

San Jose Semaphore: The Solution

Ben Rubin
benrubin@earstudio.com
August 7, 2007

She looked down a slope, needing to squint for the sunlight, onto a vast sprawl of houses which had grown up all together, like a well-tended crop, from the dull brown earth; and she thought of the time she'd opened a transistor radio to replace a battery and seen her first printed circuit. The ordered swirl of houses and streets, from this high angle, sprang at her now with the same unexpected, astonishing clarity as the circuit card had. Though she knew even less about radios than about Southern Californians, there were to both outward patterns a hieroglyphic sense of concealed meaning, of an intent to communicate. There'd seemed no limit to what the printed circuit could have told her (if she had tried to find out); so in her first minute of San Narciso, a revelation also trembled just past the threshold of her understanding.

Introduction

San José Semaphore, by artist Ben Rubin, is a public artwork commissioned by Adobe Systems Incorporated in collaboration with the City of San Jose's Office of Cultural Affair's Public Art Program.

Located within the top floors of Adobe's Almaden Tower headquarters in San José, California, San José Semaphore is a multi-sensory kinetic artwork that illuminates the San José skyline with the transmission of a coded message. San José Semaphore's four ten-foot wide illuminated disks rotate every 7.2 seconds, engaging viewers with a steady, glowing, and purposefully moving presence. The artwork's illuminated disks perform a kind of mechanical dance as a method of communication. A low-power radio broadcast provides a soundtrack that is audible within 2-3 blocks of the Almaden Tower on AM 1680. An online simulcast provides a way to see and hear the piece remotely.

Cracking the coded message has been posed as a challenge for the public. This document presents the solution to the code, revealing both the content of the Semaphore's message, and the means by which it was encrypted.

The Message Content Revealed

For the past year, the San Jose semaphore has been broadcasting the full text of Thomas Pynchon's 1966 novel, The Crying of Lot 49.

Given the artwork's location (the heart of Silicon Valley) and concept (a semaphore), there was really only one logical choice for the text: Thomas Pynchon's The Crying of Lot 49. Although he wrote the book in the mid 1960s, Pynchon's setting is a fictional California city filled with high-tech industrial parks and the kind of engineering sub-culture that we now associate with the Silicon Valley. The book follows the heroine's discovery of latent symbols and codes embedded in this landscape and in the local culture. Is there a message here, she wonders, and what are these symbols trying to tell me? At its heart, San Jose Semaphore is an expression of what Pynchon calls "an intent to communicate."

The Code

There were three main principles that went into the design of the code. The first was "crackability." I wanted the code to be hard to crack, but not so hard that a dedicated, knowledgeable person (or team) could not break it within a year or two. The second principle had to do with the visual and audible design of the artwork. I wanted the nature of the code to relate to the form of the artwork (the four turning discs). The third principle was to make the code human-readable. Once its structure is revealed, the cipher can be read with the naked eye, recorded with pencil and paper, and decoded readily (if somewhat laboriously) by hand. This human-scale communication is critical to the artwork's concept.

The nature of the discs themselves dictated the "alphabet" I would use for my ciphertext. Each of the discs can assume four easily distinguishable positions: horizontal, leftleaning diagonal, vertical, and right-leaning diagonal. With these four positions, and four independent discs, the Semaphore as a whole has a total of 256 possible combinations of disc positions, or values (see Fig. 1). These 256 combinations form the alphabet for the code transmission.

Fig. 1: The Semaphore alphabet, showing all possible disc combinations and their assigned values

First Layer: Prolog

The code is designed with two layers. The first layer is called the "prolog." The prolog does not contain any actual message content, but it marks the start of each paragraph of the novel and, most important, the prolog contains the key to decoding the paragraph that follows.

The prolog is short, and it is always the same length (41 characters). This is in contrast to the paragraphs themselves, which vary considerably in length. The prolog always begins with the words "START MESSAGE TRANSMISSION," followed by a three digit number, a colon, and a seven-letter word. The number is the paragraph number of the text to follow, and the seven-letter word is the key for decoding that paragraph. For example, the plaintext of the prolog for paragraph 226 looks like this:

START MESSAGE TRANSMISSION 226:FACTION
(" 226 " is the paragraph number, and "FACTION" is the key for deciphering the paragraph)
The prolog is weakly encrypted using a simple substitution cipher (see appendix). My idea was to make the prolog relatively easy to crack (at least two teams got this far), and thereby offer encouragement to anyone trying to break the code. The prolog also gives away a critical piece of information: the key to cracking the text that follows. This key is only of value, however, if the code breaker can figure out how to actually use it to decode the paragraph; revealing the key alone does not reveal this mechanism.

