
Optimizing and Integrating

ADOBE® AIR® for TV

Last updated 9/29/2011

Copyright© 2011 Adobe Systems Incorporated and its licensors. All rights reserved.

Optimizing and Integrating Adobe® AIR® for TV

This guide is licensed for use under the terms of the Creative Commons Attribution Non-Commercial 3.0 License. This License allows users to copy, distribute,

and transmit the user guide for noncommercial purposes only so long as (1) proper attribution to Adobe is given as the owner of the user guide; and (2) any

reuse or distribution of the user guide contains a notice that use of the user guide is governed by these terms. The best way to provide notice is to include the

following link. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Adobe, the Adobe logo, Acrobat, Acrobat Capture, Acrobat Messenger, Acrobat 3D Capture, ActionScript, ActiveTest, Adobe ActionSource, Adobe AIR, Adobe

AIR logo, Adobe Audition, Adobe Caslon, Adobe Connect, Adobe DataWarehouse, Adobe Dimensions, Adobe Discover, Adobe Financial Services, Adobe

Garamond, Adobe Genesis, Adobe Griffo, Adobe Jenson, Adobe Kis, Adobe OnLocation, Adobe Originals logo, Adobe PDF logo, Adobe Premiere, AdobePS,

Adobe SiteSearch, Adobe Type Manager, Adobe Wave, Adobe Wave logo, Adobe WebType, Adobe Wood Type, After Effects, AIR, Alexa, Andreas, Arno, ATM,

Authorware, Balzano, Banshee, Benson Scripts, Better by Adobe., Bickham Script, Birch, Blackoak, Blue Island, Brioso, BusinessCatalyst, Buzzword, Caflisch

Script, Cairngorm, Calcite, Caliban, Captivate, Carta, Chaparral, Charlemagne, Cheq, Classroom in a Book, ClickMap, Co-Author, ColdFusion, ColdFusion

Builder, Conga Brava, ContentBus, Contribute, Copal, Coriander, Cottonwood, Creative Suite, Critter, Cronos, CS Live, Custom Insight, CustomerFirst, Cutout,

Digital Pulse, Director, Distiller, DNG logo, Dreamweaver, DV Rack, Encore, Engaging beyond the Enterprise, ePaper, Ex Ponto, Fireworks, Flash, Flash logo,

Flash Access, Flash Access logo, Flash Builder, Flash Cast, FlashCast, Flash Catalyst, FlashHelp, Flash Lite, Flash on., FlashPaper, Flash Platform Services logo,

Flex, Flex Builder, Flood, Font Folio, Frame, FrameCenter, FrameConnections, FrameMaker, FrameManager, FrameViewer, FreeHand, Fusaka, Galahad,

Giddyup, Giddyup Thangs, GoLive, GoodBarry, Graphite, HomeSite, HBX, HTML Help Studio, HTTP Dynamic Streaming logo, Hypatia, Illustrator,

ImageReady, Immi 505, InCopy, InDesign, Ironwood, Jimbo, JRun, Juniper, Kazuraki, Kepler, Kinesis, Kozuka Gothic, Kozuka Mincho, Kuler, Leander Script,

Lens Profile Creator logo, Lightroom, Lithos, LiveCycle, Macromedia, Madrone, Mercado, Mesquite, Mezz, Minion, Mojo, Montara, Moonglow, MXML,

Myriad, Mythos, Nueva, Nyx, 1-Step RoboPDF, Omniture, Open Screen Project, Open Source Media Framework logo, OpenType logo, Ouch!, Ovation,

PageMaker, PageMaker Portfolio, PDF JobReady, Penumbra, Pepperwood, Photoshop, Photoshop logo, Pixel Bender, Poetica, Ponderosa, Poplar, Postino,

PostScript, PostScript logo, PostScript 3, PostScript 3i, Powered by XMP, Prana, PSPrinter, Quake, Rad, Reader, Real-Time Analytics, Reliq, RoboEngine,

RoboHelp, RoboHTML, RoboLinker, RoboPDF, RoboScreenCapture, RoboSource Control, Rosewood, Roundtrip HTML, Ryo, Sanvito, Sava, Scene7, See

What’s Possible, Script Teaser, Shockwave, Shockwave Player logo, Shuriken Boy, Silentium, Silicon Slopes, SiteCatalyst, SiteCatalyst NetAverages, Software

Video Camera, Sonata, Soundbooth, SoundEdit, Strumpf, Studz, Tekton, Test&Target, 360Code, Toolbox, Trajan, TrueEdge, Type Reunion, Ultra, Utopia,

Vector Keying, Version Cue, VirtualTrak, Visual Call, Visual Communicator, Visual Sciences, Visual Sensor, Visual Server, Viva, Voluta, Warnock, Waters

Titling, Wave, Willow, XMP logo, Zebrawood are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other

countries. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. All other trademarks are the property of their respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

iii

Last updated 9/29/2011

Contents

Chapter 1: Introducing Adobe AIR 3 for TV

Getting started . 1

Architecture of AIR for TV . 1

Running AIR for TV . 2

Modules in AIR for TV . 2

Developing platform-specific drivers . 3

Integrating with your product . 3

Binary and source distributions . 3

Header files . 4

API reference documentation . 5

Certification testing . 5

Chapter 2: The graphics driver

Class overview . 6

User input handling . 9

Window manipulation . 9

3D rendering . 10

Implementations included with source distribution . 11

Implementation tasks overview . 12

Plane, RenderPlane, and OutputPlane class details . 13

Plane class methods . 17

OutputPlane class methods . 21

I2D class details . 23

I2D class methods . 26

IKeyboardUtils class details . 30

IKeyboardUtils class methods . 31

IGraphicsDriver class details . 32

IGraphicsDriver class methods . 33

GraphicsDriverBase methods . 36

Sample implementation walkthrough . 37

Implementation considerations . 44

Creating files for your platform-specific graphics driver . 46

Building your platform-specific graphics driver . 46

Detailed tasks checklist . 46

Chapter 3: The device text renderer

Font sources . 48

Device fonts that are distributed with AIR for TV . 48

Classic text versus the Text Layout Framework text . 49

Device text renderer role . 50

Class overview . 50

IFont interaction with the AIR runtime . 50

Searching for font files . 52

ivOPTIMIZING AND INTEGRATING AIR FOR TV

Contents

Last updated 9/29/2011

Implementations included with source distribution . 53

IFont and IFontImpl classes details . 54

IFont methods . 55

Creating files for your platform-specific device text renderer . 57

Building your platform-specific device text renderer . 57

Chapter 4: The audio and video driver

Audio and video driver overview . 59

The StreamPlayer . 60

Overlay video characteristics . 61

Class overview . 61

Audio and video codecs . 64

Implementations included with source distribution . 65

StreamPlayer class details . 65

StreamPlayer methods . 72

IStreamPlayer class details . 78

IStreamPlayer class methods . 78

Creating files for your platform-specific audio or video driver . 80

Building your platform-specific audio or video driver . 80

Buffer level tracking tools . 80

Chapter 5: The audio mixer

Class overview . 82

Class interaction . 83

Implementations included with source distribution . 85

Implementation tasks overview . 86

AudioOutput class methods . 86

IAudioMixer class methods . 89

Creating files for your platform-specific audio mixer . 91

Building your platform-specific audio mixer . 91

Testing your audio mixer . 91

Chapter 6: The image decoder

Class overview . 93

Class interaction and logic flow . 93

Synchronous or asynchronous implementation . 96

Implementations included with source distribution . 96

Creating files for your platform-specific image decoder . 97

Building your platform-specific image decoder . 97

Chapter 7: The system driver

Implementations included with source distribution . 98

ISystemDriver methods . 98

Chapter 8: Locale support

ICU library support for flash.globalization . 102

glibc or uclibc library support for flash.globalization . 103

vOPTIMIZING AND INTEGRATING AIR FOR TV

Contents

Last updated 9/29/2011

Chapter 9: Integrating with your platform

Class overview . 104

Stagecraft library initialization and shutdown . 105

StageWindow instance creation and deletion . 106

StageWindow instance configuration . 107

Loading and running an AIR application . 110

Client contexts . 113

StageWindow event handling . 113

Window manipulation . 118

User input events . 119

Remote control key input modes . 120

Tracking memory usage . 122

Looking up directories that AIR for TV uses . 123

HTTP proxy server parameter updates . 124

Chapter 10: Network asset cache

Configuration file . 125

Caching algorithm . 126

Persistence across sessions . 127

Chapter 11: Networking

Linking the cURL library . 129

HTTPS support . 130

Certificate encryption . 134

HTTP cookie support . 135

RTMPE support . 135

HTTP requests through a proxy server . 136

HTTP authentication . 136

Chapter 12: Filesystem usage

Subdirectories of the AIR for TV base directory . 137

Configuration files directory . 137

Cookie storage . 138

Debugging files . 138

DCTS log files . 139

Font files . 139

User-specific data files . 139

Temporary files . 140

Mounted volumes . 141

AIR application filesystem access . 141

Exceptions to filesystem access restrictions . 144

Development environment directories . 144

Chapter 13: Coding, building, and testing

Directory structure . 146

Common types and macros . 146

Kernel functionality . 147

Templates . 149

viOPTIMIZING AND INTEGRATING AIR FOR TV

Contents

Last updated 9/29/2011

Unicode strings . 149

Operating system functionality . 149

Placing code in the directory structure . 151

Building platform-specific drivers . 152

Building platform software development kits . 158

Executing unit tests . 158

Measuring performance . 160

1

Last updated 9/29/2011

Chapter 1: Introducing Adobe AIR 3 for
TV

Adobe® AIR® 3 for TV is Adobe® AIR® 3 optimized for the hardware and software architecture of digital home

electronics. Digital home electronics include, for example, television sets and Blu-ray players. Adobe® Flash®

developers can create AIR applications for AIR for TV that stream and play high-definition video from the Internet.

These developers can also create games, social content, rich Internet applications, and graphical user interfaces for AIR

for TV.

You, the developer for a digital home electronics platform, have these main tasks:

• Optimize AIR for TV to take advantage of your platform’s hardware capabilities. Driver developers are responsible

for this task.

• Integrate AIR for TV with your product software. System developers are responsible for this task.

