

The Type 42 Font
Format Specification

Adobe Developer Support
Technical Note # 5012

31 July 1998
PN LPS5012

Adobe Systems Incorporated

Corporate Headquarters
345 Park Avenue
San Jose, CA 95110
(408) 536-6000 Main Number
(408) 536-9000 Developer Support
Fax: (408) 536-6883

European Engineering Support Group
Adobe Systems Benelux B.V.
P.O. Box 22750
1100 DG Amsterdam
The Netherlands
+31-20-6511 355
Fax: +31-20-6511 313

Adobe Systems Eastern Region
24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120
Fax: (617) 273-2336

Adobe Systems Co., Ltd.
Yebisu Garden Place Tower
4-20-3 Ebisu, Shibuya-ku
Tokyo 150
Japan
+81-3-5423-8169
Fax: +81-3-5423-8204

Copyright

 1993, 1998 by Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated.

No part of this publication (whether in hardcopy or electronic form) may be reproduced or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of the publisher.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name Post-
Script in the text are references to the PostScript language as defined by Adobe Systems Incorporated
unless otherwise stated. The name PostScript also is used as a product trademark for Adobe Systems’
implementation of the PostScript language interpreter.

Except as otherwise stated, any reference to a “PostScript printing device,” “PostScript display
device,” or similar item refers to a printing device, display device or item (respectively) which contains
PostScript technology created or licensed by Adobe Systems Incorporated and not to devices or items
which purport to be merely compatible.

Adobe, PostScript, PostScript 3, and the PostScript logo are trademarks of Adobe Systems Incorpo-
rated. TrueType is a trademark and Apple, Macintosh, and LaserWriter are registered trademarks of
Apple Computer, Incorporated. Windows is a trademark and Microsoft is a registered trademark of
Microsoft Corporation. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice,
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no war-
ranty of any kind (express, implied, or statutory) with respect to this publication, and expressly dis-
claims any and all warranties of merchantability, fitness for particular purposes, and noninfringe-
ment of third party rights.

Contents
The Type 42 Font
Format Specification 1

1 Introduction 1

2 The Type 42 Font Format 2
Type 42 Font Comment Lines 3
The Type 42 Font Dictionary 3
Implications of The Glyph Coordinate System 6

3 Identifying Interpreters with TrueType Rasterizers 6

4 Conversion Issues 7
The FontInfo Dictionary 7
The sfnts Array 7
Generating The CharStrings Dictionary 9
Generating the Encoding Vector 9
Glyph Mapping and Metrics Access 10
Generating Unique Identifiers 11
Required TrueType Tables 12

5 CIDFontType 2 CID Fonts 12
Complete Font Downloading 13
Incremental Font Downloading 14
CMap Resources for CIDFontType 2 CID Fonts 15
Changes to CIDMap 15
GlyphDirectory 16
Vertical Writing Mode 18
MetricsCount 18

6 Known Bugs 20

7 Example Type 42 single-byte font program 20

Index 23
iii

iv Contents (31 Jul 98)

The Type 42 Font
Format Specification
1 Introduction

This document describes the PostScript® Type 42 font format which can be
used to download TrueType® fonts to PostScript printers (or PostScript
compatible printers) that contain a TrueType rasterizer. This method yields
better print quality than can be achieved by converting a TrueType font to a
Type 1 or Type 3 font. Performance may also be improved for large Chinese,
Japanese, or Korean (CJK) fonts when the print driver takes advantage of
glyph subsetting and incremental downloading.

A Type 42 font dictionary contains the TrueType font embedded as a string
value for the sfnts keyword. For single-byte Roman TrueType fonts, the sfnts
array typically contains the complete TrueType font. This was first supported
in PostScript version 2010 for printers that contain the optional TrueType
rasterizer. Other entries in the Type 42 font dictionary permit the PostScript
interpreter to handle the font in a manner similar to a Type 1 font, and to
make the TrueType font data available to the TrueType rasterizer.

This version of this document, dated June 1998, adds a description of how to
convert multi-byte TrueType fonts into CIDFontType 2 CID fonts. This takes
advantage of the CID format’s ability to encode the large number of glyphs
needed for most CJK fonts. Both permanent downloading to a printer’s hard
disk, and font embedding for a print job are explained.

Support for multi-byte CJK TrueType fonts was added in version 2015 of the
PostScript interpreter by providing a mechanism for subsetting and
incremental downloading of large fonts. Recent updates for version 3011
support further optimizations to improve printing performance.

This document only describes the format of a Type 42 font program and how
it may be created from a TrueType font. The TrueType specification from
Apple Computer is available at the following URL:

< http://fonts.apple.com/TTRefMan/index.html >

Microsoft’s TrueType specification is available at the following URL:
1

< http://www.microsoft.com/typography/tt/tt.htm >

Additional information on Type 42 fonts can be found in: The PostScript
Language Reference Manual Supplements for versions 2015, 3010, and
3011. Also, see Adobe Technical Note #5213, “PostScript Language
Extensions for CID-Keyed Fonts (PostScript Software Version 2015).”

2 The Type 42 Font Format

The TrueType font format was originally developed by Apple Computer, and
is the native font format used by the Macintosh and Windows operating
environments. Until recently, Macintosh print drivers would download either
the TrueType font and the TrueType rasterizer to interpreters with 680X0-
class controllers, or convert the font into a PostScript Type 1 (unhinted) font
program. Windows print drivers would either convert to Type 1 or Type 3, or
rasterize the TrueType font on the host, and download a bitmap Type 3 or
Type 32 font. All of these methods have disadvantages: the TrueType
rasterizer is large; conversion to Type 1 format loses the hint information and
the translation of TrueType quadratic to PostScript Bézier curves cannot be
exact; and bitmap fonts cannot be scaled for multiple resolutions retain the
necessary quality.

