list. For example, all the keywords at the top of the list for pair (1, 4) had the letter D in
them. The next keywords in that list all had the letter E. And the keywords which
contained both D and E were listed at the very top.

 Normalized frequency
 Letters in the keyword Keyword of pattern (1,4) _
 DE G NO TU TONGUED 88
 A DE I N R T ARDENTI 87
 A CDE O R T REDCOAT 85
 A DE N TUV VAUNTED 84
 DE G N R TU GRUNTED 79
 AB DE G NO BONDAGE 75
 CDE I N RS DISCERN 74
 A DE L N RS SNARLED 71
 B DE I L R U BUILDER 70
 CDE I O R V DIVORCE 69
 A CDE L O R ORACLED 69
 A D I L RS Z LIZARDS 60
 A D I LMN U MAUDLIN 59
 D I MNO S U DOMINUS 58
 AB D G I N W WINDBAG 53
 AB E I L ST BASTILE 25
 A E I N Q TU ANTIQUE 24
 E I LM O RS LISMORE 20
 A E M RST Y STREAMY 20
 A E J L N UV JUVENAL 19
 E I K N RS W WINKERS 18
 B E G L NO S BELONGS 18
 C E I NO ST NOTICES 17
 E IJKL R Y JERKILY 17
 B E I K RST BRISKET 17
 A C E LM TU CALUMET 15
 B EF I L R Y BRIEFLY 15
 A E J MNO S NOSEJAM 15
 B E I L O Q U OBLIQUE 15
 A E G O S V Y VOYAGES 14
 C E I KL N R CLINKER 14
 B E I KL R U BULKIER 10
 ABC G O ST COSTBAG 6
 A C F I NO T FACTION 5
 A L O QRS U SQUALOR 2
 G I NO RS U ROUSING 0

Fig 14: Frequency Table for pattern (1, 4). The table for pattern (1, 4) shows
that keywords with a D in them have the most occurrences of this pattern,
followed by keywords with an E. Keywords with both D and E have even more.

We learned which pairs seemed to be a function of which keyword letters, but still didn't
know what it meant. Also, for many of the pairs it wasn't clear which letters really were
at the top of the list. We knew we had to come up with some sort of mapping function to
explain the data. Based on the progress we had made so far, we expected that mapping
function to be fairly straight-forward and elegant.

Eventually we noticed that aside from (1, 1), all of the pairs which seemed to be a
function of the letter A were in two columns, (3, X) or (4, X). After looking at it for a

while we figured that each pair in these columns represented the encoding of a different
letter of the alphabet with the letter A.

We discovered an encoding which was simple and fit the data well, based on our
knowledge of the frequency of certain letters of the alphabet in most English writing. For
instance, the letters E, T, and A occur most often. The mapping we came up with for the
letter A was:

 (3, 2) = A
 (3, 3) = B
 (3, 4) = C
 ...
 (3, 16) = O
 (4, 1) = P
 (4, 2) = Q
 ...
 (4, 10) = Z

We then tried to come up with a mapping for the letter B, but it was difficult since few of
the keywords had the letter B. But eventually we concluded that this was the correct
mapping:

 (5, 4) = A
 (5, 6) = B
 (5, 8) = C
 ...
 (5, 16) = G
 (6, 2) = H
 (6, 4) = I
 ...
 (8, 6) = Z

From there we were able to come up with a simple mapping of the letters of the alphabet
for each of the possible keyword letters. We found that if we assumed that the letters
were ASCII encoded our mapping was also able to handle punctuation and spaces.

 L = keyword letter (ASCII code)
 C = character to encode (ASCII code)
 x = (L-64) * (C-32+1) - 1
 sound3 = ((x >> 4) & 0xF) + 1
 abs(sound4) = (x & 0xF) + 1

Using this mapping, we listed the possible ASCII characters for the entries in each data
block based on the 7 letters of the keyword for that block. Even though we still didn't
know which keyword letter to use on each entry, by examining the ASCII characters we
could easily see sentences form in the data blocks.

 Possible Possible
 (Sound3, decoded encoding decoded
 Keyword sound4) chars letters char _
FACTION 4,-14: "T]H" "FAN" T
FACTION 3, 9: "H@" "AI" H
FACTION 8, 2: "2E^" "FCN" E
FACTION 2, 4: "M3 E" "FATN"
FACTION 7, -9: "B&" "CO" B
FACTION 16, 8: "EWC" "TIN" E
FACTION 8, 8: "3G%'" "FCTO" G
FACTION 5, -8: "+7I'W[" "FCTION" I
FACTION 11, 7: "N" "I" N
FACTION 13, -1: "N" "O" N
FACTION 5,-12: "VI" "TN" I
FACTION 2,-10: "N9" "FA" N
FACTION 3, 8: "G!" "AT" G
FACTION 1, 3: "" " "AC"
FACTION 12, 16: "?_O_?" "FCTON" O
FACTION 6,-15: "F" "I" F
FACTION 1, 15: ".$ " "ACO"
FACTION 14, 13: "T" "I" T
FACTION 4, -4: "SH5" "ATN" H
FACTION 7, -6: "0AY" "FCO" A
FACTION 4, -5: "T" "A" T
FACTION 1, 6: " %!D" "FACN"
FACTION 4, 1: "P" "A" P
FACTION 15, -4: "ED" "FT" E
FACTION 13,-10: "R" "N" R
FACTION 5, 9: "F" "O" F
FACTION 11, 16: "[O" "TI" O
FACTION 16,-13: "R" "O" R
FACTION 9, -4: "5KL[M" "FCTON" M
FACTION 13,-12: "A6" "FT" A
FACTION 3,-15: "N" "A" N
FACTION 7, 12: "1C>+9" "FCTIN" C
FACTION 3, 6: "PE4" "FAN" E

Fig 15: Manual decoding. This figure shows how the manual decoding of the
first decoded sentence was performed. The (sound3, sound4) pairs from the
transmission were decoded with each of the 7 letters in the keyword. Some of the
letters did not decode to an ASCII character and were discarded. By looking at
the possible decoded characters column, it is fairly easy to identify the decoded
message as “THE BEGINNING OF THAT PERFORMANCE”.

The first sentence we decoded was "THE BEGINNING OF THAT PERFORMANCE
WAS CLEAR ENOUGH." An internet search of that brought up the text of Thomas
Pynchon's "The Crying of Lot 49". We decoded other sentences to confirm that the
decoded message was the text of that book. We had finally decoded the San Jose
Semaphore!

Even though we had figured out the message, there were still a few loose ends to clean
up. First, we still didn't know which keyword letter to use for encoding each character of
the text. After some investigation we found out that the keyword letters go sequentially
through the keyword, but the direction changed often.

For instance, if the keyword is FACTION, the order of the letters used to encode each
character of the message may be:
 FACTCTCTIONFACTIOITCAFAFNOI

Further investigation showed that the direction changes whenever sound5 > sound 6. We
were now able to automatically decode the entire message, and it was indeed the entire
text of "The Crying of Lot 49". We also noticed that each data block contained one
paragraph of the book, which explained why some blocks were very short and others
were quite long.

Conclusions
Decoding the Semaphore was an interesting challenge, and fun, too. The aesthetics of the
art itself made it much more interesting than a standard puzzle, and we hope you get a
chance to see the Semaphore in action in its San Jose location or in the Simulcast at
www.sanjosesemaphore.org.

