
USING THE ADOBE CREATIVE
SUITE 6 SDK

TECHNICAL NOTE

© 2012 Adobe Systems Incorporated. All rights reserved.

Using the Adobe Creative Suite 6 SDK

Adobe, the Adobe logo, Creative Suite, Dreamweaver, Fireworks, Flash, Flash Builder, Flex, InDesign, InCopy, Illustrator,
Photoshop, and Premiere are either registered trademarks or trademarks of Adobe Systems Inc. in the United States
and/or other countries. Microsoft and Windows are registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. Apple, Mac OS, and Macintosh are trademarks of Apple Computer, Inc., registered
in the United States and other countries. Java and Sun are trademarks or registered trademarks of Sun Microsystems, Inc.
in the United States and other countries. All other trademarks are the property of their respective owners.

The information in this document is furnished for informational use only, is subject to change without notice, and should
not be construed as a commitment by Adobe Systems Inc. Adobe Systems Inc. assumes no responsibility or liability for
any errors or inaccuracies that may appear in this document. The software described in this document is furnished under
license and may only be used or copied in accordance with the terms of such license.

Adobe Systems Inc., 345 Park Avenue, San Jose, California 95110, USA.

 3

Contents

About Creative Suite extensions . 5
Adobe Creative Suite extensibility architecture . 6

Anatomy of an extension . 6

Extension management . 6

About the Creative Suite SDK . 7
Development environment requirements . 7

Supported applications . 8

Setting up the environment . 8

Using Adobe Creative Suite SDK . 9
Add libraries to your Flex project . 9

Create and add manifest file . 10

Import a package . 11

Creating a manifest file . 12
ExtensionManifest . 12

ExtensionList/Extension . 13

ExecutionEnvironment . 14
HostList/Host . 14
LocaleList/Locale . 14
RequiredRuntimeList/RequiredRuntime . 15

DispatchInfoList/Extension/DispatchInfo . 15
Resources . 16
Lifecycle . 17
UI . 17

Localizing an extension . 18
Localizing the extension’s manifest file . 19

Localizing the extension’s Flex UI . 19

Running and debugging your extension . 19
Setting the OS debug mode . 20

Debug file for Photoshop and Dreamweaver . 20

Loading the extension . 21

Creating a debug run configuration in Flash Builder . 21

Debugging your extension in a host application . 22

Contents 4

Creating a hybrid extension . 22
Writing hybrid extensions . 22

Communicating between components . 23

Testing a hybrid extension . 23

Packaging and signing your extension for deployment . 23
Creating the deployment package . 24

Using UCF . 24
How signing works . 25

Packaging a hybrid extension . 26
Configuring a hybrid extension . 26

Installing a packaged and signed extension . 28
Using Extension Manager . 28
Testing extension installation . 28
Troubleshooting the installation . 30

Running an extension . 30

Removing an extension . 31

Checking log files for errors . 31
LogBook logs . 32
Flash Player's built-in logging . 32
Application logs . 33
CS Service Manager logs . 34

 5

Getting Started with the Adobe Creative Suite SDK

The Adobe® Creative Suite® SDK is a set of ActionScript® libraries that make it possible to build Creative
Suite Flash®-based extensions in CS5 and higher. Developers can include these libraries in their projects in
order to create cross-application plug-ins that use the Adobe Flex® framework and AIR® 2.0 API, and access
the document object model (scripting DOM) of Creative Suite applications through ActionScript objects.

About Creative Suite extensions
This section provides an overview of the Adobe Creative Suite extensibility technology, which provides a
common infrastructure for development and deployment of extensions that work across a set of
supported Adobe Creative Suite applications. An Adobe Creative Suite extension is a set of files that
together extend the capabilities of one or more Adobe Creative Suite applications. Developers can use
extensions to add services and to integrate new features across the applications in the suite.

The Adobe Creative Suite SDK provides developers with a consistent platform in which to develop and
deploy extensions across the suite. Adobe Creative Suite extensions run in much the same way in all
Adobe Creative Suite products (CS5 and higher), providing users with a rich and uniform experience.

Adobe Creative Suite extensions use ActionScript to create cross-platform user interfaces. Extensions also
have access to the host application's scripting interface, and can use these scripting APIs to interact with
the application.

Tight integration with the suite products allows extensions to be controlled as if they were built into the
host applications. For example, extensions are invoked from the application’s menu and, depending on
the type of extension, can be docked, undocked, and provide fly-out menus. Users can add or remove
extensions quickly and easily to customize Adobe Creative Suite applications to their needs.

The Kuler panel, developed by Adobe and available in some products (CS5 and higher), is an example of a
Adobe Creative Suite extension. Once available only as a web-hosted application for generating color
themes, the Kuler extension makes the online Kuler service accessible within the suite products and allows
users to access the color themes available in the web-hosted version. Kuler also integrates with the host
application, allowing users to create themes that can be added, for example, to Photoshop® as a swatch.

Getting Started with the Adobe Creative Suite SDK About Creative Suite extensions 6

Adobe Creative Suite extensibility architecture

The Adobe Creative Suite extensibility architecture is designed to make it easy to develop and deploy
extensions. This section describes the components and explains how they work together to run
extensions.

Adobe Creative Suite applications that enable extensibility (such as Photoshop and Illustrator) link to the
extensibility architecture through a native library. This library performs the standard tasks involved in
listing, invoking, and communicating with services, and in requesting defined actions that are executed in
the host.

The CS applications are made aware of the extensions (services or extended features) available to them by
the CS Service Manager. This key component in the extensibility infrastructure runs on the client machine
along with the products, and provides a common way to manage extensions across the suite.

The Service Manager communicates with Adobe Extension Manager to provide new content or updates to
existing extensions. Once installed or updated, extension files are saved in a common location in the file
system. CS applications can load extensions from this common location.

Anatomy of an extension

A deployed Adobe Creative Suite extension has these components:

Extension management

The CS Service Manager is a program that runs in the background whenever extensions are invoked by
Adobe Creative Suite products. This service determines what extensions should be loaded in an
application, based on the information provided in each extension’s manifest file. To specify or change this
information, you edit the project properties; see Configuring an Adobe Creative Suite Extension. Every
time an extension is installed, uninstalled, or updated, the CS Service Manager reloads the extension's

File or Folder Description

MyExtension.swf The Flash file that provides the interface to the extension. The SWF file is a
compiled AIR or Flex application. It can embed the SDK ActionScript libraries
that allow the extension to communicate with the host application and the
extensibility infrastructure.

See the “Using Adobe Creative Suite SDK” on page 9 for basic information on
creating an extension project.

CSXS/manifest.xml The manifest, a configuration file that lists the host applications that can load
the extension and the supported locales, so that the correct resources can be
used. See “Creating a manifest file” on page 12.

icon_*.png Optional icons used to represent the extension when docked. You can provide
icons for different states (normal, rollover, or disabled). For CS6 targets, you can
provide icons for different color themes (light or dark). Specify these as part of
the configuration.

locale/*.* Optional folder containing localized string resources. A default localization file,
messages.properties, stores key-value pairs that map UI strings to resources.
Each specific locale folder contains a messages.properties file for that locale.

Getting Started with the Adobe Creative Suite SDK About the Creative Suite SDK 7

manifest to reflect those changes. The next time a CS application is re-started, the CS Service Manager
notifies that application of the changes.