• Build and distribute AIR for TV and its development kits. System developers are responsible for this task.

Note: You are also responsible for implementing a Flash Access adaptor interface. AIR for TV uses Flash Access and the

interface you implement to provide digital rights management. For information about Flash Access and the Flash Access

client interfaces, see Porting ADOBE® FLASH® ACCESS™ to ADOBE AIR® for TV.

Getting started

To get started, read Getting Started with Adobe AIR for TV (PDF). The Getting Started document includes the

following:

• An introduction to AIR for TV.

• How to install and build AIR for TV on your Linux® platform.

• How to run AIR for TV.

Architecture of AIR for TV

An AIR for TV application is an AIR application. The AIR application includes one or more SWF files. Each AIR for

TV process can run one AIR application at a time. The content of each application appears on the Stage. The Stage is

a rectangular area on the display device. AIR for TV uses a StageWindow instance to control the application’s Stage.

The StageWindow instance creates an instance of the AIR runtime, which is in charge of running the SWF content.

As the AIR runtime runs the SWF content, AIR for TV interacts with platform-specific drivers. The drivers optimize

AIR for TV by using platform-specific hardware and software. The following diagram shows the relevant architecture

of AIR for TV:

http://www.adobe.com/go/GettingStartedWithAdobeAIRForTV/

2OPTIMIZING AND INTEGRATING AIR FOR TV

Introducing Adobe AIR 3 for TV

Last updated 9/29/2011

AIR for TV architecture as it relates to platform-specific drivers

Running AIR for TV

AIR for TV provides interfaces to load and run AIR applications on the target platform. These interfaces are the

IStagecraft and StageWindow interfaces. AIR for TV provides a C++ application that uses these interfaces. This

application is the stagecraft binary executable, and is called here the host application. The host application is the client

of these interfaces (just as any program that uses an interface is a client of the interface).

If you are a system developer, use the stagecraft binary executable to load and run AIR for TV for a particular AIR

application. For more information, see “Integrating with your platform” on page 104. Similarly, if you are a driver

developer, use this host application for testing.

This host application is in stagecraft_main.cpp in the directory <installation directory>

/products/stagecraft/source/executables/stagecraft.

Modules in AIR for TV

AIR for TV loads modules to perform tasks. For example, the StageWindow instance loads the IFlashRuntimeLib

module, which contains the AIR runtime. Similarly, when the StageWindow instance loads an AIR application, it

prepares to display the SWF content by loading the GraphicsDriver module. All modules are subclasses of the

IAEModule class. Many of the interfaces you implement to create platform-specific drivers also derive from the

IAEModule class. Therefore, AIR for TV loads your platform-specific modules as needed. For example, when SWF

content starts to play a video, AIR for TV creates an instance of your platform-specific IStreamPlayer, which derives

from IAEModule.

For more information about where to put the code for a platform-specific module, and how to build it, see “Placing

code in the directory structure” on page 151 and “Building platform-specific drivers” on page 152.

AIR for TV

AIR runtime

StageWindow

instance

Platform hardware

Platform-

dependent

layer

Image

Decoder

System

Driver

Audio

Mixer

Graphics

Driver

Audio and

Video Drivers

3OPTIMIZING AND INTEGRATING AIR FOR TV

Introducing Adobe AIR 3 for TV

Last updated 9/29/2011

Developing platform-specific drivers

You can develop platform-specific drivers to optimize AIR for TV. These drivers interact with components of AIR for

TV. Each of these drivers is an implementation of some C++ abstract classes included in the source distribution for

AIR for TV. The drivers you can develop are:

The graphics driver Provides the interfaces to display AIR animation on your platform’s display device. The graphics

driver also accesses your platform’s hardware-acceleration of 2-D bitmap primitives. You can also use the graphics

driver to access hardware-acceleration of Stage 3D rendering. Details are in “The graphics driver” on page 6.

The audio and video driver Directs dedicated hardware to decode and present an audio/video stream for overlay

video. Details are in “The audio and video driver” on page 59.

The audio mixer Directs your platform’s audio output hardware to play PCM samples that the AIR application

generates. Details are in “The audio mixer” on page 82.

The image decoder Provides interfaces to dedicated hardware decoders to decode PNG and JPEG images to accelerate

AIR application playback. Details are in “The image decoder” on page 93.

The device text renderer Directs your platform’s text drawing capabilities to render device fonts. Details are in “The

device text renderer” on page 48.

The system driver Provides information about the device running AIR for TV. Details are in “The system driver” on

page 98.

The locale driver Provides support in AIR for TV for the flash.globalization package. Details are in “Locale support”

on page 102.

Integrating with your product

If you are a system developer, you are responsible for integrating AIR for TV with your product software. These

integration tasks include the following:

• Setting up your device’s filesystem to support AIR for TV. See “Filesystem usage” on page 137.

• Use the host application -- the stagecraft binary executable -- to load and run AIR for TV. See “Integrating with

your platform” on page 104.

• Handling user input from remote control devices. See “User input events” on page 119 and “Remote control key

input modes” on page 120.

• Setting up HTTP and HTTPS operations. See “Networking” on page 128.

• Configuring your system to cache network assets. See “Network asset cache” on page 125.

Binary and source distributions

Depending on your responsibilities, you have one of the following:

• The source distribution, which contains all the files that make up AIR for TV, except the source for the

IFlashRuntimeLib module, which contains the AIR runtime.

• The Driver Development Kit (DDK), which contains:

• the source distribution

4OPTIMIZING AND INTEGRATING AIR FOR TV

Introducing Adobe AIR 3 for TV

Last updated 9/29/2011

• header files you use to develop platform-specific drivers

• header files you use to integrate AIR for TV with your platform

• source code for some driver implementations

• source code and excecutable for the stagecraft binary executable (stagecraft_main.cpp)

• binary modules you use to build AIR for TV

• the Extension Development Kit

• The Extension Development Kit (EDK), which contains:

• files you use to develop native extensions for AIR for TV

• sample native extensions

• binary modules you use to build AIR for TV

Also, depending on your responsibilities, you will build and distribute a development kit. For information about

building AIR for TV with your platform-specific implementations, see “Building platform-specific drivers” on

page 152 and “Building platform software development kits” on page 158.

Header files

The following table lists directories containing the header files you use to develop platform-specific drivers and

otherwise integrate AIR for TV with your platform. In this table, the top directory installDir is the installation directory

of AIR for TV.

Directory Description

installDir/products/stagecraft/include/ae/ddk/graphicsdriver Header files for abstract interfaces of the graphics driver.

For more information, see “The graphics driver” on page 6.

installDir/products/stagecraft/include/ae/ddk/gameinputdriver Header files for abstract interfaces of the game input driver.

installDir/products/stagecraft/include/ae/ddk/streamplayer Header files for abstract interfaces of the audio and video driver.

For more information, see “The audio and video driver” on

page 59.

installDir/products/stagecraft/include/ae/ddk/audiomixer Header files for abstract interfaces of the audio mixer.

For more information, see “The audio mixer” on page 82.

installDir/products/stagecraft/include/ae/ddk/imagedecoder Header files for abstract interfaces of the image decoder.

For more information, see “The image decoder” on page 93.

installDir/products/stagecraft/include/ae/ddk/systemdriver Header files for abstract interfaces of the system driver.

For more information, see “The system driver” on page 98.

installDir/products/stagecraft/include/ae/ddk/localedriver Header files for abstract interfaces of the locale driver.

For more information, see “Locale support” on page 102.

5OPTIMIZING AND INTEGRATING AIR FOR TV

Introducing Adobe AIR 3 for TV

Last updated 9/29/2011

API reference documentation

To learn how to implement a platform-specific driver, see the appropriate chapter. Similarly, to learn to integrate AIR

for TV with your product software, see “Integrating with your platform” on page 104. However, for specific code

details about classes, methods, parameters, and return values, see the appropriate C++ header file.

Certification testing

Your implementation of AIR for TV must meet Adobe certification requirements. Use the Adobe® Device Certification

Test Suite (DCTS) and Adobe® Customer Certification Portal (CCP) to test and verify the devices on which you are

running AIR for TV.

For information about certification testing, see Getting Started with the DEVICE CERTIFICATION TEST SUITE. This

link points to the login web page for DCTS. If you do not yet have DCTS login credentials, the login web page includes

a link to the document. The document describes how to get login credentials.

installDir/products/stagecraft/include/ae/os Header files for abstract interfaces for accessing the platform’s

operating system services. The source distribution provides a

Linux implementation. If your platform does not use Linux, a

system developer for your platform implements these interfaces.

For more information, see “Coding, building, and testing” on

page 146.

installDir/products/stagecraft/include/ae/stagecraft The StagecraftTypes.h file contains the abstract interfaces for the

Plane, I2D, and IFont classes, and supporting classes,

enumerations, and functions. You use many of the classes defined

in StagecraftTypes.h to communicate between your platform-

specific drivers and AIR for TV.

The IStagecraft.h and StageWindow.h files contain the interfaces

that a host application uses. For more information, see

“Integrating with your platform” on page 104.

The StagecraftKeydefs.h lists values for keys on remote control

devices. For more information, see “User input events” on

page 119.

installDir/products/stagecraft/include/ae Header files with types, classes, templates, and macros useful in

coding platform-specific drivers.

• AEError.h

• AETemplates.h

• AETypes.h

• IAEKernel.h

• IAEModule.h

For more information, see “Coding, building, and testing” on

page 146.

installDir/products/stagecraft/source/executables/stagecraft The source file of the stagecraft binary executable, which is the

host application.

Directory Description

http://www.adobe.com/go/learn_custcertportal_en

6

Last updated 9/29/2011

Chapter 2: The graphics driver

Adobe® AIR® for TV renders and displays Adobe® AIR® applications on the display hardware of your target platform.

To direct AIR for TV to use your display hardware and APIs, you implement the graphics driver interfaces. The

interfaces are abstract C++ classes. One of these classes, the Plane class, serves as the basis for implementing a bitmap

image on the target platform. The image decoder also uses the Plane class.

AIR for TV supports the following rendering APIs:

• 2D blit and fill operations

• 3D graphics operations using OpenGL ES 2.0 and EGL.