Many PostScript interpreters, beginning with version 2013, now include a
TrueType rasterizer; they can be identified from the PostScript Printer
Description (PPD) file (see section 3). For a TrueType font to be recognized
by a PostScript interpreter, it must be enclosed in a PostScript font dictionary
with FontType 42, or as a CID font with CIDFontType 2 and FontType 42.

FontType 42 and CIDFontType 2 are standard part of LanguageLevel 3; all
version 3010 and greater interpreters support them. However, the version
3011 extensions are not part of LanguageLevel 3.

Note Although the keyword name sfnts is derived from the Macintosh resource
type used for TrueType fonts, TrueType fonts from the Windows environment
can be converted in an identical manner.

A Type 42 font is a base font and shares all the properties of base fonts as
documented in the PostScript Language Reference Manual, second edition.
In particular, presence of an unique identifier such as an XUID facilitates
bitmap caching for a Type 42 font just as it does for any other type of base
font. When Type 42 fonts are permanently downloaded to a hard disk
connected to a PostScript printer, only the charstrings actually referenced in
the print job will be read into VM, thus saving memory (see section 4.2).
Also, glyphs can be modified or added to the Type 42 font by using user-
defined PostScript language procedures (See section 5.6.3 in The PostScript
Language Reference Manual, second edition.).
2 The Type 42 Font Format Specification (31 Jul 98)

2.1 Type 42 Font Comment Lines

The first line of a Type 42 font program shall be:

%!PS-TrueTypeFont-TTVersion-MfrRevision

where TTVersion is the TrueType version number of the font (specified in the
header); MfrRevision is the font manufacturer’s revision number of the font.
This line helps downloaders to easily identify TrueType Type 42 fonts on the
printer’s hard disk.

The first portion of the comment line: %!PS-TrueTypeFont, is required for
disk-based Type 42 fonts on any interpreter that supports Type 42. If the font
has the required portion of the comment line and it conforms to the
requirements listed in section 4.2, the embedded TrueType glyph data will be
accessed from disk on demand rather than reading the entire font into VM.

Another useful and recommended comment line specifies the VM usage:

%%VMusage: MinMemory MaxMemory

where MinMemory and MaxMemory specify the minimum memory needed
for the font and how much is needed if the font is downloaded first (these
numbers are not necessarily the same; see The Adobe Type 1 Font Format,
version 1.1, Addison Wesley, 1990). This comment is not used by the
PostScript interpreter, but is useful for application programs. The PostScript
operator resourcestatus can be used to obtain the VM requirements for a font
resource.

The values for the VMusage comment can be derived from a TrueType font
which contains a post table (which contains information useful for PostScript
printing). For downloading purposes, the size of the font can be used as an
estimate for the values for VMusage. However, a properly constructed
Type 42 font on a printer’s hard disk will generally require only a percentage
of the VM required for the downloadable version of the font.

2.2 The Type 42 Font Dictionary

Table 1 lists entries common to all types of font dictionaries. Table 2 lists
additional key-value pairs that are meaningful in all base fonts. Table 3 lists
additional key-value pairs that are meaningful in Type 42 fonts. See the
corresponding tables 5.1 through 5.3 in The PostScript Language Reference
Manual, second edition.
2 The Type 42 Font Format 3

Table 1 Entries in all types of font dictionaries

Key Type Description

FontType integer (Required) Value must be 42.

FontMatrix array[6] (Required) Transforms the glyph coordinate system into the user
coordinate system. Type 42 fonts, unlike Type 1 fonts, are usually
defined in terms of an identity transform, so the value of FontMatrix
should be [1 0 0 1 0 0]. See section 2.3 for a discussion of the
implications of this choice of coordinate system. FontMatrix must be a
literal array.

FontName name (Optional) The font program’s PostScript font name, derived from the
TrueType name table.

FontInfo dictionary (Optional) See The PostScript Language Reference Manual, second
edition, Table 5.4, page 268.

Table 2 Additional entries in all base fonts (FontType not 0)

Key Type Description

Encoding array[256] (Required) An array of 256 glyph names ordered by glyph code value.
The encoding is most likely to be either the Apple standard encoding or
the Windows ANSI encoding, but other encodings will occur. See
section 4.4, “Generating the Encoding Vector.” Encoding must be a
literal array.

FontBBox array[4] (Required) See description in The PostScript Language Reference
Manual, second edition, Table 5.2. Derived from the TrueType head
table. See also section 2.3, “Implications of The Glyph Coordinate
System.”

UniqueID integer (Optional) See section 4.6, “Generating Unique Identifiers.”

XUID array (Optional) Array of integers that uniquely identifies this font or any
variant of it. See section 5.8 of The PostScript Language Reference
Manual, second edition. XUID must be a literal array.

Table 3 Additional and modified entries in Type 42 fonts

Key Type Description

PaintType integer (Required) 0 for filled glyphs; 2 for stroked glyphs.
4 The Type 42 Font Format Specification (31 Jul 98)

StrokeWidth number (Optional) The width of the line used to stroke outline fonts (PaintType
= 2), in glyph coordinates. This number is interpreted in glyph space;
see section 2.3, “Implications of The Glyph Coordinate System.”