Users can install your packaged and signed Adobe Creative Suite extension through the Extension
Manager; see “Packaging and signing your extension for deployment” on page 23. The Extension Manager
installs all extensions in a common location, the extensions/ folder, that all the Creative Suite
applications can access.

The name of the CS Service Manager root folder (<ServiceMgr_root>) depends on the Creative Suite
version: CSxServiceManager, where is the version such as 5, 5.5, or 6.

The exact location of the folder is platform-specific:

In Windows: C:\Program Files\Common Files\Adobe\<ServiceMgr_root>\extensions\

In Mac OS X: /Library/Application Support/Adobe/<ServiceMgr_root>/extensions/

Within the extensions/ folder, extensions are organized by the assigned name (that is, the bundle
identifier, not the display name that appears in the host application's Window > Extensions menu). You
can remove an extension through the Extension Manager's UI.

About the Creative Suite SDK
The Creative Suite SDK comprises two major components:

A set of application-specific DOM libraries known as the Creative Suite ActionScript Wrapper (CSAW)
libraries. The CSAW library names all start with csaw; for example, csaw_indesign.swc is the CSAW
library for Adobe InDesign®.

Two common infrastructure support libraries:

Adobe Player for Embedding (APE), implemented by the file apedelta.swc. This file is needed
when using any of the CSAW libraries.

Creative Suite Extensible Services (CSXS). This library provides a set of core services that you can
use to send events to other extensions, execute ExtendScript code, and discover information
about the host application environment.

— For CS5.x targets, use version 2, implemented by the file
CSXSLibrary-2.0-sdk-3.4-public.swc

— For CS6 targets, use version 3, implemented by the file
CSXSLibrary-3.0-sdk-4.5-public.swc

Development environment requirements

The development environment for Creative Suite SDK is Flash Builder™, which is available from
http://www.adobe.com/products/flashbuilder/.

To use the Creative Suite SDK, you must have:

Flash Builder 4 or 4.5, or Eclipse with the Flash Builder plug-in, or the standalone Flex SDK provided
with this SDK.

Adobe Extension Manager CS5 or higher.

http://www.adobe.com/products/flashbuilder/

Getting Started with the Adobe Creative Suite SDK About the Creative Suite SDK 8

Adobe Creative Suite 5 or higher, or at least one of the applications that supports extensions.

Supported applications

The Creative Suite SDK works with most of the Creative Suite products. The following Creative Suite
applications support Creative Suite SDK extensions. Most of these applications also support an
application-specific scripting object model that allows direct manipulation of application objects. For
those that do not yet have ActionScript wrapper libraries in the Creative Suite SDK, it is possible to access
the ExtendScript or JavaScript scripting DOM directly through CSXS library.

It is possible to build an extension that works in all of the Creative Suite applications; for instance, one that
connects to an Adobe LiveCycle server for workflow information. (Note however, that Adobe Bridge CS6
does not support extensions.)

Setting up the environment

To begin using Adobe Flash Builder to create a Creative Suite SDK project, you must install it and add the
CS Flex SDK 3.4 to it to support targets in CS5 or CS5.5., or the CS Flex SDK 4.5 to leverage extensibility
technology only available in CS6.

To add the CS Flex SDK 3.4 :

1. Locate the CS Flex SDK provided with the Creative Suite SDK:

<CS_SDK_root>/CS Flex SDK 3.4.0/
<CS_SDK_root>/CS Flex SDK 4.5.0/

(If you use Flash Builder 4.6, you must replace the included SDK 4.6 with SDK 4.5.)

2. Download Adobe Flash Builder 4.5 or higher from http://www.adobe.com/products/flashbuilder/ and
run the installer.

3. If you want to use the AIR 2.0 libraries, download
http://labs.adobe.com/wiki/index.php/AIR_2:Release_Notes, and follow the instructions in “How to
overlay the Adobe AIR SDK for use with the Flex SDK.”

Application Host name
CS5
Version

CS5.5
Version

CS6
Version ActionScript wrappers

Adobe Bridge BRDG 4 4.1 — Yes (CS5.x only)

Dreamweaver® DRWV 11 11.5 12 No

Fireworks® FWKS 11 11.1 12 No

Flash Pro FLPR 11 11.5 12 Yes (CS6 only)

InDesign® IDSN 7 7.5 8 Yes

InCopy® AICY 7 7.5 8 Yes

Illustrator® ILST 15 15.1 16 Yes

Photoshop® /Photoshop Extended PHSP 12 12.1 13 Yes

Adobe Premiere® Pro PPRO 5 5.5 6 Yes (CS6 only)

http://www.adobe.com/products/flashbuilder/
http://labs.adobe.com/wiki/index.php/AIR_2:Release_Notes

Getting Started with the Adobe Creative Suite SDK Using Adobe Creative Suite SDK 9

4. Launch Flash Builder.

5. In Flash Builder, choose Window > Preferences; in the Preferences dialog, select Flash Builder >
Installed Flex SDKs.

6. Click Add, and navigate to the CS Flex SDK folder that is part of the Creative Suite SDK. Select the
checkbox by the folder to make it the default.

You are now ready to make your first Creative Suite SDK project.

Using Adobe Creative Suite SDK
This section describes the general procedure for using Adobe Creative Suite SDK, and provides detailed
walkthroughs and examples that illustrate the procedures in the context of sample code that is included
with the SDK.

Add libraries to your Flex project

1. In Flash Builder, create a new Flex project that targets the Desktop by choosing File > New > Flex
Project, and using the New Project wizard. In the wizard, choose "Desktop (runs in Adobe AIR)" as the
application type.

Once you have created a Flex project, you must add some or all of the SDK libraries to your project in
order to use their APIs in your extension.

2. Decide which version or versions of the Creative Suite your project targets. If you plan to target
multiple versions of the Creative Suite with a single project (for example, both CS5.x and CS6), it is
recommended that you choose the CSAW libraries for the minimum target version. This helps ensure
that you do not use any API features that are unavailable in earlier versions. For details of specific APIs,
see the API reference documentation.

3. Decide which Flex version of the CSAW libraries to use.

For targets in CS5.x or CS6, you can use versions compiled with Flex SDK 3.3, 3.4, or 3.5. The Flex 3.4
version is recommended, unless you have a compelling reason not to use it; for example, you have
external libraries that were compiled with Flex 3.5 SDK.

If your minimum version is CS6, compile against the default Flex 4.5.

4. Find the CSAW libraries associated with the chosen Creative Suite and Flex versions. The libraries are
stored in this folder structure:

<CS_SDK_root>/libs/cslibs/<CSSDK version>/<Flex SDK version>/release/...

5. Add the wrapper libraries you need. Add csawlib.swc if you want to use all the application wrappers,
or the product-specific wrappers if you are targeting only one or two applications (for example
csaw_photoshop.swc). To do this:

Select your project in the Package Explorer and choose Properties from the context menu.

In the Properties dialog, select Flex Build Path. Click Add SWC, specify the desired library or
libraries, and click OK.

6. If you use any wrapper libraries, you must also include apedelta.swc in your project. To do this:

Select your project in the Package Explorer and choose Properties from the context menu.

Getting Started with the Adobe Creative Suite SDK Using Adobe Creative Suite SDK 10

In the Properties dialog, select Flex Build Path. Click Add SWC, specify apedelta.swc, and click
OK.