Class overview

The graphics driver interface includes these main classes:

Plane, RenderPlane, and OutputPlane classes

AIR for TV uses your implementations of the Plane class to render the frames of an AIR application in memory and

output them on a display device. AIR for TV renders vector graphics as well as bitmap images.

Class Description Header File

Plane Abstract class that provides the interfaces for a

platform-specific implementation of a bitmap.

include/ae/stagecraft/StagecraftTypes.h

RenderPlane Abstract class derived from the Plane class. You

implement this class to represent a render plane on

your platform.

include/ae/stagecraft/StagecraftTypes.h

OutputPlane Abstract class derived from the Plane class. You

implement this class to represent an output plane on

your platform.

include/ae/stagecraft/StagecraftTypes.h

I2D Abstract class you implement to provide hardware

acceleration methods for blit and fill operations. Your

platform-specific Plane objects use the I2D subclass

you implement.

include/ae/stagecraft/StagecraftTypes.h

IEGL Abstract class you implement if your platform

supports Stage 3D rendering using hardware

acceleration.

include/ae/stagecraft/StagecraftTypes.h

IGraphicsDriver Abstract class you implement to manage your

platform-specific Plane objects. Because

IGraphicsDriver derives from IAEModule, your

implementation of this class is a module of AIR for TV.

include/ae/ddk/graphicsdriver/IGraphicsDriver.h

IFont Abstract class that defines the interfaces that AIR for TV

calls to draw device text. This class is discussed in detail

in “The device text renderer” on page 48.

include/ae/stagecraft/StagecraftTypes.h

IKeyboardUtils Abstract class you implement to provide AIR for TV

information about the device’s keyboard. It also allows

AIR for TV to activate or deactivate a virtual keyboard.

include/ae/stagecraft/StagecraftTypes.h

7OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

Plane objects are used as output planes and render planes.

output plane The bitmap used to display each completed frame of animation on the display device. The output plane

is typically memory-mapped to the display device, although this implementation is platform-dependent. You

implement the OutputPlane class to represent the output plane for your platform.

render plane The bitmap on which AIR for TV renders each frame of Flash animation. Also, while executing an AIR

application, AIR for TV uses temporary render planes to perform bitmap caching as needed. These temporary render

planes are also known as temporary offscreen bitmap planes. You implement the RenderPlane class to represent the

render plane for your platform.

The modules in this table use your Plane subclass objects:

More Help topics

“Planes and bitmap caching” on page 14

I2D class

The I2D class is the key component for interfacing to your platform’s hardware acceleration for raster operations. Your

implementation of this interface supports two-dimensional graphical operations that use your hardware’s capabilities

and APIs. Each Plane subclass provides an accessor function to return the corresponding I2D subclass. Therefore,

when AIR for TV uses your Plane subclass, it uses your I2D subclass for blit and fill operations. The blit and fill

operations use the hardware acceleration provided by your platform to transfer images to the plane.

IEGL class

AIR for TV supports 3D graphics operations with the OpenGL ES 2.0 and EGL APIs. It calls methods of your

implementation of the IEGL class to interface with your platform’s hardware accelerators.

If your platform supports 3D graphics operations, implement an OutputPlane subclass that implements an accessor

function to your IEGL subclass. When an AIR for TV application requests 3D rendering by using the Context3D

ActionScript APIs, AIR for TV calls methods of your IEGL class implementation.

IKeyboardUtils class

AIR for TV supports physical and virtual keyboards on the device. This support uses your platform implementation

of the IKeyboardUtils class. AIR for TV calls methods of this class to do the following:

• Get the type of keyboard on the device, if any. A keyboard is either physical or virtual, and has either a full keyboard

or a keypad.

Note: A virtual keyboard is a keyboard that device software provides on the screen.

• Determine whether a keyboard is active.

• Activate or deactivate a virtual keyboard.

Module Plane subclass usage

Graphics driver Creates, destroys, and resizes the Plane objects.

IStagecraft module and

the IFlashLib module

Renders frames of Flash animation into a RenderPlane object, and uses a RenderPlane object for

bitmap caching. Also, associates an OutputPlane object with a display device for output to the

user.

Image decoder Decodes an image such as JPEG or PNG into a RenderPlane object.

8OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

• Get the rectangle that the virtual keyboard is using.

IGraphicsDriver class

The IGraphicsDriver abstract class derives from IAEModule. IGraphicsDriver defines the methods you use to create,

destroy, and resize Plane objects. It also defines a method to get information on memory usage. The StageWindow

instance loads your platform-specific graphics driver module when the StageWindow instance loads the AIR

application.

Class interaction

The stagecraft binary executable is the host application that interacts with AIR for TV to run AIR applications.

Specifically, the host application interacts with the IStagecraft module. Using this interface, the host application creates

the StageWindow instance. The StageWindow instance contains an instance of the Adobe® AIR® runtime. The runtime

loads the AIR application specified by the host application. The StageWindow instance asks the graphics driver

module to create two Plane objects. One Plane object is for the render plane, and one is for the output plane.

The following illustration provides a high-level depiction of the call flow involved with creating a Plane object.

Graphics driver call flow diagram

When the host application no longer needs the StageWindow instance, the host application asks the IStagecraft

module to destroy the StageWindow instance. Upon its destruction, the StageWindow instance asks the graphics

driver module to destroy the planes.

More Help topics

“Architecture of AIR for TV” on page 1

“Running AIR for TV” on page 2

platform-specific

OutputPlane instance

platform-specific

RenderPlane instance

platform-specific

graphics driver module

StageWindow instance

Host application stagecraft binary

 executable

calls

StageWindow::RunToCompletion()

IStagecraft module

calls

IGraphicsDriver::CreateOutputPlane()

Graphics driver module

constructs

calls

IGraphicsDriver::CreatePlane()

constructs

9OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

User input handling

User input events occur, for example, when a user presses a key on a remote control device or other user input device.

An AIR application running in AIR for TV makes program execution choices based on the user input events it receives.

The StageWindow instance contains the AIR runtime that is executing the AIR application. The StageWindow

instance must be notified about user input events, so that it can pass the events on to the runtime. The runtime in turn

passes the events on to the AIR application.

If your platform uses a window-based graphical environment, the operating system delivers user input events directly

to the active window. In such environments, you typically have a Plane subclass implementation for the output plane

that you associate with a window. Therefore, in window-based graphical environments, your Plane subclass is a logical

place to handle user input events as follows:

1 The active window receives a user input event.

2 The Plane object associated with the active window receives the event.

3 The Plane object passes the event to the StageWindow instance.

4 The StageWindow instance passes the event to the AIR runtime.

5 The AIR runtime passes the event to the AIR application.

If your platform does not use a window-based graphical environment, your Plane subclass implementation is not

involved in user input event handling. Instead, a system developer writes a user input driver to forward events to the

IStagecraft interface. The graphics driver module can be a logical place to put this code.

For further detail on handling user input events, see “User input handling” on page 16.

Note: Often devices that run AIR for TV have remote control devices that have less functionality than most desktop

computer keyboards. AIR for TV provides key input modes so that this difference in functionality has no impact on how

the AIR application behaves. These modes have no impact on how your graphics driver module handles user input events.

For more information, see “Remote control key input modes” on page 120.

Window manipulation

Characteristics of the window of a StageWindow instance can change. The types of window manipulation are the

following:

• Moving a window to new coordinates on the display.

• Resizing a window.

• Changing whether a window is visible.

• Setting the alpha (transparency) of a window.

StageWindow methods do these tasks. The StageWindow methods in turn call methods in your graphics driver

module implementation. Your IGraphicsDriver implementation and RenderPlane and OutputPlane implementations

provide methods for resizing a window. Your OutputPlane implementation provides methods for the other tasks.

Some platforms have a native windowing system. In these cases, your IGraphicsDriver and OutputPlane

implementations interact with the windowing system to accomplish the tasks. If your platform does not have a native

windowing system, you must code these windowing tasks in your IGraphicsDriver and OutputPlane implementations.

For more information, see “Window manipulation” on page 118.

10OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

Note: An OutputPlane object also has methods for manipulating the depth level (z-order) of windows on your platform.

Typically, you have only one output plane. However, if you have multiple output planes, you can implement these

methods to manipulate the depth level: SetAbove(), SetBelow(), SetTopMost(), and SetBottomMost().

3D rendering

AIR for TV supports 3D graphics operations using OpenGL ES 2.0 and EGL. Specifically:

• AIR for TV dynamically links to your platform’s OpenGL ES 2.0 library. AIR for TV internally makes calls to the

OpenGL ES 2.0 library’s APIs.

• AIR for TV calls methods of your implementation of the IEGL class to interface with your platform’s EGL

functionality.

The interaction between AIR for TV and your implementation of the IEGL class involves the following:

1 An AIR for TV application requests 3D rendering by using the Context3D ActionScript APIs, providing AGAL

byte code.

2 AIR for TV internally translates the AGAL byte code into OpenGL ES 2.0 byte code.

3 AIR for TV calls the IEGL class implementation associated with your OutputPlane implementation to provide the

3D graphics using hardware accelerators.

4 If your OutputPlane implementation does not support 3D graphics, its GetIEGL() method returns NULL. In this

case, AIR for TV renders the 3D graphics in software on x86 based processors. No software emulators are available

for MIPS and ARM processors.

 Therefore, on those platforms, if the OutputPlane implementation does not support 3D graphics, the graphics is not

rendered.

When you run AIR for TV, specify which AIR runtime module to load:

• The AIR runtime which supports OpenGL ES 2.0. Use this AIR runtime if your platform includes an OpenGL ES

2.0 library and you implement the IEGL interface to support 3D hardware-accelerated graphics.

• The AIR runtime which does not support OpenGL ES 2.0.

Make this specification by using the --gl command-line parameter. For more information, see Getting Started with

Adobe AIR for TV (PDF).