Metrics dictionary (Optional) Width and sidebearing information for writing mode 0. Not
normally present in the original definition of a font; adding this
dictionary to a font overrides the widths and sidebearings encoded in
the glyph definitions in the TrueType font. This dictionary will only
affect Type 42 fonts in version number 2013 and greater of the
PostScript interpreter. The values in this dictionary are interpreted in
glyph space; see section 2.3, “Implications of The Glyph Coordinate
System.”

Metrics2 dictionary (Optional) Width and sidebearing information for writing mode 1. In
general this dictionary is only interpreted by LanguageLevel 1 devices
with composite font extensions and all LanguageLevel 2 devices; for
Type 42 fonts it is only recognized by PostScript interpreter version
2013 and greater. The values in this dictionary are interpreted in glyph
space; see section 2.3, “Implications of The Glyph Coordinate System.”

CDevProc procedure Algorithmically derives global changes to a font’s metrics. See The
PostScript Language Reference Manual, second edition, p. 277.
CDevProc works the same in a Type 42 font as in a Type 1 font, aside
from the different glyph coordinate system; see section 2.3,
“Implications of The Glyph Coordinate System.”

CharStrings dictionary (Required) Associates glyph names with glyph descriptions. If an
entry’s value is an integer, it is used as an index into the TrueType loca
table, which contains the byte offsets of glyph definitions in the glyf
table. If the value is a procedure (executable array or packed array), it is
interpreted as described in section 5.6.3 of The PostScript Language
Reference Manual, second edition. This dictionary must have an entry
whose key is .notdef.

sfnts array (Required) An array of one or more PostScript language string objects
containing the binary TrueType font. (see section 4.2 for information on
the constraints and format).

CIDMap array, string, (Required) Maps CIDs to glyph indices. If CIDMap is a string, it is
integer, or dictionary treated as an array of glyph index values, each of which is GDBytes

long, stored high-order byte first. If CIDMap is an array of strings, the
strings are logically concatenated; each must be a multiple of GDBytes
long. If CIDMap is a dictionary, its keys are CIDs and its values are
integers representing glyph indices. If CIDMap is an integer, it is simply
added to the CID to yield a glyph index. See Section 5.4, “Changes to
CIDMap.”
2 The Type 42 Font Format 5

GDBytes integer (Required if CIDMap is a string or array) Number of bytes representing
each glyph index in the CIDMap.

GlyphDirectory array or (Optional) See Section 5.5, “GlyphDirectory.”
dictionary

MetricsCount integer (Optional) 0, 2, or 4. Default value: 0
See Section 5.7, “MetricsCount.”

2.3 Implications of The Glyph Coordinate System

As indicated in Table 1, a Type 42 font’s glyph coordinate system is typically
defined as an identity transform. This is in contrast to a Type 1 font, whose
glyph coordinate system is typically defined at a 1000 unit scale relative to
user space.

This difference has implications regarding the interpretation of font
dictionary entries whose values are defined in glyph space. If a PostScript
program adds or changes such entries in a font dictionary, it must choose
values that are appropriate for the font’s glyph coordinate system. In
particular, values that would be appropriate for a Type 1 font will be 1000
times too large for a Type 42 font.

The font dictionary entries for which this issue arises include:

• The value of StrokeWidth (when PaintType has been set to 2);

• The contents of the Metrics and Metrics2 dictionaries;

• The operands and results of the CDevProc procedure;

• The values of UnderlinePosition and UnderlineThickness in the FontInfo
dictionary.

• The values in the FontBBox array.

3 Identifying Interpreters with TrueType Rasterizers

PostScript interpreters with TrueType rasterizers can be identified from the
following entry in the device’s PPD file (version 4.1 of the specification):

*TTRasterizer: RasterizerOption
6 The Type 42 Font Format Specification (31 Jul 98)

where RasterizerOption can be any of the following:

A PostScript program can determine whether a LanguageLevel 2 or 3 device
supports Type 42 fonts (no LanguageLevel 1 devices support Type 42) by
executing:

42 /FontType resourcestatus {pop pop true} {false} ifelse

which pushes true or false on the stack depending on whether Type 42 font
support is present.

4 Conversion Issues

The following sections discuss issues related to converting a TrueType font
into a Type 42 font.

4.1 The FontInfo Dictionary

The optional FontInfo dictionary may be constructed from entries in the name
and post tables in the TrueType font. It is not used by the PostScript
interpreter, but some PostScript programs may utilize entries such as
UnderlinePosition and UnderlineThickness.

4.2 The sfnts Array

In VM, a TrueType font is represented as an array named sfnts consists of
PostScript string objects which, when concatenated, represent the entire
TrueType font. Multiple strings may be required due to the PostScript
language implementation limit of 65535 bytes in a string.

When a TrueType font is divided into multiple strings, for compatibility with
pre-2013 interpreters, the strings must begin at TrueType table boundaries, or
at individual glyph boundaries within the glyf table. The TrueType file format
requires that tables begin at 4-byte boundaries and that individual glyph

None No TrueType rasterizer is present, and the device is not
capable of receiving a downloadable rasterizer. To use a
TrueType font on this interpreter, it must be converted to a
Type 1 or Type 3 font.

Accept68K No TrueType rasterizer is built-in, but the device has a
680X0-based controller and enough memory to accept a
downloadable TrueType rasterizer. (The code to
accomplish this is proprietary to Apple Computer, and is
not generally available).