Open apedelta.swc in the Library path pane and ensure that the Link Type is External. (This
library defines the Flash Player API; if it is compiled into your extension, you will get run-time
errors.)

7. Include the CSXSLibrary if you plan to send events to other extensions, execute ExtendScript code, use
CSXSWindowedApplication, CSExtension, or any other part of the CSXS API. For details, see the
reference documentation for CSXSLibrary.

Create and add manifest file

A Creative Suite extension must have a manifest file, which tells the Extension Manager how to install that
extension and specifies how it should be loaded and executed in the application. The extension manifest
is an XML file.

The Creative Suite SDK includes the complete XSD file for the Extension Manifest schema and a sample
manifest file. The section “Creating a manifest file” on page 12 describes some of the options and
capabilities.

1. Create a manifest file based on the sample. The file must be named manifest.xml.

2. Place the manifest file in your project source folder, in a package named CSXS. The build process will
automatically copy the manifest to the Output folder.

Getting Started with the Adobe Creative Suite SDK Using Adobe Creative Suite SDK 11

After you have created your manifest file, your project should look something like this in the Package
Explorer:

Import a package

In the Flex project code, you must import the package from the Adobe Creative Suite SDK that contains
the ActionScript wrappers for the scripting functionality you intend to use. Do this by adding an import
statement to the top of the <mx:Script> tag in an MXML file (or <fx:Script> if you are using Flex 4.5).
For example, using Flex 4.5:

<fx:Script>
<![CDATA[
import com.adobe.csawlib.indesign.InDesign;

import com.adobe.indesign.Application;
]]>
</fx:Script>

Import the package that corresponds to the target application (InDesign in this example), in order to
provide access to the scripting DOM of that application. For a complete listing and description of the
available packages and their contents, see the API Reference documentation.

Once you have created the extension project, added the libraries, created and added the manifest, and
imported the libraries you need to use, you are ready to write your extension, adding the functionality to
the MXML file. For example, using Flex 4.5:

<?xml version="1.0" encoding="utf-8"?>
<csxs:CSExtension xmlns:fx="http://www.adobe.com/mxml/2009"

 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:csxs="com.adobe.csxs.core.*">

<fx:Script>
<![CDATA[

import com.adobe.csawlib.indesign.InDesign;
import com.adobe.indesign.Application;

http://www.adobe.com/mxml/2009

Getting Started with the Adobe Creative Suite SDK Creating a manifest file 12

public static function run():void
{

var app:com.adobe.indesign.Application = InDesign.app;
app.documents.add();

}

]]>

</fx:Script>

<s:VGroup height="100%" width="100%">
<s:Button label="Run ID code" click="run()"/>

</s:VGroup>
</csxs:CSExtension>

Creating a manifest file
Extensions created with the Adobe Creative Suite SDK require a manifest file. The manifest is an XML file
that describes the extension, tells the CS Extension Manager how to install it, and gives the author control
over extension-specific options such as the extension life cycle, UI, and menus. The complete schema for
the XML, which you can use to validate the syntax, is included in the Creative Suite SDK installation:

<CS_SDK_root>/docs/ExtensionManifest-3.0.xsd

The typical simple extension is a single SWF; however, the Creative Suite SDK also supports bundling
multiple SWFs into a single extension bundle, and the manifest schema reflects this structure.

In this section we look at a simple manifest file in detail, illustrating the usage of each XML tag with
examples from the sample manifest.xml file included in the Creative Suite SDK.

ExtensionManifest

The root element for an extension manifest XML file:

<ExtensionManifest
Version="3.0"
ExtensionBundleId="com.example.simple"
ExtensionBundleVersion="1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...

</ExtensionManifest>

Attributes The ExtensionBundleId attribute is an optional unique identifier for your extension bundle. Adobe
recommends using a fully qualified namespace-like name such as com.myCompany.extension.

Allowed
children

The possible child elements of ExtensionManifest are:

Author Optional. The author of this extension bundle.

Contact Optional. A contact for this extension bundle.

Required attribute mailto.

Legal Optional. A legal notice for this extension bundle.

Optional attribute href.

http://www.w3.org/2001/XMLSchema-instance

Getting Started with the Adobe Creative Suite SDK Creating a manifest file 13

ExtensionList/Extension

An extension bundle can contain multiple extensions, each of which is implemented by an SWF file. Each
extension in the bundle must be listed here in its own Extension element, each with a unique extension
identifier.

<ExtensionList>
<Extension Id="com.example.simple.extension" Version="1.0" />

</ExtensionList>

Attributes The Extension tag takes two attributes:

Abstract Optional. An abstract for this extension bundle.

Optional attribute href.

ExtensionList Contains a list of extensions defined in this bundle. See details below.

ExecutionEnvironment Contains information about which host applications can run the extension
under what conditions. See details below.

DispatchInfoList Contains an Extension element for each of the listed extensions, each of
which contains a DispatchInfo element. See details below.

ExtensionData Optional. Contains arbitrary information about this extension. It can contain
data of any type.

Required attribute Id associates this data with an extension defined in
the ExtensionList.

Optional attribute Host associates the data with a specific host
application.

If you have provided localization resources (see “Localizing an extension” on
page 18), you can use the %key syntax to localize values in the
ExtensionData element. Because this section contains arbitrary information
about the extension, you must localize the entire XML content of the
element, and include all of the alternative XML files in your project:

<ExtensionData>%ExtensionData</ExtensionData>

Id A unique identifier for the extension, unique within the entire CSXS system. Adobe
recommends using a reverse domain name. Other tags within the manifest use this id to
reference this extension.

Version Optional, a version identifier for this extension.

Getting Started with the Adobe Creative Suite SDK Creating a manifest file 14

ExecutionEnvironment

The ExecutionEnvironment element contains information about which Creative Suite applications will
run the extension under what conditions.

This element must list each of the Creative Suite host applications targeted by your extension, the
supported locales, and the runtime requirements. In this example, an extension that targets InDesign CS6
requires CSXS 3:

<ExecutionEnvironment>

<HostList>
<Host Name="IDSN" Version="10" />

</HostList>

<LocaleList>
<Locale Code="All" />

</LocaleList>

<RequiredRuntimeList>
<RequiredRuntime Name="CSXS" Version="3.0" />

</RequiredRuntimeList>

</ExecutionEnvironment>

HostList/Host

The HostList element contains a list of Host elements for all supported hosts. Each Host tag specifies a
supported Creative Suite product.

Attributes The Host tag contains the following attributes:

LocaleList/Locale

The LocaleList element contains a list of Locale elements for all supported locales. Each Locale tag
contains the locale code for a supported language/locale, in the form xx_XX; for example, en_US or ja_JP.
You can use the special value All to indicate that the extension supports all locales.

Use a single Locale element with the special value "All" to make your extension load in the host
application regardless the language used:

Name Required, the host name of the host application. See “Supported applications” on page 8.

Version Required. The version or versions in which this extension will work.

A single version number specifies the minimum supported version; the extension works in
all versions greater than or equal to this version.