For details about the IEGL class, see the following files:

• include/ae/stagecraft/StagecraftTypes.h for the IEGL class definition

• source/ae/ddk/graphicsdriver/X_GLES2/IEGLimpl.h and genericIEGLimpl.cpp for an implementation of the

IEGL class

• source/ae/ddk/graphicsdriver/GraphicsDriverDirectFB.cpp for an example of a graphics driver implementation

that uses the IEGL interface.

http://www.adobe.com/go/GettingStartedWithAdobeAIRForTV/
http://www.adobe.com/go/GettingStartedWithAdobeAIRForTV/

11OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

Implementations included with source distribution

The source distribution for AIR for TV includes several graphics driver implementations. The implementations are

for devices that support the following libraries:

• DirectFB (Direct Frame Buffer)

• X11

Summary of distributed graphics drivers

The following table summarizes the platform-specific graphics driver modules and Plane classes that the source

distribution provides. The files are located in source/ae/ddk/graphicsdriver.

Note: Do not put your platform-specific files in the directory source/ae/ddk/graphicsdriver. For information about where

to put your files, see “Placing code in the directory structure” on page 151.

Production environment suitability

Only the DirectFB implementation is suitable for a production environment. The X11 implementation is not. It is a

developer tool only. It is not necessarily complete, efficient, or bug free. However, it is useful as an example or starting

point for your own implementations.

Platform-specific

implementations provided

with source distribution

Description

DirectFB Use the provided classes to create render planes or output planes for a device that supports

the DirectFB (Direct Frame Buffer) library. This graphics driver module works with DirectFB

1.4.

A class called GraphicsDriver is the graphics driver module. GraphicsDriver derives from

GraphicsDriverDirectFBBase which derives from IGraphicsDriver.

The class DirectFBOutputPlaneImpl derives from OutputPlane. The class

DirectFBRenderPlane derives from RenderPlane.

This graphics driver implementation supports 3D rendering using the IEGL interface in its

OutputPlane implementation.

You can use this graphics driver module and Plane implementation as provided. You can also

copy this implementation to use as a starting point.

For more information, see “DirectFB” on page 12.

Files: GraphicsDriverDirectFBBase.h, GraphicsDriverDirectFB.cpp, located in

source/ae/ddk/graphicsdriver.

X11 Use the provided classes to create X11 output planes. The OutputPlane object passes user

input events received from the X11 API to the StageWindow instance. The OutputPlane

object also informs the StageWindow instance when the X11 window has received the focus.

A class called GraphicsDriver is the graphics driver module. GraphicsDriver derives from

GraphicsDriverBase which derives from IGraphicsDriver.

This graphics driver module uses the class X11Plane for the output plane. X11Plane derives

from OutputPlane. For the render plane, this GraphicsDriver uses the MemPlane class.

This graphics driver implementation does not support 3D rendering.

Use the provided classes only as an example or a starting point.

Files: GraphicsDriverBase.h/cpp, GraphicsDriverX11.cpp, located in

source/ae/ddk/graphicsdriver.

12OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

Class hierarchy of graphics driver implementations

Each platform-specific concrete graphics driver module class derives from an intermediary abstract class. The

DirectFB graphics driver module derives from GraphicsDriverDirectFBBase, which derives from IGraphicsDriver.

The graphics driver module for X11 graphics driver module derives from the intermediary abstract class

GraphicsDriverBase. GraphicsDriverBase also derives from IGraphicsDriver. The GraphicsDriverBase class defines

methods and data members common to some graphics driver implementations. For example, the GraphicsDriverBase

class provides a method for creating MemPlane objects. The MemPlane class is an implementation of the RenderPlane

class which creates planes using system memory. For a hierarchical diagram of these graphics driver classes, see

“IGraphicsDriver class details” on page 32. Also, see “Providing intermediary classes for public method accessibility”

on page 45.

Each platform-specific implementation also defines a concrete subclass of the OutputPlane class. The DirectFB

implementation also defines a concrete subclass of the RenderPlane class. The X11 implementation uses the

MemPlane class for the render plane.

DirectFB

If your platform uses the DirectFB library, you can use one of the following:

• The DirectFB single application core. The default DirectFB library build uses the single application core. Using the

single application core, only one DirectFB application can run at a time.

• The DirectFB multi-application core. Using the DirectFB multi-application core, multiple DirectFB applications

can run concurrently.

In both cases, the StageWindow instance has its own DirectFB window. Your OutputPlane subclass manages that

DirectFB window.

However, differences exist when using the DirectFB single application core versus the multi-application core. When

you use single application core, the following statements apply:

• Only one process can run AIR for TV.

• The process can have only one StageWindow instance at a time.

• No other DirectFB process can run concurrently with AIR for TV.

But when you use the DirectFB multi-application core, these statements apply:

• More than one process can concurrently run AIR for TV.

• Each process can have only one StageWindow instance at a time.

• Other DirectFB processes can run concurrently with AIR for TV.

• Be careful to initialize, and later destroy, the DirectFB multi-application core only once for all processes running

AIR for TV. Use the GraphicsDriverDirectFBBase::SetDirectFB() method to pass a DirectFB handle to the

graphics driver. You can also initialize the DirectFB single application core outside the graphics driver. However,

doing so is not as crucial as when using the DirectFB multi-application core.

Implementation tasks overview

To implement a platform-specific graphics driver, do the following high-level tasks:

1 Implement a class that derives from the RenderPlane class, if the source distribution does not provide one to meet

your needs.

13OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

2 Implement a class that derives from the OutputPlane class, if the source distribution does not provide one to meet

your needs.

3 Implement a class that derives from the IGraphicsDriver class, if the source distribution does not provide one to

meet your needs.

4 Implement a class that derives from the I2D class.

5 Implement a class that derives from the IEGL class if your platform supports Stage 3D graphics.

6 Implement user input handling. Typically, if your platform is a window-based platform, implement user input

event handling in your OutputPlane class. Otherwise, implement user input event handling in your

IGraphicsDriver subclass.

For details about implementing these interfaces, see the class details.

Plane, RenderPlane, and OutputPlane class details

Plane, RenderPlane, and OutputPlane class definitions

The Plane class hierarchy and methods are given in the following illustration:

Plane class hierarchy

GetClassName()

GetDims()

GetColorFormat()

GetRowBytes()

GetPixelAt()

GetPalette()

SetPalette()

LockBits()

LockPlanarYUVBits()

UnlockBits()

Get2DInterface()

OnRectUpdated()

Resize()

MoveTo()

SetAbove()

SetBelow()

SetTopMost()

SetBottomMost()

GetRect()

SetVisible()

IsVisible()

SetAlpha()

Activate()

GetNativeWindow()

GetNativeDisplay()

GetNativePixmap()

GetIEGL()

destructor

adds destructor

platform implementation

platform implementation

Plane
(abstract)

OutputPlane
(abstract)

RenderPlane
(abstract)

PlatformRenderPlane

PlatformOutputPlane

14OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

Planes and double buffering

When performing 2D blit and fill operations, AIR for TV uses double buffering to display the AIR application. Double

buffering means that AIR for TV does the following:

1 Renders each frame of the AIR application on a render plane.

2 Copies the render plane results to the output plane.

Because the output plane is typically memory-mapped to the display device, double buffering keeps the user from

seeing partially rendered animations.

Keep in mind both the output plane and the render plane when designing a new RenderPlane and OutputPlane class

implementation. Because both the render plane and output plane typically use the same graphics library APIs, they

share much of the same implementation.

The DirectFB graphics driver module shows one way to share implementation between the RenderPlane and

OutputPlane. Specifically, the DirectFB graphics driver module uses the DirectFBRenderPlane and

DirectFBOutputPlaneImpl classes. These classes derive from RenderPlane and OutputPlane, respectively. However,

the DirectFBRenderPlane constructor in fact allocates a new DirectFBOutputPlaneImpl object and stores a pointer to

the new object as a data member.

Therefore, when the DirectFB graphics driver module creates a render plane in GraphicsDriver::CreatePlane(),

it also creates a DirectFBOutputPlaneImpl object. The DirectFBOutputPlaneImpl class provides its own

CreatePlane() and CreateOutputPlane()methods to do further initializations. These initializations are specific to

making the object behave as a render plane or an output plane.

Planes and bitmap caching

AIR for TV uses bitmap caching when a bitmap image does not change between the frames of an AIR application. By

keeping the bitmap image in a memory cache, AIR for TV does not redraw the image in every frame. Rather, it can

copy the image. AIR for TV uses bitmap caching when:

• An AIR application uses a bitmap image created from bitmap library items.

• An AIR application loads a bitmap image with ActionScript.

• An AIR application developer explicitly requested bitmap caching for Movie Clip or Button instances that use

complex vector graphics. Typically, developers make these requests for complex vector graphics that don’t update

frequently. Because of the bitmap caching request, AIR for TV can optimize the performance of displaying, moving,

and blending these vector graphics.

Adobe recommends using bitmaps instead of vector graphics for complex image components to speed up AIR

applications on many embedded systems. This recommendation applies when hardware-assisted bitmap compositing

functions provide better performance than vector animation processed on the main CPU.

When AIR for TV performs bitmap caching while executing an AIR application, it uses a render plane. This render

plane is a temporary offscreen bitmap plane. AIR for TV creates and destroys instances of a render plane as needed for

bitmap caching. This behavior differs from the use of a render plane in double buffering. For double buffering, one

render plane is instantiated for the life of the StageWindow instance and its AIR application.

15OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

Plane dimensions and scaling

The system developer can configure the StageWindow instance to use explicit dimensions for the render plane and the

output plane. However, by default, AIR for TV handles your planes’ dimensions as follows:

• The render plane is set to the dimensions of the Stage of the AIR application. These dimensions are set when an

AIR application developer authors the application. The stagecraft binary executable command-line option --

contentdims can override these dimensions.

• The output plane is set to the dimensions of the render plane. The stagecraft binary executable command-line

option --outputdims can override these dimensions.

• If the resulting render and output plane dimensions are bigger than the device screen size, AIR for TV scales the

render plane to fit. The aspect ratio is preserved.

Note: The system developer can design the StageWindow instance to not scale down to fit the screen size. If so, and the

output plane dimensions are bigger than the screen size, all the content is not visible to the user. However, the graphics

driver module can consider this possibility. The StageWindow instance requests the graphics driver module to create the

Plane object. Code the graphics driver module to decide whether to create the Plane object if all the content will not be

visible to the user.