Type42 The device has a Type 42 TrueType rasterizer in ROM.
4 Conversion Issues 7

descriptions begin at 2-byte boundaries. Therefore, each string will contain
an even number of bytes of TrueType data. There is a practical limit of 64 K
on the size of tables (except for the glyf table), until PostScript version 3011.

For compatibility with Type 42 implementations in PostScript interpreter
versions prior to 2013, each string must have one additional padding byte
appended by adding “00” to the hex data in the file. That is, the length of each
string must be odd. The last byte is not logically part of the TrueType font
data and is ignored by the interpreter.

The sfnts array is expressed as a series of strings:

/sfnts [<string1> <string2> … <stringN>] def

In the font file, the strings are made up of lines of hexadecimal characters.
The characters in each line may be preceded, followed, and divided by an
arbitrary (but consistent) number of white space or control characters (see the
additional compatibility constraint in the bullet list below for fonts
downloaded to a hard disk).

For Type 42 fonts to be downloaded to a printer’s disk (or other file system
hardware), there are specific additional constraints on the text representation
of that array in the file. Observing these constraints and beginning the file
with the correct comment line (see section 2.1) enables the PostScript
interpreter to have dynamic access to the font file on an as-needed basis,
which has significant implications for saving VM. If a Type 42 font has the
correct initial comment line but does not conform to the constraints listed
below, the result will be an invalidfont error on some interpreters.

Although newer versions of the PostScript interpreter are likely to have fewer
restrictions on the format of the sfnts array, the following constraints should
be used, for backward compatibility purposes, to enable dynamic access to a
disk-based font file:

• There may be whitespace and/or control characters between the /sfnts, the
‘[’, and the ‘<’, and between any string’s ‘>’ and the next string’s ‘<’.

• The string should be subdivided into lines of a constant n characters in
length and which may be divided by m characters of white space and/or
control characters. The numbers n and m must be constant for the entire
sfnts array, although it may vary from font to font. Line lengths should
also satisfy the Document Structuring Convention (DSC) constraint: 0 < n
≤ 255 (see Appendix G of The PostScript Language Reference Manual,
second edition).

• The data encoding technique used in the sfnts array, for example, either
ASCII-Hex or binary (see below) must be the same for all strings in a
particular font, but may vary among fonts.
8 The Type 42 Font Format Specification (31 Jul 98)

The strings in the sfnts array may be represented in binary in the same way as
may be used for Type 1 charstrings (see section 2.4 in the Adobe Type 1 Font
Format book). However, fonts using this representation cannot be installed on
disk in PostScript interpreter versions prior to 2013. Also, they cannot be
safely transmitted across non-binary channels, so fonts in this format should
not be embedded in documents. Use of this format should be limited to disk
font installer utilities that know something about the capabilities of the
PostScript interpreter being accessed.

To represent a string in a binary representation, a PostScript language
procedure must be defined with the following code:

/RD {string currentfile exch readstring pop} executeonly def

Each use of RD is followed by exactly one blank character followed by a
sequence of binary bytes that are the string contents:

n RD ~binary~bytes~ {noaccess def} executeonly def

RD itself is preceded by an integer n which is the number of binary bytes
following the RD (not including the single blank that follows the RD).

The following is an example of a two-element sfnts array encoded in this
way:

/sfnts [
62135 RD ~62135~binary~bytes~
12093 RD ~12093~binary~bytes~
] def

Each string contains an even number of bytes of TrueType data, followed by
one byte of padding which the PostScript interpreter ignores.

4.3 Generating The CharStrings Dictionary

The CharStrings dictionary for a Type 42 font is a standard dictionary of
key/value pairs, where the key is the glyph’s name (derived from the TrueType
font’s cmap table), and the value is an index number into the TrueType font’s
loca (glyph offsets) table. The value in the key/value pair may also be a
PostScript language procedure (executable array or packed array); see section
5.6.3 of the The PostScript Language Reference Manual, second edition.

4.4 Generating the Encoding Vector

Note The /Encoding vector associates a code point with a glyph name. The glyph
name is used to look up the glyph’s glyph id in the Charstrings dictionary.
Glyph names can either be inferred by the encoding used by the font, or can
be derived from glyph names in the font’s post table—if the font’s post table
is of a version that allows glyph names.
4 Conversion Issues 9

TrueType fonts used in the Windows or Macintosh environments will
generally use the encoding specific to that system, such as ANSI for Windows
and the Apple encoding for the Macintosh. The platform-specific encoding
can be determined by the platform ID number in a subtable of the cmap table.
The post table lists glyph names that differ from the platform’s standard
encoding. Only versions 1.0, 2.0, and 2.5 of the post table allow the inclusion
of glyph names. Formats 3.0 (the one used in most TrueType fonts), and 4.0,
do not contain glyph names. If there is no post table in a TrueType font in the
Windows environment, the Windows ANSI encoding can be assumed.

When downloading and installing a Type 42 font on a printer’s hard disk, it is
essential that the software use a naming convention that is consistent with
that used by software on any host system that might be connected to the
printer.

4.5 Glyph Mapping and Metrics Access

Figure 1 illustrates how TrueType glyph descriptions and metrics are
referenced by character codes and names in a Type 42 font dictionary.

Figure 1 Type 42 Font Glyph Mapping

When a printer driver builds a Type 42 font, it uses the TrueType cmap table
to map character codes to glyph indices, which enables it to build the
/Charstrings dictionary (which associates PostScript character names with
TrueType glyph indices). However, the cmap table is not used by the
PostScript interpreter, so it need not be downloaded.