Specify a version range using interval notation, a comma-separated minimum and
maximum version number enclosed by inclusive, [], or exclusive, (), endpoint
indicators. You can mix endpoint types. For example, to target InDesign 7 and all versions
up but excluding version 10, use the string "[7,10)". The entire element looks like this:

<Host Name="IDSN" Version="[7,10)" />

Getting Started with the Adobe Creative Suite SDK Creating a manifest file 15

<LocaleList>
<Locale Code="All"/>

</LocaleList>

To restrict the locales your extension supports, create a Locale element for each language, whose value is
a locale code. If the application locale does not match one of those specified, the application does not load
the extension. For example, an extension with these settings loads when the application is running in US
or British English:

<LocaleList>
<Locale Code="en_US" />
<Locale Code="en_GB" />

</LocaleList>

For information on how to localize your extension, see “Localizing an extension” on page 18.

RequiredRuntimeList/RequiredRuntime

The RequiredRuntimes element contains a list of RequiredRuntime elements for all required runtimes;
that is, executables that must be available in order for the extension to run.

For extensions that target both CS5.x and CS6 applications, use CSXS 2.0:

<RequiredRuntimeList>
<RequiredRuntime Name="CSXS" Version="2.0" />

</RequiredRuntimeList>

For extensions that target only CS6 applications, use CSXS 3.0:

<RequiredRuntimeList>
<RequiredRuntime Name="CSXS" Version="3.0" />

</RequiredRuntimeList>

DispatchInfoList/Extension/DispatchInfo

This section of the manifest determines the lifecycle and appearance of your extension. Each extension
listed in the ExtensionList element must have a corresponding Extension element in the
DispatchInfoList, containing a DispatchInfo element. The Id attribute in this Extension tag
associates it with its corresponding tag in the ExtensionList.

<DispatchInfoList>
<Extension Id="com.example.simple.extension">

<DispatchInfo >
...

</DispatchInfo>
</Extension>

</DispatchInfoList>

The DispatchInfo element contains parameters that the application needs to run the extension. This
includes information about the resources used by the extension, the lifecycle, and the UI configuration.

<DispatchInfo >
<Resources>

<SwfPath>./Simple.swf</SwfPath>
</Resources>

Getting Started with the Adobe Creative Suite SDK Creating a manifest file 16

<Lifecycle>
<AutoVisible>true</AutoVisible>
<StartOn>

<Event>applicationActivate</Event>
</StartOn>

</Lifecycle>

<Geometry>
<Size>

<Height>500</Height>
<Width>400</Width>

</Size>

<MaxSize>
<Height>500</Height>
<Width>400</Width>

</MaxSize>

<MinSize>
<Height>500</Height>
<Width>400</Width>

</MinSize>
</Geometry>

</UI>
</DispatchInfo>

Attributes The DispatchInfo tag can have an optional attribute Host, in which case the parameters apply only to
that host application. Specify the application using the Host name shown in “Supported applications” on
page 8.

If a host is not specified, the element defines default values for all parameters that are not set in a
host-specific DispatchInfo element.

Resources

The Resources element contains the paths to source files that are needed to run the extension. All paths
are relative to the extension’s root directory, and must use forward-slash delimiters. Typically contains
these elements:

SwfPath Contains the path to the extension's SWF file.

ScriptPath Contains the path to the extension's script file, if any.

Getting Started with the Adobe Creative Suite SDK Creating a manifest file 17

Lifecycle

The Lifecycle element specifies the behavior at startup and shutdown. It can contain these elements:

UI

The UI element configures the appearance of the extension window. It can contain these elements:

AutoVisible Boolean, true to make the extension’s UI visible automatically when launched.

StartOn/Event A set of events that can start this extension. Use fully-qualified event identifiers. For
example:

<Lifecycle>
<StartOn>

<Event>applicationActivate</Event>
</StartOn>

</Lifecycle>

You can register for any of the CSXS standard events or any arbitrary CSXSEvent sent
from a C++ plug-in. The standard events (which are not necessarily supported by all
applications) are:

documentAfterActivate: Fired when a document has been activated.

documentAfterDeactivate: Fired when the active document has been
deactivated.

applicationActivate: Fired when the application gets an "activation" event
from the OS.

applicationBeforeQuit: Fired when the application is about to shut down.

documentAfterSave: Fired after the document has been saved

Type The type of the extension controls the kind of window that displays its UI. Value is one of:

Panel
ModalDialog
Modeless
ToolTip

Menu The label of the menu item for this extension in the host application’s Window >
Extensions menu.

The value can be a localization key; see “Localizing the extension’s manifest file” on
page 19.

If not included, no menu item is added for the extension, and you are responsible for
starting it in response to some event, by providing a Lifecycle/StartOn/Event
element.

Getting Started with the Adobe Creative Suite SDK Localizing an extension 18

Localizing an extension
In order to localize your extension, you must create resource files for your project. Your localized string
resources can be used in both the Flex components that make up your UI, and in a number of places in the
manifest.

Define your localization string resources in a set of files that contain key/value pairs in UTF-8 format. Name
each such file "messages.properties", and store it in a locale-specific subfolder of a folder called "locale" in
the root folder of your project. For example:

#locale/es_ES/messages.properties
menuTitle=Mi extension
buttonLable=Mi boton
...

If you have decided that your extension should run in all languages and you do not have specific support
for a locale, the resources in the default file are used. The application looks for a properties file at the top
level of the locale/ folder to use as the default resource file.

#locale/messages.properties
menuTitle=My extension
buttonLabel= My button
...

If the application UI locale exactly matches one of the locale-specific folders, those resources are used in
your extension interface. The match must be exact; for instance, if you have resources for fr_FR but the
application locale is fr_CA, the default properties are used.

You must copy the locale/ folder and its contents into the project’s Output folder before you attempt to
run or debug the extension.

Geometry Specifies the preferred geometry of the extension window. The host application may not
support all of these preferences, and the values can be overwritten for an AIR extension,
using the AIR window API.

The value can be a localization key; see “Localizing the extension’s manifest file” on
page 19.

The example above shows the possible elements.

If you provide a size element, both the width and height value must be provided.

Icons/Icon The Geometry element can contain this list, which identifies icons used for the extension
in the host application’s UI; for example, when docking an extension of type Panel.

Each Icon element contains the path to the icon file (relative to the extension’s root
directory), and the required attribute Type, which is one of:

Normal
Disabled
Rollover

The path value can be a localization key; see “Localizing the extension’s manifest file” on
page 19.

Getting Started with the Adobe Creative Suite SDK Running and debugging your extension 19

Localizing the extension’s manifest file

If you have provided localization resources, you can localize values within a manifest's DispatchInfo/UI
element by replacing the value with a messages.properties key, preceded by the percent symbol. For
example:

<Menu>%menuTitle</Menu>

When your extension runs, the application looks for this key in the locale-specific messages.properties
file, and uses the value to display the menu item.

You can use this mechanism to localize other information in the manifest file. For example, to have
locale-dependent default extension geometry, or to load a different icon:

<Menu>%menuTitle</Menu>
<Geometry>

<Size>
<Height>%height</Height>
<Width>%width</Width>

</Size>
</Geometry>

<Icons>
<Icon Type="Normal">%icon</Icon>
<Icon Type="RollOver">%icon</Icon>

</Icons>

Localizing the extension’s Flex UI

You must make the localization resources available as part of initializing your extension's Flash
component. To do this, call initResourceBundle()during the initialization:

CSXSInterface.getInstance().initResourceBundle();

At run time, the extension infrastructure loads the resources that match the locale used in the host
application, the default messages.properties file if no matching folder is found.