In most cases, the system developer lets the default behavior set the dimensions of the render plane and output plane

to be the same. The AIR runtime renders high-quality output at any size. This rendering includes vector graphics

operations and compositing bitmaps. The compositing operations use your hardware accelerator’s blit and fill

operations. The vector graphics, however, use the system processor. For large plane sizes, especially for AIR

applications that do lots of vector graphics, the system processor usage can be high. To reduce system processor usage,

the system developer can specify a render plane size that is smaller than the output plane size. However, the resulting

frames are not as high in rendering quality. Moreover, the blit operation you provide in your I2D implementation

must be able to enlarge (stretch blit) the bitmap to the output plane size. For more information, see “Blit() method” on

page 26.

Pre-multiplied alpha

RenderPlane and OutputPlane implementations have a color format. The color format defines how to represent the

color and transparency (alpha) of each pixel in the plane. Typically, your plane implementations use an ARGB color

format. In your plane implementation, for each pixel, pre-multiply the alpha value with each of the R, G, and B values.

For example:

When AIR for TV uses Plane objects with an ARGB color format, it uses, and expects, pre-multiplied alpha values.

Without pre-multiplied alpha With pre-multiplied alpha

A 128 128

R 50 25

G 70 35

G 80 40

16OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

User input handling

In window-based graphical environments, your OutputPlane subclass is a logical place to handle user input events. In

your OutputPlane subclass implementation, do the following:

1 Store a pointer to the StageWindow instance as an OutputPlane data member. This pointer is passed to a platform-

specific IGraphicsDriver object in its CreateOutputPlane() method. In your OutputPlane subclass, implement a

public method that the graphics driver module calls to pass in the pointer to the StageWindow instance.

2 Receive user input events by using your platform’s APIs for accessing the active window.

3 Call the corresponding StageWindow method to handle each event received.

The StageWindow class provides these methods to handle user input events (defined in

include/ae/stagecraft/StageWindow.h):

• DispatchKeyDown()

• DispatchKeyUp()

• DispatchMouseButtonDown()

• DispatchMouseButtonUp()

• DispatchMouseMove()

• DispatchScrollWheelScroll()

The information contained in the event, such as the key pressed or the mouse coordinates, is forwarded as parameters

to these StageWindow instance event handling methods.

Note: Your system developer sometimes provides a mapping of keys on remote controls and other input devices to values

for the AIR application. However, the key mapping does not affect the OutputPlane object’s role in passing events to the

StageWindow instance.

The source distribution provides an example of handling user input events in an OutputPlane object in the X11Plane

class. See source/ae/ddk/graphicsdriver/GraphicsDriverX11.cpp.

When handling user input events in a non-windowing platform, you capture user input events as directed by the

platform’s API. However, since the event is not associated with a window, your OutputPlane class is not involved. The

Graphics Driver module can be a logical place to put this code. Use these IStagecraft methods to dispatch the event to

the StageWindow instance:

• DispatchKeyDown()

• DispatchKeyUp()

• DispatchMouseButtonDown()

• DispatchMouseButtonUp()

• DispatchMouseMove()

• DispatchScrollWheelScroll()

These methods are defined in include/ae/stagecraft/IStagecraft.h. The implementation of each of these methods in

source/ae/stagecraft/IStagecraftImpl.h calls the corresponding method of the StageWindow instance.

Examples of user input handling in non-windowing platforms are in the DirectFB implementation. See this file:

source/ae/ddk/graphicsdriver/GraphicsDriverDirectFB.cpp

17OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

Plane class methods

When you implement your Plane subclass, you provide implementation for the following public methods. For detailed

definitions of return values and parameters of the Plane class methods, see include/ae/stagecraft/StagecraftTypes.h.

GetClassName() method

This method returns a string that is the name you define for your Plane subclass.

A common use of GetClassName() is in the Blit() method of your I2D subclass implementation. The Blit()

method is passed a Plane object pointer as its source plane parameter. Because the behavior of the Blit() method

usually depends on the type of the source plane, Blit() calls the Plane object’s GetClassName().

Other objects and modules also use GetClassName(). For example, a StreamPlayer object uses GetClassName() to

determine the class of its output plane.

GetColorFormat() method

This method returns the ColorFormat of the Plane object. The ColorFormat is an enumeration which defines

possible bitmap pixel formats for Plane objects. For example, a common color format is ARGB8888.

For render planes, the Graphics Driver module receives a ColorFormat parameter in its CreatePlane() method. The

ColorFormat parameter specifies the pixel format of the plane to be created. Provide a method or constructor in your

RenderPlane subclass to receive the value from the Graphics Driver module. The GetColorFormat() method returns

the same ColorFormat value. The RenderPlane object either stores the ColorFormat value, or GetColorFormat()

dynamically determines the value.

For render planes, the ColorFormat value that AIR for TV passes to the Graphics Driver module’s CreatePlane()

method is always ARGB8888, kCLUT8, or kYUVI420. The kCLUT8 format is an indexed-color bitmap. The kYUVI420

format is used in software rendering.

For output planes, the system developer determines the ColorFormat. However, in many platforms the ColorFormat

for the output plane is also ARGB8888.

A common use of GetColorFormat() is in the Blit() method of your I2D subclass implementation. The Blit()

method uses the color format of its source plane and destination plane.

Note: Consider a temporary offscreen bitmap plane that uses kCLUT8. The blit from the temporary offscreen bitmap plane

to the render plane, which uses ARGB8888, requires a format conversion. Implement the Blit() method for the I2D object

of the render plane to perform the conversion using platform-specific hardware accelerators.

For the complete ColorFormat enumeration, see include/ae/stagecraft/StagecraftTypes.h.

GetDims() method

This method returns the dimensions of the Plane object. The dimensions are the width and height of the plane bitmap

in pixels.

Your Plane subclass implementation is responsible for determining and storing the plane’s dimensions. For example,

you can hard code the dimensions. Alternatively, you can provide a method or constructor to receive the value from

another object, such as the graphics driver module.

A common use of GetDims() is in the Blit() method of your I2D subclass implementation. The Blit() method uses

the dimensions of its source plane.

18OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

Other objects and modules also use GetDims(). For example, the AIR runtime and the StageWindow instance use the

dimensions of the render plane.

GetIGLES2() method

Return NULL. This method is no longer used.

GetPalette() method

This method provides a pointer to an array of Color objects which define the available colors of the plane. The Color

class is defined in include/ae/stagecraft/StagecraftTypes.h. This method provides the array pointer only if the plane

uses indexed colors. If the plane does not use indexed colors, GetPalette() sets the pointer to NULL and returns

false.

Your Plane subclass implementation also provides a SetPalette() method. See “SetPalette() method” on page 20.

 A common use of GetPalette() is in the Blit() method of your I2D subclass implementation. The Blit() method

often gets the color palette of its source plane.

GetPixelAt() method

This method returns a Color object representing the color of the pixel at the location specified by the parameters.

However, GetPixalAt() is used only for testing AIR for TV. Therefore, in your implementation, return a Color object

constructed with the default constructor:

return Color();

GetRowBytes() method

This method returns the number of bytes used to store one scan line of the plane in memory. This value is the number

of bytes you add to the address of a pixel to get to the same pixel one line below. Your Plane subclass implementation

is responsible for determining and storing this value. For example, do one of the following:

• Hard code the value.

• Provide a method or constructor to receive the value from another object, such as the graphics driver module.

• Retrieve the value from your platform libraries.

If your Plane subclass implementation uses a planar YUV format, return the number of bytes in a row of the Y plane.

A common use of GetRowBytes() is in the Blit() method of your I2D subclass implementation. The Blit() method

often uses the number of bytes in a row of its source plane. The FillRect() method often uses the number of bytes

in a row of its destination plane. Other objects and modules, such as the image decoder module and the AIR runtime

also use GetRowBytes().

Get2DInterface() method

This method returns a pointer to an I2D subclass object. Your Plane subclass implementation is responsible for the

following:

• Creating the I2D subclass object and storing a pointer to it.

• Destroying the I2D subclass object when the Plane object is destructed.

For more information about a plane’s I2D subclass object, see “I2D class details” on page 23.

19OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

LockBits() method

This method returns a pointer to the memory representing the bitmap pixels of the plane. The object which allocates

the plane’s bitmap memory depends on your implementation. In some implementations, the graphics driver module

method CreatePlane() allocates the memory. In other implementations, the Plane subclass object allocates the

memory when it is instantiated.

The AIR runtime calls LockBits() to get the memory pointer. Then, the runtime directly manipulates the memory

when rendering the Flash animation. The runtime calls UnlockBits() when it is done accessing the memory. If your

plane uses a planar YUV color format, see “LockPlanarYUVBits()” on page 19.

The word “lock” in LockBits() refers to ensuring that the plane’s bitmap pixels are “locked” in memory and so can be

safely accessed directly. Some graphics libraries sometimes move bitmap data around in memory for memory-

management purposes. The AIR runtime, however, requires that the memory is locked in place while it renders the

Flash animation. Your Plane subclass implementation must allow multiple calls to LockBits() before the

corresponding calls to UnlockBits(). Make sure that the number of calls to LockBits() and UnlockBits() match up.

The LockBits() method returns NULL only if a catastrophic failure occurs. AIR for TV does not correctly render the

Flash animation in this case.

Note: The AIR runtime calls LockBits() for render planes only. The LockBits() implementation for an output plane

is never executed. However, the software implementation of I2D requires a LockBits() implementation for both the

render plane and the output plane. Therefore, if you test with the I2D software implementation, implement LockBits()

for the output plane, too. The I2D software implementation is in source/ae/ddk/graphicsdriver/I2DMem.cpp.

AIR for TV does not require thread-safety in LockBits(). However, make your implementation of LockBits()

thread-safe if your platform requires it. For example, some graphics driver implementations perform memory

management to achieve better memory utilization. This memory management sometimes involves a separate thread

which moves around the blocks of bitmap memory. The separate thread means that LockBits() must be thread-safe.

For example, be sure to return a valid pointer regardless of the memory management activities in a separate thread.

LockPlanarYUVBits()

This method returns a pointer to a YUV info structure. The structure definition is in ae/stagecraft/StagecraftTypes.h.

Return NULL if your Plane implementation’s color format is not a planar YUV format. See “LockBits() method” on

page 19.