The PostScript interpreter uses the /Encoding array to look up the character
name, which is then used to access the /Charstrings entry with that name.
The value of that entry is the glyph index, which is then used to retrieve the
glyph description’s byte offset in the loca table. The glyph index is also used

Type 42
Font dictionary:

TrueType font in /sfnts array:

/a
/b

/Charstrings

/Encoding cmap

loca

(character codes
 to glyph index)

(GI / byte offset for
glyph description)

(glyph name to
glyph index)

hmtx
(horizontal metrics)

glyf
(glyph descriptions)

/a

.notdef 0

/b
142

27328
143

143

143

98 143
10 The Type 42 Font Format Specification (31 Jul 98)

to get metrics from the hmtx. As of PostScript interpreter version 3011, the
glyph index can also be used to get vertical metrics from the vmtx table (see
section 5.6, “Vertical Writing Mode”).

4.6 Generating Unique Identifiers

The Type 42 font may contain an unique identifier which allows the glyph
bitmaps to be cached across print jobs (see also section 5.8 of The PostScript
Language Reference Manual, second edition). This entry is optional but
highly desirable since many users may use the same fonts in every print job.

Bitmaps generated from TrueType fonts in Type 42 format use the same
caching system as is used for Type 1 fonts. When a glyph bitmap is needed
from a Type 42 font, the glyph cache is checked first. If the bitmap has not
been cached, the bitmap is produced from the outline font program.

TrueType fonts do not contain any type of unique number which either
corresponds to the PostScript language UniqueID entry or could be used for
such. Using something like a checksum number as a UniqueID value devices
would not be advisable since it does not assure uniqueness. Although this
approach would work in many situations, there is an increased and
unacceptable risk when, as at a service bureau, bitmaps are cached on a hard
disk for a potentially long period of time. Hence, the performance gain
resulting from caching does not offset the danger of a user getting incorrect
bitmaps from the cache.

Since TrueType rasterizers only exist in LanguageLevel 2 interpreters, the
XUID operator offers a safer opportunity to cache bitmaps. The XUID
(extended unique ID) is an array of integers which provides for distributed,
hierarchical management of UniqueID numbers. The goal is to have a
mechanism for generating an XUID array of values, on-the-fly, which are
unique for every font, yet exactly repeatable since a TrueType font in a user’s
system may be converted multiple times to a Type 42 for printing.

A recommended method for generating a number for a given font which is
both more likely to be unique than a simple checksum and exactly repeatable,
is to use the MD5 algorithm from RSA Data Security, Incorporated. Their
software can be copied and freely distributed if it is properly identified. The
code for this algorithm is readily available from:

RSA Data Security, Inc.
100 Marine Parkway
Redwood City, CA 94065

The goal is to generate an XUID array of five elements, with the first having
the value of 42 (decimal). This value has been registered in the Adobe XUID
registry for use by software in creating Type 42 fonts. The MD5 algorithm
4 Conversion Issues 11

can then be used to generate a 128-bit number, using the font file as input.
This number can then be divided into four 32-bit integers to make the other
four elements of the array. Some optimization of the algorithm code may be
necessary to enhance performance.

4.7 Required TrueType Tables

In creating a Type 42 font from a TrueType font, only a subset of all potential
tables in the original font are actually used by the rasterizer in the PostScript
interpreter. The following tables are the set of tables that are used by the
TrueType rasterizer. Not all of these tables are required for every
configuration of a Type 42 font.

The tables vhea and vmtx are only supported in version 3011 or higher, and
only when MetricsCount has a value of 0 or 2, or if the MetricsCount
keyword is not included. Also, for compatibility reasons, CDevProc should
be included for vertical writing mode.

Since a significant number of tables may be included in a TrueType font
(including potentially large kerning and metrics tables), performance may be
improved by including in the downloadable Type 42 font only the tables
actually used by the TrueType rasterizer.

5 CIDFontType 2 CID Fonts

Version 2015 of the PostScript interpreter introduced support for large
Chinese, Japanese, and Korean (CJK) multi-byte TrueType fonts by
supporting the use of CID fonts that contain TrueType glyphs. The CID font
format allows thousands of glyphs to be encoded and accessed. The CID font
must have the keyword/values CIDFontType 2, and FontType 42. For
information on the CID format, see Technical Note #5014, Adobe CMap and
CIDFont Files Specification.

For downloading and installing a CIDFontType 2 CID font to a printer’s hard
disk, the font should contain the TrueType font embedded in the sfnts array.
The number of tables included can be limited to only those tables used by the
rasterizer (see section 4.7, “Required TrueType Tables”). The inclusion of
other tables depends on the desired optimizations for printing speed, or
whether the font is to be permanently downloaded to a printer’s hard disk. For
example, for vertical writing, a GlyphDirectory may be included in the

head prep cvt_

hhea fpgm maxp

hmtx vhea vmtx

loca glyf
12 The Type 42 Font Format Specification (31 Jul 98)

PostScript portion of the font if the font is to be subsetted or incrementally
downloaded; but for disk-based fonts, including the vhea and vmtx tables in
the sfnts array gives better performance.

A large CJK TrueType font may have 35,000 glyphs, as well as a number of
very large data tables. For a CIDFontType 2 CID font that is to be downloaded
for printing a specific document, a number of optimizations can be made to
limit the amount of data that must be downloaded. For example, the font can
be subsetted to include only the glyphs needed in the document, and those
glyphs can be downloaded incrementally on an as-needed basis. These
optimizations can improve performance as well as save VM, which helps to
ensure that a document will print when memory is low.