In your Flex UI, use the ResourceManager object in your ActionScript code to directly access the resources
in your messages.properties file. Use resourceManager.getString(), passing the name of the resource
bundle, "messages", and the key of the property to retrieve:

resourceManager.getString('messages', 'myKey');

For more information on retrieving information from your resource file, see
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/resources/IResourceManager.h
tml.

Running and debugging your extension
Once you have created the project you can run the extension within your chosen host application (such as
InDesign, Illustrator, or Photoshop). Before you run for the first time, however, you must let the operating
system know that you are still in development, so that it won't expect your extension to be signed. You do
this by setting a platform-specific debugging flag.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/resources/IResourceManager.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/resources/IResourceManager.html

Getting Started with the Adobe Creative Suite SDK Running and debugging your extension 20

After you have set the debugging flag, you must copy your Output folder to the CS Service Manager's
deployment folder. The Service Manager automatically loads the extension into any application that
supports it, when that application is launched.

To start debugging, you must first define a debug run configuration in Flash Builder. You can then debug
the extension with Flash Builder while it is running in the application.

Setting the OS debug mode

To enable debugging mode in the application-embedded Flash Player, you must set an OS-specific flag.
The location of this flag will change, depending on which version of the Creative Suite you are targeting
for your extension. You need to do this in order to run your extension in the host application, even if you
are not yet debugging it; the debug mode allows you to run your extension before it is packaged and
signed for deployment.

In Windows:

1. Choose Run from the Windows Start menu, and enter regedit to open the registry editor.

2. Navigate to the key
CS5: HKEY_CURRENT_USER\Software\Adobe\CSXS2Preferences\...

CS5.5: HKEY_CURRENT_USER\Software\Adobe\CSXS.2.5Preferences\...

CS6: HKEY_CURRENT_USER\Software\Adobe\CSXS.3Preferences\...

3. Change value for key PlayerDebugMode to 1 to enable or to 0 to disable the debug mode.

4. Close the registry editor.

In Mac OS:

1. Navigate to the folder <user>/Library/Preferences/...

2. Find the PLIST file:
CS5: com.adobe.CSXS2Preferences.plist

CS5.5: com.adobe.CSXS.2.5.plist

CS6: com.adobe.CSXS.3.plist

3. Open this file with the XCode Property List editor, or with your preferred text editor.

4. Change value for the key PlayerDebugMode to 1 to enable or to 0 to disable the debug mode.

5. Save the file.

NOTE: If this file is read-only, you must add write permission for the user before you can update it. To do
this, right click on the file and select Get Info > Sharing & Permissions.

Debug file for Photoshop and Dreamweaver

These applications require a debug file (in addition to PlayerDebugMode) to enable the debugger:

Photoshop CS5, CS5.5, CS6

Dreamweaver CS5.5, CS6

Create an empty file named debug (with no extension or contents) in the version-specific and
platform-specific location:

Getting Started with the Adobe Creative Suite SDK Running and debugging your extension 21

In Windows: Create the debug file in the same directory as your Photoshop or Dreamweaver
executable. For example:

C:\Program Files\Adobe Photoshop CS6\debug
C:\Program Files\Adobe Dreamweaver CS6\debug

In Mac OS: Create the debug file inside the package Contents folder for the application. For example,
for Photoshop CS6 the path is:

/Applications/Adobe Photoshop CS6/Adobe Photoshop CS6/Contents/debug

Loading the extension

To run and debug your extension in its target application, you must load it into the CS Service Manager.

Go to the Flash Builder workspace folder that contains your project, find your project’s Output folder (the
default name is bin-debug). Copy your Output folder to the deployment folder; the name and location of
this folder is dependent on the version of the Creative Suite you are targeting and your platform:

The name of the CS Service Manager root folder (<ServiceMgr_root>) depends on the Creative Suite
version. It is CSxServiceManager, where x is the CS version (5, 5.5, or 6).

For a specific user, these are the default locations of the deployment folder:

In Windows XP:
C:\Documents and Settings\<user>\Application Data\Adobe\

<ServiceMgr_root>\extensions\

In Windows 7/Vista:
C:\Users\<user>\AppData\Roaming\Adobe\<ServiceMgr_root>\extensions\

In Mac OS:
/Users/<user>/Library/Application Support/Adobe/<ServiceMgr_root>/extensions/

These are the system-wide deployment folders for all users:

In Windows: C:\Program Files\Common Files\Adobe\<ServiceMgr_root>\extensions\

In Mac OS: /Library/Application Support/Adobe/<ServiceMgr_root>/extensions/

When you start the host application, your extension’s menu (as defined in the manifest file) appears in the
Window > Extensions menu.

Creating a debug run configuration in Flash Builder

For each new project you want to debug with Flash Builder, you must define a debug run configuration. To
do this:

1. Open your project in Flash Builder and select it in the Package Explorer.

2. In Flash Builder 4, choose Run > Debug > Other.
In Flash Builder 4.5, choose Run > Debug Configurations.

3. Select Web Application and click New to create a configuration for Web Application.

4. Enter "Debug <extension_name>" in the Name box, and the name of your project in the Project box.

Getting Started with the Adobe Creative Suite SDK Creating a hybrid extension 22

5. Deselect the "Use defaults" option.

6. Replace the value in the "Url or path to launch" box with about:blank.

7. Click Apply and close the dialog.

Debugging your extension in a host application

Once you have completed all of these prerequisites (setting the OS debug flag, loading the extension into
the CS Service Manager, and setting up debug run configuration in Flash Builder), you are ready to start
debugging.

To debug your extension with Flash Builder while it is running in the target application:

1. Open and select your project in Flash Builder.

2. Set a breakpoint in your ActionScript code.

3. To start a new debug session, choose Run > Debug > your_debug_config_name.
If you see a warning dialog, dismiss it and continue.

4. Launch the host application and run your extension by choosing its menu item from the Window >
Extensions menu.

For information about how to use the debugger in Flash Builder, see the Flex SDK documentation:
http://opensource.adobe.com/wiki/display/flexsdk/Developer+Documentation.

Creating a hybrid extension
A hybrid extension is a package that combines a Creative Suite extension with an application-specific
extension or plug-in that uses the native C/C++ or scripting API. This allows you to build extensions with
rich Flash-based interfaces and still take advantage of the extended native API for the host application.

You must package the several components of a hybrid extension into a ZXP package. The Extension
Manager installs the package on the user’s machine as a single extension; it looks the same as any other
extension to the end user.

As an extension developer, you can choose to use application-specific C/C++ plug-ins or scripting
extensions to extend Creative Suite products, in addition to your Creative Suite Flash-based component.
You might want to do this, for example, when:

You have legacy code that you still want to support.

The feature you are developing requires a capability supported by the native scripting or C/C++ API
layer, that is not accessible via your Creative Suite extension; for example, some applications allow you
to create custom menus using C++ extensibility.

You have CPU-intensive tasks to perform that are more suited to C++ than to ActionScript.

Writing hybrid extensions

If you are already familiar with writing Creative Suite extensions and native application extensions (for
example, a Photoshop or InDesign C++ extension, a Flash Pro C extension, or a Dreamweaver JavaScript

http://opensource.adobe.com/wiki/display/flexsdk/Developer+Documentation

Getting Started with the Adobe Creative Suite SDK Packaging and signing your extension for deployment 23

extension) there is little more you need to learn. The two parts of a hybrid extension are implemented as
standalone components.