It is easy to identify the prolog when watching and/or listening to the Semaphore. During the transmission of paragraph content (which is most of the time), each of the Semaphore's discs spins either clockwise or counterclockwise, and there is no predictable pattern to the direction of spin. During the prolog, all the discs spin only clockwise.

Also, during paragraph transmission, a variety of pitches are used for instrumental sounds, tones and a signing voice (again, in an unpredictable pattern) to generate an unfolding melody. During the prolog, there is no variation in any of the sounds' pitches, and the melody becomes a kind of monotone chant (more details about the sound are at the end of this paper).

This combination of audible and visible markers was deigned to make the prolog easy to notice, offering a first foothold for would-be code breakers.

The Keys

The keys are seven letter words (the same number of letters as in "PYNCHON") taken in order of appearance from James Joyce's Ulysses. I have used text from this novel in previous artworks, and the unique (and sometimes cryptic) language seemed a good fit for this cryptographic purpose. The book is also long and filled with exotic vocabulary, and so it contains a bounty of unique seven-letter words (more than enough to provide a unique key for each paragraph). Potential keys containing the letters H, Q, or X were not used for reasons that are explained below.

Here are examples of seven-letter keys from Ulysses:

SINGLED	ABDOMEN	WRONGED	BRUCKEN	ORDINAL
FIGURED	MASTINO	BYGONES	INSULAR	ROMANUS
BRACING	UNSCREW	BASKING	ALIMENT	CRAWLED
ROAMING	LEVYING	DICTUMS	SOLVENT	COGNATE
CARKING	IRATELY	RACKING	DENSITY	FRONTAL
MARKING	INDULGE	LAUREIS	FAILURE	SECULAR
GUNBOAT	UMBRAGE	TOMKINS	FIRSTLY	AGONIES
LASTING	AUDIBLY	NOVELTY	TANDEMS	LOCATED
DURANCE	AROUSED	FOISTED	NEBUKIM	BREVITY
OUTLINE	CUDGELS	OBVIATE	MENDOZA	ORGANIC

I had originally planned to use key words derived directly from The Crying of Lot 49 itself. I changed my plans, however, after I tried entering an arbitrary selection of four such words into Google, and links to The Crying of Lot 49 came up immediately. I then realized that I would need to find keys from a different source. I knew Ulysses would similarly reveal itself to the code-breakers, but it seemed a worthy red-herring.

Second Layer: The Text

The second layer of the code (in which the 836 paragraphs of The Crying of Lot 49 are actually encoded), is a variant on the classic Vigenère cipher, which was thought to be unbreakable for nearly 300 years after its publication in 1585. As described on Wikipedia:

> In the Vigenère cipher, the first row of the tableau is filled out with a copy of the plaintext alphabet, and successive rows are simply shifted one place to the left. (Such a simple tableau is called a tabula recta, and mathematically corresponds to adding the plaintext and key letters, modulo 26.) A keyword is then used to choose which ciphertext alphabet to use. Each letter of the keyword is used in turn, and then they are repeated again from the beginning. So if the keyword is ' CAT^{\prime}, the first letter of plaintext is enciphered under alphabet ' C ', the second under ' A ', the third under ' T ', the fourth under ' C^{\prime} again, and so on. In practice, Vigenère keys were often phrases several words long.

The Semaphore code varies from the classic Vigenère in a two ways: first, the successive rows in the table are not merely shifted, but instead are the product of a simple calculation (described below), and second, where a classic Vigenère cipher always rotates the key forward, the Semaphore code may shift the key in either direction at each step. They key to the shift direction is hidden in the visible rotation of the discs (and in the corresponding sound).

The direction for the next rotation of the key is encoded in the rotation of the Semaphore's third disc (the third from the left). Whenever this disc rotates clockwise, the key must be rotated forward, and when the disc rotates counterclockwise, the key must be rotated backwards. ${ }^{1}$

[^0]The audio contains a parallel indicator: there are two short tones in the sequence that are in quick succession. When the third disc rotates clockwise, these tones always rise (a low tone, followed quickly by a higher one); when the third disc rotates counterclockwise, the tones fall. The tones thus redundantly encode the instruction for the key rotation.