5.1 Complete Font Downloading

When downloading a TrueType font to a printer’s hard disk, the optimizations
for subsetting and incremental downloading are not used because the full font
must be available.

Figure 2 shows the configuration for glyph mapping for TrueType fonts to be
permanently downloaded to a printer’s hard disk. It is desirable to have a full
CIDMap, as well as full hmtx, vmtx, loca, and glyf tables. The TrueType cmap
table is not shown because it is not needed by the rasterizer, but it is used
initially by the driver software to get the glyph indices for building the
/Charstrings dictionary.

The interpreter maps a character code to a CID number, and uses the CID to
get the TrueType glyph index from CIDMap. The glyph index is then used to
get horizontal or vertical metrics from the hmtx or vmtx tables, respectively. A
glyph description is obtained from the glyf table by getting its byte offset from
the loca table.
5 CIDFontType 2 CID Fonts 13

Figure 2 CID Type 42 Font for Disk Installation

5.2 Incremental Font Downloading

Figure 3 shows an example of how glyphs are accessed for CIDFontType 2
CID fonts that use a GlyphDirectory for subsetting and incremental
downloading. The CMap resource is used to map the character code to a CID
number, and the CIDMap maps CIDs to glyph indices. If a special CMap can
be constructed which makes CIDMap an identity mapping, then downloading
the identity CIDMap is wasteful and unnecessary. In this case, CIDMap can
simply be defined as an integer. The glyph index is then used to access the
glyph description in GlyphDirectory.

Type 42 Font dict:

CMap Resource

/CIDMap

Char Codei CIDi

CIDi GI i

TrueType font in /sfnts array:

loca
(GI / byte offset for
glyph description)

hmtx
(horizontal metrics)

vmtx
(vertical metrics)

glyf (glyph
descriptions)

14 The Type 42 Font Format Specification (31 Jul 98)

Figure 3 CIDFontType 2 CID Glyph Mapping for Downloading

5.3 CMap Resources for CIDFontType 2 CID Fonts

CIDFontType 2 fonts must have an associated CMap resource. Since the
original TrueType font does not have a CMap file, the driver or downloader
software must create one.

The CMap resource (maps character codes to CIDs) can be constructed so
that the mapping in CIDMap (CIDs to glyph indices) is an identity mapping,
such that:

GIi = CIDi

Because the resulting CIDMap uses an identity mapping, it is not necessary to
download CIDMap as a dictionary or array, thus saving a significant amount
of VM. Although CIDMap is a required entry, it can be defined as having an
integer value (see “Defining CIDMap as an Integer” in section 5.4). In the
general case, the value of the integer would be zero.

A CID-keyed font must reference the /Registry, /Ordering, and /Supplement
specified in the CMap resource. Hence, both the CIDFont and the CMap must
be built to reflect that relationship (see Adobe Technical Note #5014, Adobe
CMap and CIDFont Files Specification).

5.4 Changes to CIDMap

Prior to interpreter version 3011, a CIDMap could be either a string or an
array of strings, and was interpreted as a mapping of CIDs to glyph indices.
The resulting glyph index is then used to access glyphs in either the glyf table
or the GlyphDirectory, as well as metrics data in the hmtx or vmtx tables in the
TrueType font.

Type 42 Font dict

CMap file (external)
/CIDMap

Char Codei CIDi

GIi glyph description

key value
/GlyphDirectory

CIDi GIi
5 CIDFontType 2 CID Fonts 15

For large multi-byte fonts, CIDMaps tend to be fairly large, and if only a
fraction of the font’s glyphs are needed for a particular document, storage
space can be wasted. For example, the Windows Simplified Chinese font
SimHei has about 25 K glyphs and its CIDMap requires about 50 KB of file
size and VM. The following sections explain how to define CIDMap as a
dictionary or an integer, so only a subset of all glyph mappings need to be
downloaded. Alternatively, it can be defined as an integer, so that the CIDMap
need not be downloaded at all (except as a single value).

Defining CIDMap as a Dictionary

Defining CIDMap as a dictionary facilitates incremental downloading of
glyphs by allowing the downloading of only the mapping entries needed by
the current document. This can save a significant amount of both file and VM
space.

Defining CIDMap as an Integer

CIDMap can be defined as having a single integer value:

/CIDMap integer

where integer is interpreted as an offset that is added to the CID obtained
from the CMap resource, to map to the corresponding glyph index value:

GI = integer + CID

For the general case, the value of the integer will be zero. It may also
sometimes be necessary to create a CIDMap in which there is an offset from
the Identity mapping. For example, if it is attempted to download a TrueType
font with 20,000 glyphs to a printer’s hard disk, the large loca table (20K x 4
bytes/entry) will not be interpreted correctly if it is split into multiple sfnts
strings. The font can be downloaded as two CIDFonts, one with the glyph’s
from 0 to n–1; and the other with glyphs from n to 20K–1 (being careful not
to split composite glyphs across two fonts). Hence, a glyph index used in a
host document can be looked up using the CMap (where GI = CID) to decide
which CIDFont to use when printing.

5.5 GlyphDirectory

Both Type 42 and CIDFontType 2 CID fonts may be created with a
GlyphDirectory array or dictionary, which allows font subsetting and
incremental downloading.