Create the Creative Suite extension using Adobe Creative Suite SDK.

Create your C/C++ or scripting API plug-in using the application-specific SDK and recommended
tools. If you have never built a native plug-in for your host application, check the application-specific
SDKs for details; see Adobe Developer Connections.

The only thing you need to do is package them together so that they can be deployed in the user’s
environment as a single extension.

Communicating between components

You must choose the mechanism you want to use to communicate between the Flash-based and native
API components or your hybrid extension. For example, you can create your own socket implementation
to pass messages between your native plug-in and the ActionScript code of your Creative Suite extension.

Adobe offers the Native Application Toolkit that shows you how to use Adobe’s PlugPlug library to
communicate between C/C++ and ActionScript. The toolkit provides the libraries, documentation, and
samples you need to build a hybrid extension where the components communicate with each other.

You can include these libraries directly in Photoshop, InDesign, and Flash Pro native plug-ins.

For information on using the PlugPlug libraries in Illustrator, see the FreeGrid sample in the Illustrator
SDK.

Testing a hybrid extension

During development, test the components of your hybrid extension separately.

Launch and debug the Creative Suite SDK component as described in “Running and debugging your
extension” on page 19.

Install the application-specific plug-in or extension in the host as instructed in the application-specific
SDK. Debug it using the recommended development tools, such as XCode or Visual Studio.

To install the plug-in component, copy the files to the Plug-ins or Extensions folder, or point the host
application to your plug-in build folder. For example, InDesign looks for its plug-ins in:

<InDesign installation location>/Plug-ins/

For details of how to package your hybrid extension for deployment, see “Packaging a hybrid extension”
on page 26

Packaging and signing your extension for deployment
The Extension Manager package file allows you to install the extension you are developing on machines
other than the one you are currently using (across platforms), to share the extension with other users, and
to distribute it to customers.

An Extension Manager package is an archive file with the extension .zxp, which contains:

A copy of the CSXS folder containing the manifest.xml file.

Getting Started with the Adobe Creative Suite SDK Packaging and signing your extension for deployment 24

A copy of the compiled Flex project in SWF format.

A copy of any other optional resources used by the extension, such as icons and localization files. For a
hybrid extension, it must include the resource files for the native plug-in or scripting component.

A file named mimetype, generated by the packaging and signing process.

Creating the deployment package

Adobe provides a toolkit that you can use to package and sign extensions so they can be installed in
Creative Suite applications using Extension Manager. The toolkit includes:

The UCF tool, a command-line tool used to create Universal Container Format (UCF) packages

A document that provides the information you need to create packages for deployment: Technical
Note: Packaging, Signing, and Deploying Extensions with Extension Manager.

See the Adobe Creative Suite SDK page, http://www.adobe.com/devnet/creativesuite/, to download the
signing and packaging toolkit.

After testing your extension thoroughly, you must package and sign your extension so users can install it
in their systems using Extension Manager. To prepare for this step, it is recommended that you copy all of
the files in the Output folder for your extension to a staging folder for ease of packaging. Make sure the
staging folder contains a subfolder named CSXS/, which contains the manifest.xml file:

<staging_folder>/CSXS/manifest.xml

You can add any extra resources to the root or to a folder within the root folder. Within the manifest file,
references to these resources should use pathnames that are relative to the root. For example, if your SWF
file is located at <staging folder>/Simple.swf, the path in the manifest should be specified as
./Simple.swf.

For a hybrid extension, you must package and sign the Creative Suite SDK component separately, then
take some additional steps to package that with the native plug-in or scripting component; see
“Packaging a hybrid extension” on page 26.

Using UCF

To package the extension, use the Universal Container Format (UCF) command-line tool. The Adobe UCF
tool is implemented in Java; the JAR file is packaged with this document. Running the tool requires that
the java command is available in your shell’s path. UCF requires JRE 1.5 or newer to run, but JRE 6 is
recommended. This is the default in Mac OS X; in Windows, you must install JRE 1.5 or better.

Invoke UCF directly using the JAR file:

java –jar ucf.jar ...

All of the options and arguments to this command are described in the Tech Note. You must specify the
signing option to produce a signed package that can run in a standard Creative Suite environment.

For example, suppose you want to package and sign an extension of any type that has been staged for
packaging in a folder called myExtension in the current working directory. Use this shell command:

java -jar ucf.jar -package -storetype PKCS12 -keystore myCert.pfx -storepass mypasswd
myExtension.zxp -C "./myExtension" .

http://www.adobe.com/devnet/creativesuite/

Getting Started with the Adobe Creative Suite SDK Packaging and signing your extension for deployment 25

This creates a package named myExtension.zxp, signed with the myCert.pfx certificate.

After packaging and signing the extension these two files are added to the final ZXP archive:

mimetype

A file with the ASCII name of mimetype, which holds the MIME type for the Zip container
(application/vnd.adobe.air-ucf-package+zip).

signatures.xml

A file in the META-INF directory at the root level of the container file system that holds digital
signatures of the container and its contents.

How signing works

The signature verifies that the package has not been altered since its packaging. When the Extension
Manager tries to install a package, it validates the package against the signature, and checks for a valid
certificate. For some validation results, it prompts the user to decide whether to continue with the
installation. These are the possible validation results:

To sign extensions, a code-signing certificate must satisfy these conditions:

The root certificate of the code-signing certificate must be installed in the target operating system by
default. This can vary with different variations of an operating system. For example, you may need to
check that your root certificate is installed into all variations of Win XP, including home/professional,
SP1, SP2, SP3, and so on.

The issuing certificate authority (CA) of the code-signing certificate must permit you to use that
certificate to sign extensions.

To make sure a code-signing certificate satisfies these conditions, check directly with the certificate
authority that issues it.

The following CAs and code-signing certificates are recommended for signing extensions:

GlobalSign

ObjectSign Code Signing Certificate

Thawte

AIR Developer Certificate

Apple Developer Certificate

Signature Signing certificate Extension Manager action

No signature N/A Shows error dialog and aborts installation

Signature invalid Any certificate Shows error dialog and aborts installation

Signature valid Adobe certificate Silently installs extension

OS-trusted certificate Silently installs extension

other certificate Prompts user for permission to continue the installation

http://www.globalsign.com/developer/code-signing-certificate/index.htm
http://www.thawte.com/code-signing/

Getting Started with the Adobe Creative Suite SDK Packaging and signing your extension for deployment 26

JavaSoft Developer Certificate

Microsoft Authenticode Certificate

VeriSign

Adobe AIR Digital ID

Microsoft Authenticode Digital ID

Sun Java Signing Digital ID

Packaging a hybrid extension

For a hybrid extension:

Package and sign the Creative Suite SDK portion separately, as described in “Creating the deployment
package” on page 24.

Prepare the native plug-in or scripting component for packaging as described in the
application-specific SDK.