The Key Table

The Semaphore's version of the Vigenère "tableau" is a key table (see Fig. 2) that assigns 64 possible plain text characters (26 letters, 10 numbers, plus most common punctuation, all in standard ASCII order) to the 256 possible Semaphore values based on 23 key values A through $\mathrm{Z}(\mathrm{H}, \mathrm{P}$, and X are omitted). The ciphertext (output) values are generated by multiplying the input value by the key value, then taking MOD 256 of the result. Note that H, P, and X are not valid key values, because they end up with duplicate ciphertext entries.

Fig. 2: The Semaphore's Vigenère "square" (key table). Plain text (input) values are shown at left in yellow, and key values are shown across the top, also in yellow.

I chose this scheme as a way to expand my 64－character plaintext alphabet（26 letters， 10 numbers，and assorted punctuation）to use the entire 256－member Semaphore alphabet， ensuring that there would be as much visual variety as possible in the movement of the discs．

The Soundtrack

In addition to its aesthetic value，the soundtrack adds a redundant means of receiving the code transmission．The Semaphore is designed so that the code can be fully transmitted （and cracked）based solely on the visible movements，or solely on the sound－all the critical information is fully represented in each modality．

The voices communicate the positions of the discs when they come to rest．The first voice，a distant spoken voice，speaks a letter of the NATO phonetic alphabet（Alfa， Bravo，Charlie up through the alphabet to Papa），and the second voice sings a number between one and sixteen．The first voice indicates the positions of the leftmost pair of discs，and the second voice indicates the positions for the rightmost pair．Each letter or number corresponds to a unique combination of positions as shown in the table below （Fig．3）．

SPOKEN	SUNG		
FL＿FR	口ПE	－	－
日RAU口	Tu口	－	V
CHARLIE	THREE	－	1
刀ELTA	FロபR	－	1
E［CHD	FIVE	\backslash	－
FロXTRロT	SIX	\}	\}
GロLF	SEVET	\}	1
HपTEL	EIGHT	，	1
ITIIT	TITE	1	－
JLLIET	TET	1	V
KILロ	ELEVEI	1	1
L Ima	TWELVE	1	ℓ
TIKEE	THIRTEETT	$/$	－
TIDUEMEER	FロLRTEET	1	\}
प5［नR	FIFTEEI	1	1
PRFA	SIXTEET	\checkmark	$/$

Fig．3：The key to decoding the voices
As discussed above，two of the tonal sounds in the soundtrack provide a redundant indication of the spin direction for the third disc（and hence，provide parallel instructions for rotating the substitution key）．The other sounds，like the spin directions of the other three discs，are purely ornamental．

The aesthetic of the soundtrack is based on my childhood memories of listening to the shortwave radio；for me，they evoke the mysterious cold－war＂numbers stations＂ broadcasts，as well as the regular pulsing rhythm of National Bureau of Standards＇ Atomic Clock．

APPENDIX: The simple substitution cipher used for the prolog

SEMAPHORE	PLAINTEXT		
- - -			
/ - \-	!		
\| -	-	"	
1-1-	\#		
- \--	\$		
/ \ \ -	\%		
\| \	-		
\ \/-			
- 1--	(
/ \| 1 -)		
\|		-	*
\/ / -	+		
- / - -	,		
/ / \ -	-		
\| /	-	.	
1//-	1		
\---	0		
- - \-	1		
/-1-	2		
1-1-	3		
\ \ - -	4		
- \ \ -	5		
/ \\| -	6		
\| \/-	7		
\\| - -	8		
- \| \ -	9		
/ \|	-	:	
\|	/ -	;	
\/--	<		
- / \ -	=		
/ / \| -	>		
1//-	?		

SEMAPHORE	PLAINTEXT		
\| - -	@		
\-\-	A		
- - \| -	B		
/-1-	C		
\| \ - -	D		
$\backslash \backslash \backslash$ -	E		
- \\| -	F		
/ \/-	G		
\|	- -	H	
\\| \ -	I		
- \|	-	J	
/ \| / -	K		
1/--	L		
\/ \ -	M		
- / \| -	N		
/ / / -	0		
/---	P		
1-\ -	Q		
1-1-	R		
-- / -	S		
/ \--	T		
$1 \backslash \backslash-$	U		
$\backslash \backslash \mid-$	V		
- \/ -	W		
/ \| - -	X		
\|	\ -	Y	
\\|	-	Z	
- 1/-	[
/ / - -	1		
1/ \-]		
\/ \| -	\wedge		
- / / -	-		

[^0]: ${ }^{1}$ In order to make frequency analysis of the ciphertext a bit more difficult, the rotation directions were generated using an algorithm that maximized the diversity of plaintext / key letter combinations.