For a CIDFontType 2 font, if GlyphDirectory is a dictionary, each key is an
integer glyph index, and the value is a string containing the TrueType glyph
description. If GlyphDirectory is an array, its length must be greater than the
16 The Type 42 Font Format Specification (31 Jul 98)

highest glyph index in the font. Each array element can be either null
(indicating an empty element), or a string containing the TrueType glyph
description.

Starting with PostScript version 2015, the interpreter checks for the existence
of a gdir table in the sfnts array, and if found, uses GlyphDirectory in place of
the loca and glyf tables. This table, which is not in the TrueType font format
specification, must be inserted by the software that builds the CIDFontType 2
font. The size and offset of the gdir table must be zero, it is only used to
specify the use of the GlyphDirectory entry in the font dictionary.

The loca or hmtx tables are of the order of magnitude of 4 bytes × numGlyphs.
Thus, for incrementally downloaded or subset fonts, the choice to use
GlyphDirectory avoids the need to download a large and mostly unused loca
table, and saves the corresponding space in VM. For PostScript versions
before 3011, for these same small fonts, the large and mostly unused hmtx
table must still be downloaded. In 3011, the horizontal and vertical metrics
may be included in the GlyphDirectory, making it unnecessary to download
the additional tables (see section 5.7, “MetricsCount”).

For large CIDFontType 2 CID fonts that are to be permanently downloaded in
full to a PostScript file system, GlyphDirectory should not be used because it
is less efficient than using the loca and glyf table method. In addition, for
compatibility with earlier PostScript versions, some font downloading
applications may choose to download the hmtx table (and, now, vmtx table)
rather than a GlyphDirectory, in order to provide compatibility with
interpreters before 3011.

Once a GlyphDirectory array or dictionary is defined, a PostScript program
may insert entries containing new glyph descriptions by replacing null array
elements with strings or inserting new dictionary entries. It may not replace
entries that are not null; due to font caching, any attempts to do so will yield
unpredictable results. If a glyph is added to GlyphDirectory between save and
restore operations, the restore operator will remove it, since this is
equivalent to replacing an entry that is not null. To avoid this problem, the
driver must download the same glyph definition again before the next attempt
to perform a show operation on that glyph.

As is true for all CID fonts, an attempt to perform a show operation on a
glyph whose CID selects a null or missing entry in the CMap resource, the
CMap will be consulted to see if there is a .notdef CID for that character code.
If there is, it will be used; otherwise a CID of 0 will be used. The
GlyphDirectory entry for CID 0 must be present and not null, or an
invalidfont error will occur.

If GlyphDirectory is an array, it must be allocated with enough entries to store
the highest CID or glyph index that is expected. Any unused entries in the
array will be wasted space. An array of a given length consumes about 40
5 CIDFontType 2 CID Fonts 17

percent of the memory used by a dictionary of the same length. Thus, the
dictionary representation is advisable only for a sparsely populated font
containing less than 40 percent of the total glyphs in the font.

5.6 Vertical Writing Mode

CJK fonts are typically used in either horizontal or vertical typographic
modes. For vertical layout, the metrics data is available in the host font’s vmtx
table (advance height and top side bearing). It is up to the print driver to
decide whether both horizontal and vertical metrics need to be included in the
CIDFontType 2 CID font that is to be downloaded.

/WMode 1 indicates that the renderer should use vertical metrics. Thus, if
MetricsCount is 0 or 2 (see section 5.7, “MetricsCount” below) the metrics
data is found in the vmtx table, which must be provided. If MetricsCount is
missing (the default value is 0, which indicates that no metrics are contained
in GlyphDirectory), it is up to the creator to provide the metrics using
CDevProc or Metrics2, or both. If MetricsCount is 4, the data is found in the
first through fourth bytes at the start of the glyph description.

5.7 MetricsCount

The addition of the MetricsCount key in 3011 allows the inclusion of metrics
data in the GlyphDirectory dictionary or array. This has the advantage that
only the metrics for the subsetted characters need be included, rather than
having to download complete hmtx and vmtx tables.

When a key /MetricsCount is found in a CIDFont with CIDFontType 2, it
must be an integer with values 0, 2, or 4.

Prior to 3011, the TrueType rasterizer in a PostScript interpreter ignored
metrics specified for vertical writing mode in the vmtx table, and vertical
metrics had to be supplied using a Metrics2 dictionary. For a full font
downloaded to PostScript file system, the full Metrics2 dictionary is large and
takes up a large amount of VM. Even for a font which is incrementally
downloaded or subsetted, the Metrics2 overhead is inefficient. With 3011, the
vertical metrics can be supplied using a vmtx table, or they can be embedded
in the GlyphDirectory entries for incremental downloading.
18 The Type 42 Font Format Specification (31 Jul 98)

Table 4 shows where the metrics data is located, based on the value of
MetricsCount.

MetricsCount may have a value of 0, 2, or 4. A value of 0 indicates that no
metrics data is included in the GlyphDirectory, and hmtx and/or vmtx tables
are included in the font. If MetricsCount is missing, a value of 0 is implied.

If MetricsCount is 2 or 4, it specifies that horizontal, or vertical and
horizontal metrics, respectively, precede the glyph description in the
GlyphDirectory dictionary or array. These metrics values are copied directly
from the TrueType glyph description, without any conversion or translation.

In all cases, the glyph description will begin (2 × MetricsCount) bytes from
the beginning of the string. If MetricsCount has a value of 2, the four bytes of
data will be the horizontal advance width and left sidebearing. If
MetricsCount has a value of 4, then there will be eight bytes of metrics data:
the vertical advance height and top sidebearing, followed by the horizontal
advance width and sidebearing, with the first byte of each pair being the high
order byte.