When all of the components are ready:

1. Create a new staging folder.

2. Add the signed package for the Creative Suite SDK extension component to the root of the staging
folder.

3. Add the application-specific files to the staging folder in their platform-specific subfolders.

4. Add the MXI configuration file to the root of the staging folder; see “Configuring a hybrid extension”
on page 26.

For example, for a hybrid extension that includes a Creative Suite SDK extension component is named
MyExtension, and a C++ plug-in component named MyPlugin that has Mac OS and Windows versions:

/staging
/mac/MyPlugin.plugin
/win32/MyPlugin.8li
/win64/MyPlugin.8li
/MyExtension.zxp
/MyExtension.mxi

5. Run the UCF tool on the staging folder to bundle and sign its contents into a single ZXP archive.

Configuring a hybrid extension

Extension Manager requires an XML configuration file named projectName.MXI to correctly install the
extension and all its components in the user's environment. You must create this MXI file and customize it
to describe your desired configuration.

When you package your hybrid extension for deployment, the MXI file must be included alongside the
packaged and signed Creative Suite SDK extension component. See “Packaging a hybrid extension” on
page 26. For more information about editing the MXI file, see the document Packaging Extensions with
Adobe Extension Manager (http://www.adobe.com/go/em_file_format).

http://www.verisign.com/products-services/security-services/code-signing/digital-ids-code-signing/
http://www.adobe.com/go/em_file_format
http://www.adobe.com/go/em_file_format

Getting Started with the Adobe Creative Suite SDK Packaging and signing your extension for deployment 27

The MXI file looks like this:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<macromedia-extension name="com.example.myextension" requires-restart="true"

version="1.0">

<author name="Adobe Developer Technologies"/>
<description><![CDATA[The description.]]></description>
<license-agreement><![CDATA[Legal Text.]]></license-agreement>

<products>
<product familyname="Photoshop" maxversion="" primary="true" version="12.0"/>

</products>

<files>
<file destination="" file-type="CSXS" products="" source="MyExtension.zxp"/>
<!-- ADD APPLICATION SPECIFIC FILE HERE -->

</files>

</macromedia-extension>

The file includes the display strings that Extension Manager uses when the extension has been
installed, such as the author and description; these can be copied from the ones in the manifest, if
those are already set.

The <files> set must include the <file> element for theCreative Suite SDK extension component, of
file-type "CSXS". In this case there is no need to indicate the destination; Extension Manager knows
about the shared installation location used by Creative Suite extensions.

You must add a <file> element for each resource file in the cs_resources/ folder. The Extension
Manager copies only those files that are specified in the MXI file to the host application. Each
application-specific <file> element must include the destination and platform attributes. For
example:

<files>
<file destination="" file-type="CSXS" products="" source="MyExtension.zxp"/>
<file destination="$automate" platform="mac" products="Photoshop"

source="cs_resources/mac/MyPlugin.plugin"/>
<file destination="$automate" platform="win" products="Photoshop32"

source="cs_resources/win32/MyPlugin.8li"/>
<file destination="$automate" platform="win" products="Photoshop64"

source="cs_resources/win64/MyPlugin.8li"/>
</files>

PHOTOSHOP NOTE: If your hybrid extension project supports Photoshop as a host application, and will be
installed using Extension Manager CS5, you must generate two different ZXP files, one for 32-bit support
and one for 64-bit support. The addition of the Products attribute in the MXI file allows you to target a
specific version of Photoshop with Extension Manager CS5.5, but with Extension Manager CS5 cannot
interpret this attribute, and attempts to install both files in both versions. Make sure you add the bit
attribute to the product element, and that the correct version of the plug-in is specified in the Bundle
Manifest Editor before exporting the extension.

For example, for a Win32 platform, use:

<product maxversion="12.1" name="Photoshop" primary="true" version="12.0" bit=”32”/>
...
<file destination="$automate" platform="win"

source="cs_resources/win32/MyPlugin.8li"/>

For a Win64 platform, use:

Getting Started with the Adobe Creative Suite SDK Packaging and signing your extension for deployment 28

<product maxversion="12.1" name="Photoshop" primary="true" version="12.0" bit=”64”/>
...
<file destination="$automate" platform="win"

source="cs_resources/win64/MyPlugin.8li"/>

Installing a packaged and signed extension

Adobe Extension Manager, a tool that is included with all Creative Suite applications (CS5 and higher),
installs extensions that are properly packaged and signed. Adobe Extension Manager is installed at the
same time as CS applications; you can launch it from the Start menu in Windows or the Applications folder
in Mac OS.

Using Extension Manager

To install the signed ZXP file follow these steps:

1. Open Extension Manager and click Install.

2. Browse to the location where your ZXP file is saved, select it, and click Open to start the installation
process.

3. Extension Manager attempts to validate the package against the signature. For some validation
results, it prompts the user to decide whether to continue with the installation; for example, if it
cannot verify the publisher, you can choose to install the extension anyway; see “How signing works”
on page 25.

4. Once the installation has completed, check that your extension appears in all of the products that it
supports.

Testing extension installation

To test whether your package works properly, use Extension Manager to install your Creative Suite
extension on your local versions of the Creative Suite applications.

1. Open Extension Manager and click Install.

2. Browse to the location where your ZXP file is saved, select it, and click Open to start the installation
process.

Getting Started with the Adobe Creative Suite SDK Packaging and signing your extension for deployment 29

3. Extension Manager attempts to validate the package against the signature. For some validation
results, it prompts the user to decide whether to continue with the installation; for example, if it
cannot verify the publisher, the user can choose to install the extension anyway.

4. Once the installation has completed, check that your extension appears in all of the products that it
supports.

Notice that the Extension Manager UI provides the user with information about an installed extension; this
information derives from the project properties specified in the manifest. Depending on what you have
specified, some of these fields might be blank:

To update how this information is displayed for your extension in the Extension Manager UI, you must
specify the corresponding values in your project's manifest.

Extension property Comments

Name This is the identifying name of the extension bundle, not the display name that
appears in the Extensions menu of the host application.

Version Larger version numbers indicate newer versions.

Author name May be blank.

Description May be blank. You can specify a descriptive string, which is simply displayed in
the Description panel, or you can provide a URL, in which case the referenced
page is shown in the Description panel.

Product Your extension must support at least one host application for the extension to
be installed successfully.

Getting Started with the Adobe Creative Suite SDK Packaging and signing your extension for deployment 30

Troubleshooting the installation

If your package fails to install properly:

Verify that you have built your extension with the correct structure, and that your extension package
contains the correct files in the correct locations.

Verify that the package has not been modified since being properly signed.

Because the ZXP is an archive file, you can rename the package with the .zip extension to examine its
contents and verify that it contains all needed files. If you change anything in it, however, the signature no
longer matches the content, and the Extension Manager cannot load the package. If you need to make
changes, you must create and sign a new package.

Running an extension

Once your extension has been successfully installed, you can test in any of the applications specified in
your extension's manifest file. To run your extension, open the host application and choose your extension
for the list in Window > Extensions. The name that appears in this menu is the one you specified in the
manifest.

Here are some problems you might encounter when running an extension, and possible solutions. For
further help, check the known problems section in the SDK’s Readme file.

Getting Started with the Adobe Creative Suite SDK Packaging and signing your extension for deployment 31

Extension does not appear in the application’s Window > Extensions menu

Verify that the extension’s manifest.xml file is set up correctly:

Verify that the Host ID for your application is correct. Notice that the ID for Photoshop Extended
(PHXS) is different from the ID for Photoshop (PHSP).

Verify that the product locale matches the one listed in the manifest file, or that the locale is given as
"All".

Verify the path given in the Extension/DispatchInfo/SWFPath element. The path must be relative to
the extension's root folder.