The caller of LockPlanarYUVBits() uses the YUV info structure pointer to directly manipulate the plane memory.

The caller calls UnlockBits() when it is done accessing the memory.

The word “lock” in LockPlanarYUVBits() refers to ensuring that the plane’s data is “locked” in memory and so can

be safely accessed directly. Some graphics libraries sometimes move bitmap data around in memory for memory-

management purposes. But the caller of LockPlanarYUVBits() requires that the memory is locked in place. Allow

multiple calls to LockPlanarYUVBits() before the corresponding calls to UnlockBits(). Make sure that the number

of calls to LockPlanarYUVBits() and UnlockBits() match up.

Note: s LockPlanarYUVBits() applies to render planes only. Output planes never use a planar YUV color format.

Therefore, return NULL for all output plane implementations.

AIR for TV does not require thread-safety in LockPlanarYUVBits(). However, make your implementation of

LockPlanarYUVBits() thread-safe if your platform requires it. For example, some graphics driver implementations

perform memory management to achieve better memory utilization. This memory management sometimes involves

a separate thread which moves around the blocks of bitmap memory. The separate thread means that

LockPlanarYUVBits() must be thread-safe. For example, be sure to return a valid pointer regardless of the memory

management activities in a separate thread.

20OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

OnRectUpdated() method

This method is a notifier method. AIR for TV calls OnRectUpdated() to notify the plane that it has updated the plane.

• For a render plane, AIR for TV calls OnRectUpdated() when it has finished rendering a frame of Flash animation.

This call indicates that the frame is ready for presentation. Typically, a render plane uses OnRectUpdated() only

if no output plane exists. That is, the platform does not use double buffering. For example, some platforms use a

page flipping implementation. In a page flipping implementation, two bitmaps alternate being the display bitmap

and the backing memory bitmap. The OnRectUpdated() method performs the page flip. That is, it points the

display to the newly updated backing memory.

• For an output plane, AIR for TV calls OnRectUpdated() when it has blitted the render plane to the output plane.

Typically, an implementation uses OnRectUpdated() to update the display if the platform does not have a

memory-mapped display device.

A parameter of OnRectUpdated() indicates the subrectangle that was updated. The subrectangle can specify the

whole plane.

An alternative to using OnRectUpdated() is the StageWindowNotifier class. You can implement the

StageWindowNotifier interface to receive plane update notifications. For example, use the StageWindowNotifier if

you are using a graphics driver module and Plane implementation from the source distribution which you do not want

to modify. However, using OnRectUpdated() keeps all Plane-related code in the Plane object. Work with your system

developer to determine the right solution for your platform. For more information, see “StageWindow event handling”

on page 113.

SetPalette() method

This method is used to set an array of Color objects that define the available colors of the plane. The Color class is

defined in include/ae/stagecraft/StagecraftTypes.h. This method sets up the array only if the plane uses indexed colors.

This method returns false under these circumstances:

• The plane does not use indexed colors.

• The number of colors requested for the palette is greater than the maximum number of colors the plane allows for

the palette.

Your implementation also provides a GetPalette() method. See “GetPalette() method” on page 18.

An image decoder calls SetPalette(), for example, while decoding a PNG image that is stored as an 8-bit indexed

color. SetPalette() builds the palette for the plane during image decoding.

Resize() method

This method is used to change the dimensions of a plane.

This method is defined to return false in the Plane class definition. If your Plane class implementation can resize

itself, override Resize() to do so.

For an OutputPlane that supports the IEGL interface, implement the Resize() method to also modify the EGL

surface.

Typically, the graphics driver module methods ResizePlane() and ResizeOutputPlane() call Resize() for the

render plane and output plane, respectively. If Resize() returns false, ResizePlane() and ResizeOutputPlane()

typically destroy the plane object. Then they create a new render plane or output plane.

21OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

More Help topics

“Window manipulation” on page 9

UnlockBits() method

The AIR runtime calls this method when it is done directly accessing the plane’s bitmap memory. The caller balances

calls to LockBits() (or LockPlanarYUVBits()) and UnlockBits(). For more information, see “LockBits()

method” on page 19 and “LockPlanarYUVBits()” on page 19.

OutputPlane class methods

When you implement your OutputPlane subclass, you provide implementation for the following public methods. For

detailed definitions of return values and parameters of the Plane class methods, see

include/ae/stagecraft/StagecraftTypes.h.

These methods relate to manipulating the window associated with the output plane. For more information, see

“Window manipulation” on page 9.

Activate() method

This method makes the display window that uses this output plane the foreground window, giving it the input focus.

That is, the window now receives the key input. Typically, each AIR for TV process has only one OutputPlane instance.

However, consider the scenario in which you are running multiple AIR for TV processes, or other processes that use

display windows. You can implement this method to give this output plane the input focus.

GetIEGL() method

This method returns a pointer to an IEGL subclass object. Return NULL if your platform does not support 3D

rendering.

GetRect() method

This method returns the bounding rectangle for the window associated with the output plane. These dimensions can

be different from the output plane’s dimensions. The difference is due to platform-specific window characteristics,

such as a border and title.

IsVisible() method

This method returns whether the window associated with the output plane is visible.

More Help topics

“SetVisible() method” on page 23

MoveTo() method

This method moves the window associated with the output plane. The destination coordinates are specified in a

parameter. The coordinates specify the upper left corner of the window. The coordinates are relative to the upper left

corner of the dimensions returned from the GetScreenDims() of the IGraphicsDriver subclass.

22OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

When implementing MoveTo(), consider the border and title of window, if any. The border and the title add additional

width or height to the output plane dimensions. Adjust the move operation accordingly. Use GetRect() to determine

the dimensions of the window.

More Help topics

“Window manipulation” on page 9

SetAbove() method

This method changes the depth level (z-order) of the window associated with this output plane. The method sets this

window above the window associated with the output plane passed in the parameter. If the parameter is NULL, then the

window associated with this output plane becomes the top window.

Typically, you have only one output plane. However, if you have multiple output planes, you can implement this

method to manipulate the depth level.

SetAlpha() method

This method sets the alpha (transparency) of the window associated with this output plane. A parameter that ranges

from 0 to 255 specifies the requested alpha. A value of 0 means transparent. A value of 255 means opaque.

This alpha is not the same as the alpha applied to AIR application. AIR for TV continues to render the AIR application

using the application’s alpha values. The alpha that SetAlpha() sets is platform-dependent. For example, your

implementation can apply the alpha to the border, title, and contents of a window.

Suppose the window with the focus is set to alpha value 0, making it not visible. Many windowing platforms handle

changing the focus to another window. If your platform does not change the focus, implement the change in focus

yourself in SetAlpha().

Typically, each AIR for TV process has only one OutputPlane instance. However, consider the scenario in which you

are running multiple AIR for TV processes, or other processes that use display windows. You can implement this

method to change this output plane’s alpha level.

More Help topics

“Window manipulation” on page 9

SetBelow() method

This method changes the depth level (z-order) of the window associated with this output plane. The method sets this

window below the window associated with the output plane passed in the parameter. If the parameter is NULL, then the

window associated with this output plane becomes the bottom window.

Typically, you have only one output plane. However, if you have multiple output planes, you can implement this

method to manipulate the depth level.

SetBottomMost() method

This method changes the depth level (z-order) of the window associated with this output plane. The method sets this

window below all the other windows.

Typically, you have only one output plane. However, if you have multiple output planes, you can implement this

method to manipulate the depth level.

23OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

SetTopMost() method

This method changes the depth level (z-order) of the window associated with this output plane. The method sets this

window above all the other windows.

Typically, you have only one output plane. However, if you have multiple output planes, you can implement this

method to manipulate the depth level.

SetVisible() method

This method changes the visibility of the window associated with this output plane. Make the window visible if the

parameter passed is true. Otherwise, make the window not visible.

Suppose the window with the focus is set to not visible. Many windowing platforms handle changing the focus to

another window. If your platform does not change the focus, implement the change in focus yourself in

SetVisible().

Typically, each AIR for TV process has only one OutputPlane instance. However, consider the scenario in which you

are running multiple AIR for TV processes, or other processes that use display windows. You can implement this

method to change this output plane’s visibility.

More Help topics

“Window manipulation” on page 9

I2D class details

Your Plane subclass provides an accessor function to return an instance of the corresponding I2D subclass. AIR for

TV uses the I2D subclass object to use the platform’s hardware acceleration capabilities to do the following:

• Transfer bitmap images (blit images) from a source plane to a destination plane.

• Fill a rectangle or subrectangle of a plane with a specified color.

I2D class definition

The I2D class hierarchy and methods are given in the following illustration:

I2D class hierarchy

Blit()

FixedPointBlit()

FillRect()

Flush()

GetCapabililties()

platform implementation

I2D
(abstract)

PlatformI2D

24OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

I2D class capabilities

The blit and fill capabilities of different platforms vary. Therefore, your I2D subclass implements a method called

GetCapabilities(). AIR for TV checks your platform’s capabilities to determine which methods of your I2D

subclass to call. The set of capabilities is defined in the I2D class by the following enumeration:

enum Capabilities
{

kFillRect = 1, // Supports hardware accelerated FillRect
kSimpleBlit = 2, // Supports hardware accelerated blit (no stretching)
kStretchBlit = 4, // Supports hardware accelerated stretch blit
kClippedStretchBlit = 8,// Supports hardware accelerated clipped stretch blit
kFixedPointStretchBlit = 16,// Supports hardware accelerated stretch blit

// with fixed-point source coordinates
// and 2x2 Matrix Transformation

};

Implement GetCapabilities() to return a bitwise combination of capabilities your platform supports. These

capabilities have the following meanings:

kFillRect Your platform supports the fill operation (FillRect()).

kSimpleBlit Your platform supports a blit operation that uses integer coordinates and dimensions for the source

and destination rectangles. Your platform requires that the source and destination rectangles have the same

dimensions; your platform supports no scaling. The I2D interface you define is Blit().

kStretchBlit Your platform supports a blit operation that uses integer coordinates and dimensions for the source

and destination rectangles. The source and destination rectangles can have different dimensions. Therefore, if your

platform supports kStretchBlit, it also supports kSimpleBlit. The I2D interface you define is Blit().

kClippedStretchBlit Your platform supports a blit operation that uses integer coordinates and dimensions for the

source and destination rectangles. Furthermore, it uses a “clipper” rectangle parameter that specifies the subrectangle

of the destination rectangle to draw. The I2D interface you define is Blit().

kFixedPointStretchBlit Your platform supports a blit operation that uses a standard computer graphics 2x2

transformation matrix that specifies the scaling, rotation, shearing, and mirroring factors. If your platform supports

kFixedPointStretchBlit, then it does not need to also support kClippedStretchBlit. The I2D interface you

define is FixedPointBlit().