Table 4 Metrics Location based on MetricsCount Value

MetricsCount

Number of
metrics data

bytes

Horizontal
Metrics

Vertical
Metrics

0 0 hmtx or Metrics
dictionary

vmtx, Metrics2
dictionary, or
CDevProc

2 4 GlyphDirectory
(4 bytes
preceding the
glyph
description)

vmtx, Metrics2, or
CDevProc

4 8 GlyphDirectory
(second set of
four bytes
preceding the
glyph
description)

GlyphDirectory
(first set of four
bytes preceding
the glyph
description—see
Table 5)

Table 5 Metrics Data in Glyph Directory

MetricsCount byte # semantics

2 0,1

2,3

horizontal advance width

left sidebearing
5 CIDFontType 2 CID Fonts 19

6 Known Bugs

There is a known bug in the TrueType rasterizer included in versions of the
PostScript interpreter previous to version 2013. The problem is that the
translation components of the FontMatrix, as used as an argument to the
definefont or makefont operators, are ignored. Translation of user space is
not affected by this bug.

7 Example Type 42 single-byte font program

%!PS-TrueTypeFont-65536-65536-1
11 dict begin
/FontName /Chicago def
/Encoding 256 array
0 1 255{1 index exch/.notdef put}for
dup 0 /.null put
dup 1 /option put
dup 2 /control put
%
%... many Encoding array entries omitted...
%
dup 253 /hungarumlaut put
dup 254 /ogonek put
dup 255 /caron put
readonly def
/PaintType 0 def
/FontMatrix [1 0 0 1 0 0] def
/FontBBox[-190 -283 1164 1090] def
/FontType 42 def
/XUID [42 16#7880BE99 16#AC616C9D 16#D021DE98 16#1F9CD56E] def
%
% Optional FontInfo dictionary may be inserted here
%
/sfnts[<
000100000009000900090009
637674202B194DE00000009C00000290
6670676D31773E000000032C000003B6
%
%...many sfnts lines omitted...
%
58B0FF1D5945695342737373737373737374737345684400
00>]def
/CharStrings 279 dict dup begin
/.notdef 0 def/.null 1 def/nonmarkingreturn 2 def
/space 3 def/exclam 4 def /quotedbl 5 def/numbersign 6 def
/dollar 7 def/percent 8 def/ampersand 9 def
%

4 0,1

2, 3

4, 5

6, 7

vertical advance width

top sidebearing

horizontal advance width

left sidebearing

Table 5 Metrics Data in Glyph Directory

MetricsCount byte # semantics
20 The Type 42 Font Format Specification (31 Jul 98)

%...many CharStrings entries omitted...
%
/checkmark 273 def/linebreakltor 274 def
/linebreakrtol 275 def /markingnobreakspace 276 def
/diamond 277 def/appleoutline 278 def end readonly def
FontName currentdict end definefont pop
7 Example Type 42 single-byte font program 21

22 The Type 42 Font Format Specification (31 Jul 98)

Index
Symbols

.notdef 5

B

bitmap cache 11
bugs 20

C

CDevProc 5
character coordinate system 6
comment lines 3
conversion issues 7

F

FontInfo dictionary 4, 6
FontMatrix 20
FontType 4, 7

G

glyph coordinate system 4, 6

H

hard disk 2, 3

I

invalidfont error message 8

M

makefont 20
MD5 algorithm 11
Metrics 5
Metrics2 6

P

PaintType 4
PPD file 2, 6

R

resourcestatus 3

S

sfnts 2, 8
string

binary representation 9
StrokeWidth 6

T

TrueType rasterizer 2, 6, 7, 20
TrueType specification 1
TrueType table

cmap 9, 10
cvt_ 12
glyf 5, 12
head 12
hhea 12
loca 5, 9
name 4, 7
post 3, 7, 10
prep 12

Type 42 Font Dictionary 3

U

UnderlinePosition 7
UnderlineThickness 6, 7

V

VM 2, 3
23

VMusage comment 3
24 Index (31 Jul 98)

	The Type 42 Font Format Specification
	1 Introduction
	2 The Type 42 Font Format
	2Heading - 2.1 Type 42 Font Comment Lines
	2Heading - 2.2 The Type 42 Font Dictionary
	2Heading - 2.3 Implications of The Glyph Coordinate System

	3 Identifying Interpreters with TrueType Rasterizers
	4 Conversion Issues
	2Heading - 4.1 The FontInfo Dictionary
	2Heading - 4.2 The sfnts Array
	2Heading - 4.3 Generating The CharStrings Dictionary
	2Heading - 4.4 Generating the Encoding Vector
	2Heading - 4.5 Glyph Mapping and Metrics Access
	2Heading - 4.6 Generating Unique Identifiers
	2Heading - 4.7 Required TrueType Tables

	5 CIDFontType 2 CID Fonts
	2Heading - 5.1 Complete Font Downloading
	2Heading - 5.2 Incremental Font Downloading
	2Heading - 5.3 CMap Resources for CIDFontType 2 CID Fonts
	2Heading - 5.4 Changes to CIDMap
	2Heading - 5.5 GlyphDirectory
	2Heading - 5.6 Vertical Writing Mode
	2Heading - 5.7 MetricsCount

	6 Known Bugs
	7 Example Type 42 single-byte font program
	Index