Verify that the extension has been successfully copied to the CS Service Manager’s extensions folder.
For more details, refer to “Loading the extension” on page 21.

If the problem persists, check the application’s log for possible errors; see “Checking log files for errors” on
page 31.

Extension throws a security error upon loading

If your extension fails to load any of the ActionScript libraries provided with the SDK, it might throw a
security error.

To prevent this, make sure your SWF file is compiled using the framework linkage "Merge into
code" option, rather than the "Runtime shared library (RSL)" option.

Removing an extension

You can use the Extension Manager to remove an extension.

1. Select the extension in the list of installed programs.

2. Choose File > Remove Extension.

The Extension Manager removes it both from the file system, and from the displayed list of currently
installed extensions.

Checking log files for errors

Several types of logs are available for help in debugging your Adobe Creative Suite extensions:

“LogBook logs” on page 32

“Flash Player's built-in logging ” on page 32

“Application logs” on page 33

“CS Service Manager logs” on page 34

Getting Started with the Adobe Creative Suite SDK Packaging and signing your extension for deployment 32

LogBook logs

You can use the LogBook application to track logging messages sent between the various platform
components. To use this application for logging:

1. Include this code in your application main MXML file so LogBook can listen to and display the logging
information traced by your extension:

var loggingTarget:LocalConnectionTarget = new LocalConnectionTarget("_test");
loggingTarget.filters=["*"];
loggingTarget.level = LogEventLevel.ALL;
loggingTarget.includeDate = true;
loggingTarget.includeTime = true; l
oggingTarget.includeCategory = true;
loggingTarget.includeLevel = true;

logger = Log.getLogger(this.className);

logger.info("my message");

2. Go to http://code.google.com/p/cimlogbook/downloads/list and download LogBook-1.3.air

3. Install the AIR application and start it.

4. Enter the local connection name, as passed into the constructor of LocalConnectionTarget. In the
example, this is '_test'.

5. Start the host application and open your extension. You should see log messages in LogBook.

6. To listen to internal messages set the local connection name in logbook to '_csxs2'

Flash Player's built-in logging

The Flash Player runtime embedded in the Creative Suite application has some built-in logging
functionality. It is very light-weight and easy to set up, but not as comfortable as LogBook. To use it, you
must put trace() calls directly into your scripts, or create a TraceTarget instance. For example:

var traceTarget : TraceTarget = new TraceTarget();
traceTarget.filters = ["*"];
traceTarget.level = LogEventLevel.ALL;
traceTarget.includeDate = true;
traceTarget.includeTime = true;
traceTarget.includeCategory = true;
traceTarget.includeLevel = true;

To generate the flashlog.txt file:

1. Create a new file mm.cfg in the platform-specific folder:

In Windows XP: C:\Documents and Settings\user\

In Windows Vista and Windows 7: C:\Users\user\

In Mac OS: /Library/Application Support/Macromedia/

2. Edit the file and add these lines:

ErrorReportingEnable=1
TraceOutputFileEnable=1

http://code.google.com/p/cimlogbook/downloads/list

Getting Started with the Adobe Creative Suite SDK Packaging and signing your extension for deployment 33

The flashlog.txt file is then generated in the platform-specific folder:

In Windows XP: C:\Documents and Settings\user\Application Data\Macromedia\Flash
Player\Logs

In Windows Vista and Windows 7: C:\Users\user\AppData\Macromedia\Flash Player\Logs

In Mac OS: /Users/user/Library/Preferences/Macromedia/Flash Player/Logs/

Application logs

The Adobe Creative Suite extensibility infrastructure creates a log file for each of the applications running
extensions. These files provide useful debug information for extension developers. The log files are
generated in the platform’s temp folder, and named according to the CSXS version and host application,
csxs2-HostID.log or csxs2.5-HostID.log; for example, csxs2-ILST.log for an extension running in
Illustrator CS5.

These logs are located at these platform-specific locations:

In Windows XP: C:\Documents and Settings\<user>\Local Settings\Temp

In Windows Vista: C:\Users\<user>\Locale\Temp

In Windows 7: C:\Users\<user>\AppData\Local\Temp

In Mac OS X: /Users/<user>/Library/Logs/CSXS

If you need more detailed information, you can increase the logging level. Possible log level values are:

"0": Off; no logs are generated
"1": Error; preferred and default level
"2": Warn
"3": Info
"4": Debug
"5": Trace
"6": All

Update the LogLevel key at these platform-specific locations:

In Windows Registry Editor:
CS5: HKEY_CURRENT_USER/Software/Adobe/CSXS2Preferences

CS5.5: HKEY_CURRENT_USER/Software/Adobe/CSXS.2.5Preferences

CS6: HKEY_CURRENT_USER/Software/Adobe/CSXS.3Preferences

In Mac OS X: PLIST file in /Users/<user>/Library/Preferences/
CS5: com.adobe.CSXS2Preferences.plist

CS5.5: com.adobe.CSXS.2.5.plist

CS6 com.adobe.CSXS.3.plist

You must restart your application for these changes to take effect.

Getting Started with the Adobe Creative Suite SDK Packaging and signing your extension for deployment 34

CS Service Manager logs

The name of the CS Service Manager root folder (<ServiceMgr_root>) depends on the Creative Suite
version. In CS6, the root folder is CS6ServiceManager.

The Service Manager keeps log files at these locations:

In Windows XP: C:\Documents and Settings\<user>\Application
Data\Adobe\<ServiceMgr_root>\logs

In Windows Vista: C:\Users\<user>\AppData\Roaming\Adobe\<ServiceMgr_root>\logs

In Mac OS X: /Users/<user>/Library/Application Support/Adobe/<ServiceMgr_root>/logs

	Getting Started with the Adobe Creative Suite SDK
	About Creative Suite extensions
	Adobe Creative Suite extensibility architecture
	Anatomy of an extension
	Extension management

	About the Creative Suite SDK
	Development environment requirements
	Supported applications
	Setting up the environment

	Using Adobe Creative Suite SDK
	Add libraries to your Flex project
	Create and add manifest file
	Import a package

	Creating a manifest file
	ExtensionManifest
	ExtensionList/Extension
	ExecutionEnvironment
	HostList/Host
	LocaleList/Locale
	RequiredRuntimeList/RequiredRuntime

	DispatchInfoList/Extension/DispatchInfo
	Resources
	Lifecycle
	UI

	Localizing an extension
	Localizing the extension’s manifest file
	Localizing the extension’s Flex UI

	Running and debugging your extension
	Setting the OS debug mode
	In Windows:
	In Mac OS:
	Debug file for Photoshop and Dreamweaver

	Loading the extension
	Creating a debug run configuration in Flash Builder
	Debugging your extension in a host application

	Creating a hybrid extension
	Writing hybrid extensions
	Communicating between components
	Testing a hybrid extension

	Packaging and signing your extension for deployment
	Creating the deployment package
	Using UCF
	How signing works

	Packaging a hybrid extension
	Configuring a hybrid extension

	Installing a packaged and signed extension
	Using Extension Manager
	Testing extension installation
	Troubleshooting the installation

	Running an extension
	Extension does not appear in the application’s Window > Extensions menu
	Extension throws a security error upon loading

	Removing an extension
	Checking log files for errors
	LogBook logs
	Flash Player's built-in logging
	Application logs
	CS Service Manager logs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [594.000 792.000]
>> setpagedevice