Note: Regardless of scaling and matrix capabilities, design your implementation of Blit() or FixedPointBlit() to

handle alpha level and color blending.

More Help topics

“Blit() method” on page 26

“FixedPointBlit() method” on page 29

“How AIR for TV uses I2D capabilities” on page 25

“I2D capabilities performance impact” on page 25

“Comparison of blit feature handling across I2D capabilities” on page 25

25OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

How AIR for TV uses I2D capabilities

When executing an AIR application, AIR for TV often requires a blit operation in which the destination plane is a

render plane. AIR for TV uses the capabilities of the destination plane’s I2D interface to determine which blit method

to call.

1 If the I2D capabilities include kFixedPointStretchBlit, AIR for TV calls the FixedPointBlit() method.

2 If the I2D capabilities do not include kFixedPointStretchBlit, but do include kClippedStretchBlit, AIR for

TV calls the Blit() method, and includes a clipper rectangle in the parameters.

3 If the I2D capabilities do not include kFixedPointStretchBlit or kClippedStretchBlit, but do include

kStretchBlit, AIR for TV calls the Blit() method. AIR for TV does not include a clipper rectangle in the

parameters.

4 If the I2D capabilities do not include kFixedPointStretchBlit, kClippedStretchBlit, or kStretchBlit, but

do include kSimpleBlit, AIR for TV calls the Blit() method. AIR for TV does not include a clipper rectangle in

the parameters. If scaling is required when the I2D capabilities include only kSimpleBlit, implement the Blit()

method to return false. Then AIR for TV uses its internal software blitting operation.

Note: To blit from a render plane to an output plane, the StageWindow instance calls your Blit() implementation,

regardless of the capabilities of your I2D subclass.

I2D capabilities performance impact

Using FixedPointBlit() achieves the highest performance. However, it is the most complex to implement since it

handles a transformation matrix. The transformation matrix is an inverse transformation matrix. In an inverse

transformation matrix, the scaling factors are fixed-point numbers that the blit operation multiplies by the destination

subrectangle dimensions. The product determines the source subrectangle dimensions. This calculation can result in

fractional source subrectangle dimensions. Your FixedPointBlit() must handle the fractional parts correctly. If not

handled correctly, a small wave effect sometimes appears in the animations.

Therefore, if your platform does not handle fractional parts, set your render plane’s I2D capabilities to not include

kFixedPointStretchBlit. For kClippedStretchBlit and kStretchBlit capabilities, AIR for TV handles the

scaling factors of the transformation matrix and any resulting fractional parts. For kClippedStretchBlit, AIR for

TV determines the clipper rectangle. Using kClippedStretchBlit results in slightly lower performance than using

kFixedPointStretchBlit, although exact results depend on your implementation. Using kStretchedBlit results

in rendering performance that is much less than the performance when using kClippedStretchBlit. Using

kSimpleBlit results in the lowest performance.

Comparison of blit feature handling across I2D capabilities

The following table summarizes blit features. For each capability, the table shows the following:

• what tasks AIR for TV handles before calling FixedPointBlit() or Blit().

• what tasks FixedPointBlit() or Blit() handle.

• what tasks AIR for TV handles with its internal software blit operation. In these cases, AIR for TV does not call

FixedPointBlit() or Blit().

26OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

I2D class methods

When you implement your I2D subclass, you provide implementations for the following public methods. For detailed

definitions of return values and parameters of the I2D class methods, see include/ae/stagecraft/StagecraftTypes.h.

Blit() method

This method blits a bitmap image from a source plane to a destination plane. In this method, you interface with your

hardware acceleration hardware or APIs to perform blit operations. The parameters to Blit() specify how to scale,

clip, mirror, and blend colors or alpha level when blitting from a source plane to a destination plane. However, this

method does not support blitting that includes rotation or shearing operations.

A pointer to the source plane is the first parameter that AIR for TV passes to Blit(). The destination plane is the Plane

subclass object from which AIR for TV gets the I2D subclass object.

When the destination plane is a render plane:

• the source plane is a temporary offscreen bitmap plane. The AIR runtime uses this temporary Plane subclass object

internally for bitmap caching. The source plane can also contain a decoded JPEG or PNG image that was decoded

with the image decoder module.

Task kFixedPointStretchBlit kClippedStretchBlit kStretchBlit kSimpleBlit

Handles

transformation

matrix inverse

scaling factors

FixedPointBlit()
implementation

AIR for TV before calling

Blit()
AIR for TV before calling

Blit()
AIR for TV does not call

Blit(). Instead, it uses its

internal software blit

operation.

Handles scaling from

a source rectangle to

a destination

rectangle

Not applicable Blit() implementation Blit() implementation AIR for TV calls Blit()

which returns false.

Then, AIR for TV uses its

internal software blit

operation.

Handles rotation FixedPointBlit()
implementation

AIR for TV does not call

Blit(). Instead, it uses its

internal software blit

operation.

AIR for TV does not call

Blit(). Instead, it uses its

internal software blit

operation.

AIR for TV does not call

Blit(). Instead, it uses its

internal software blit

operation.

Handles mirroring FixedPointBlit()
implementation

AIR for TV does not call

Blit(). Instead, it uses its

internal software blit

operation.

AIR for TV does not call

Blit(). Instead, it uses its

internal software blit

operation.

AIR for TV does not call

Blit(). Instead, it uses its

internal software blit

operation.

Handles shearing FixedPointBlit()
implementation

AIR for TV does not call

Blit(). Instead, it uses its

internal software blit

operation.

AIR for TV does not call

Blit(). Instead, it uses its

internal software blit

operation.

AIR for TV does not call

Blit(). Instead, it uses its

internal software blit

operation.

Handles clipper

rectangle

Not applicable. Blit() implementation Not applicable. Not applicable.

Handles alpha level

blending and color

blending

FixedPointBlit()
implementation

Blit() implementation Blit() implementation Blit() implementation

Performance Highest Less than

kFixedPointStretchB
lit

Approximately half of

kClippedStretchBlit.

Lowest.

27OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

• The AIR runtime calls Blit() only if the I2D capabilities of the destination plane do not include

kFixedPointStretchBlit.

• If the blit requires scaling, the AIR runtime applies the inverse scaling factors before calling Blit(). If the inverse

scaling factors result in fractional coordinates, the runtime provides any necessary adjustments to eliminate

undesirable wave effects in the animation. The runtime then passes only integer coordinates to Blit().

When the destination plane is an output plane:

• the source plane is a render plane that contains a frame that is ready for display to the user. The source Plane can

also contain a decoded JPEG or PNG image that was decoded with the image decoder module.

• The StageWindow instance calls Blit() when the AIR runtime has updated the render plane. The StageWindow

instance calls Blit() regardless whether the I2D capabilities of the destination plane include

kFixedPointStretchBlit.

• The parameters passed to Blit() specify only the source and destination rectangles. No clipping, rotating,

shearing, mirroring, or color or alpha blending is required.

Note: Expect the source and destination planes to have pre-multiplied alpha values. Also, implement Blit() to use pre-

multiplied alpha values in the destination plane’s resulting bitmap image.

The parameters passed to Blit() include the following:

• A pointer to the source plane object.

• A BlitInfo structure. This structure is defined in include/ae/stagecraft/StagecraftTypes.h. The structure includes

the source and destination rectangles you use for the blit operation. These rectangles are objects of the Rect class,

which is also defined in StagecraftTypes.h.

The structure also includes a Rect field called clipRect. This field specifies the subrectangle of the destination

rectangle that Blit() must draw. The field blitFlags of the BlitInfo structure specifies whether to use

clipRect in the blit operation. AIR for TV provides a clipRectonly if the destination plane is a render plane and

its I2D capabilities include kClippedStretchBlit.

The blitFlags of the BlitInfo structure also specifies whether to do a horizontal or vertical mirror (flip)

operation. The blitFlags also specify whether to apply smoothing.

• A pointer to a Transformation structure. The Transformation structure is defined in

include/ae/stagecraft/StagecraftTypes.h. Its data members include the following:

m_bHasTransparency If m_bHasTransparency is true, perform an alpha blend operation while blitting the

source onto the destination. The source bitmap pixel colors are pre-multiplied with the alpha value of the respective

pixel. Pre-multiplying the alpha value facilitates higher performance of the blend operation.

If m_bHasTransparency is false, a copy operation is sufficient. Some platforms perform faster with a copy as

compared to an alpha blend.

m_colorOffset and m_colorMultiplier Use these values to compute the source pixel color as follows:

New red value = (old red value * redMultiplier) + redOffset
New green value = (old green value * greenMultiplier) + greenOffset
New blue value = (old blue value * blueMultiplier) + blueOffset
New alpha value = (old alpha value * alphaMultiplier) + alphaOffset

The range of the m_colorOffset values is -255 to +255. The m_colorMultiplier is a fixed point 8.8 value, which

means the range is 0.0 to 255.99. Clamp the new computed value to the range of 0 to 255.

m_bHasColorTransform If m_bHasColorTransform is true, use the m_colorOffset and m_colorMultiplier

in the blit operation. If m_bHasColorTransform is false, ignore m_colorOffset and m_colorMultiplier.

28OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

m_bHasAlphaOnly If m_bHasAlphaOnly is true, ignore m_colorOffset and use only the alpha value, not the red,

green, or blue values, of m_colorMultiplier.

Blit() returns true for success, and false for failure. Returning true indicates to the caller only that the blit

operation is acceptable, not that it has completed. Your hardware acceleration implementation determines whether

the actual blit operation is synchronous or asynchronous.

Return false if the parameters request a blit that is too complex for your implementation. When Blit() returns false,

the AIR runtime performs the blit operation in software. This software implementation results in a correct image but

is less efficient than blitting with hardware.

Note: When Blit() returns false and the destination plane is an output plane with color format ARGB8888, the AIR

runtime performs the blit operation in software. However, if the color format is not ARGB8888, then the runtime performs

no blit operation. Therefore, the AIR application does not correctly display.

More Help topics

“I2D class capabilities” on page 24

“FixedPointBlit() method” on page 29

FillRect() method

This method fills a rectangle or subrectangle of a destination plane with a specified color. In this method, you interface

with your hardware acceleration hardware or APIs.

Note: Expect the destination plane to have pre-multiplied alpha values. Also, implement FillRect() to use pre-

multiplied alpha values in the destination plane’s resulting bitmap image.

The parameters passed to FillRect() include the following:

• A Rect object that defines a subrectangle of the destination plane. The Rect class is defined in

include/ae/stagecraft/StagecraftTypes.h. The Rect object specifies the subrectangle to fill with the specified color.

• A Color object that defines the fill color. Color is defined in include/ae/stagecraft/StagecraftTypes.h.

• A flag indicating whether to perform a standard alpha blend using the fill color on the destination subrectangle.

The fill color values have pre-multiplied alpha values. If this flag is false, fill the destination subrectangle with the

fill color without any consideration of the existing color value of the destination.

FillRect() returns true for success, and false for failure. Returning true indicates to the caller only that the fill

operation is acceptable, not that it has completed. Your hardware acceleration implementation determines whether

the actual fill operation is synchronous or asynchronous.

Return false if the parameters request a fill operation that is too complex for your implementation. When

FillRect() returns false, the AIR runtime performs the fill operation in software. This software implementation

results in a correct image but is less efficient than performing the fill operation with hardware.

Set kFillRect in your return value for GetCapabilities()only if you support it with hardware acceleration.

During development in debug mode, you can use a transparent overlay color to tint a blitted or filled region. The

overlay color allows you to visually determine which objects your I2D implementation is rendering, and which objects

the AIR runtime is rendering. If you have enabled the overlay color, the AIR runtime makes the following method calls

when blitting to a render plane or filling a rectangle. First, the runtime calls Blit() or FixedPointBlit()or

FillRect(). If the method is successful, the runtime calls FillRect()with the overlay color. To enable the overlay

color, pass the showblit command-line option to the stagecraft executable. For more information, see the --

showblit command-line option in Getting Started with Adobe AIR for TV (PDF).

http://www.adobe.com/go/GettingStartedWithAdobeAIRForTV/

29OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

FixedPointBlit() method

This method blits a bitmap image from a source plane to a destination plane. In this method, you interface with your

hardware acceleration hardware or APIs to perform blit operations. The parameters to FixedPointBlit() specify

how to scale, rotate, shear, and mirror the bitmap when blitting from a source plane to a destination plane. Other

parameters specify how to blend colors or alpha level, and whether to apply smoothing.

A pointer to the source plane is the first parameter that AIR for TV passes to FixedPointBlit(). The destination

plane is the Plane subclass object from which AIR for TV gets the I2D subclass object.

Note: Expect the source and destination planes to have pre-multiplied alpha values. Also, implement

FixedPointBlit() to use pre-multiplied alpha values in the destination plane’s resulting bitmap image.

AIR for TV calls FixedPointBlit() only when the following are true:

• The destination plane is a render plane. The source plane is a temporary offscreen bitmap plane. The AIR runtime

uses this temporary Plane subclass object internally for bitmap caching. The source plane can also contain a

decoded JPEG or PNG image that was decoded with the image decoder module.

• The I2D capabilities of the destination plane include kFixedPointStretchBlit.

Note: When the destination plane is an output plane, AIR for TV calls Blit() regardless of the destination plane’s I2D

capabilities.

The parameters passed to FixedPointBlit() include the following:

• A pointer to the source plane object.

• A BlitInfoFixedPoint structure. This structure is defined in include/ae/stagecraft/StagecraftTypes.h. Its data

members include the following:

destRect A Rect object that defines a subrectangle of the destination plane. The Rect class is defined in

include/ae/stagecraft/StagecraftTypes.h. The specified subrectangle is the target of the blit operation.

x and y These are 16.16 fixed-point coordinates. These values specify the upper-left corner of the subrectangle to

blit, relative to the upper-left corner of the source plane.

applySmoothing This boolean variable indicates whether to apply smoothing in the blit operation.

m_matrix This Matrix structure contains four fixed-point values: a, b, c, and d. This matrix represents a standard

computer graphics 2x2 transformation matrix. For example, if a is negative, reflect the source plane using a

horizontal mirror operation. If d is negative, use a vertical mirror operation. If b or c are non-zero, use a shearing

operation.

This matrix is an inverse transformation matrix. An inverse transformation matrix means that the values are

applied to the destination coordinates to compute the source coordinates. The values of a and d specify the inverse

scaling factors to use in the blit operation. Calculate the source subrectangle dimensions by multiplying the

respective inverse scaling factor by the dimensions of the destination subrectangle. If each of a and d equals 1.0,

then the blit operation performs no scaling

Note: FixedPointBlit() uses inverse scaling factors because the destination subrectangle dimensions are always

whole numbers. However when the dimensions are multiplied by the inverse scaling factor, which is a fraction, the

resulting source subrectangle dimensions can have fractional components. FixedPointBlit() must handle the

fractional parts correctly. If not handled correctly, a small wave effect sometimes appears in the animations. If your

platform does not handle fractional parts, set your render plane’s I2D capabilities to not include

kFixedPointStretchBlit.

30OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

• A pointer to a Transformation structure. The Transformation structure is defined in

include/ae/stagecraft/StagecraftTypes.h. For more information, see the same parameter in the “Blit() method” on

page 26.

FixedPointBlit() returns true for success, and false for failure. Returning true indicates to the caller only that

the blit operation is acceptable, not that it has completed. Your hardware acceleration implementation determines

whether the actual blit operation is synchronous or asynchronous.

Return false if the parameters request a blit that is too complex for your implementation. When FixedPointBlit()

returns false, the AIR runtime performs the blit operation in software. This software implementation results in a

correct image but is less efficient than blitting with hardware.

More Help topics

“I2D class capabilities” on page 24

“Blit() method” on page 26

Flush() method

This method returns only after all previously called blit and fill operations have completed. When AIR for TV is about

to directly access the bitmap of a plane involved in a blit or fill operation, it first calls Flush(). Flush() does not return

until all the previous blit and fill operations on that plane are completed. Therefore, AIR for TV can safely follow a call

to Flush() with operations that directly access the bitmap of one of the involved planes.

For example, AIR for TV calls an output plane’s Blit()method to transfer the pixels from the render plane. AIR for

TV then begins to render the next frame of the render plane. By first calling the output plane’s Flush(), AIR for TV

knows that the transfer is complete. Then, AIR for TV can safely overwrite the render plane.

Similarly, AIR for TV calls a render plane’s Blit()and FillRect() methods to transfer pixels from a temporary

offscreen bitmap plane used in bitmap caching to the render plane for compositing the frame. Calling Flush()on the

destination plane ensures that the transfer is complete.

GetCapabilities() method

This method returns an integer containing a bitwise combination of the capabilities that your I2D implementation

supports. For details on these capabilities, see “I2D class capabilities” on page 24.

IKeyboardUtils class details

Your IGraphicsDriver implementation provides an accessor function to return an instance of your implementation of

the IKeyboardUtils class. The IKeyboardUtils class hierarchy and methods are given in the following illustration:

31OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

IKeyboardUtils class hierarchy

IKeyboardUtils class methods

When you implement your IKeyboardUtils subclass, you provide implementations for the following public methods.

For detailed definitions of return values and parameters of the IKeyboardUtils class methods, see

include/ae/stagecraft/StagecraftTypes.h.

For example, when an AIR application requires text input, the following scenario can occur:

1 AIR for TV calls GetKeyboardType() to determine whether a physical or virtual keyboard is available on the

device.

2 If a physical keyboard is available, AIR for TV calls IsKeyboardActive() to determine if the physical keyboard is

active.

3 If the physical keyboard is not active, AIR for TV calls SetVirtualKeyboardActive() to activate the virtual

keyboard.

4 AIR for TV calls GetVirtualKeyboardRect() to find out where the virtual keyboard is located on the screen.

With this information, AIR for TV can scroll the application as necessary so that the virtual keyboard and the text

field are both visible.

More information about each of these methods follows.

GetKeyboardType() method

This method returns the type of keyboard that the platform provides. The return value is a bitwise-or that indicates if

the platform provides:

• no keyboard

• an alphanumeric keyboard

• a keypad (like on a mobile device)

• a virtual keyboard

If a physical keyboard is connected and active, do the following:

• Do not set the virtual keyboard bit.

• Set the bit or bits for an alphanumeric keyboard and a keypad to describe the device’s physical keyboard.

GetKeyboardType()

IsKeyboardActive()

SetVirtualKeyboardActive()

GetVirtualKeyboardRect()

IKeyboardUtils
(abstract)

platform implementation

PlatformIKeyboardUtils

32OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

If a physical keyboard is not connected or is not active, or the device has no physical keyboard, do the following if the

device supports a virtual keyboard:

• Set the virtual keyboard bit.

• Set the bit or bits for an alphanumeric keyboard and a keypad to describe the device’s virtual keyboard.

If neither a physical or virtual keyboard is available, set the bit indicating no keyboard.

IsKeyboardActive() method

This method returns whether a keyboard is active. A parameter specifies whether the request is about the virtual

keyboard or physical keyboard.

Whether a keyboard is active depends on the device. Typically, a virtual keyboard is active if it being displayed. A

physical keyboard is active, for example, if it is connected.

SetVirtualKeyboardActive() method

This method activates or deactivates the virtual keyboard. A parameter specifies whether to activate it or deactivate it.

GetVirtualKeyboardRect() method

This method returns the rectangle that the virtual keyboard occupies. The returned Rect object is relative to the upper

left corner of the screen. If the virtual keyboard is not active, set the returned Rect object to have the value 0 for its x,

y, w, and h fields.

Note: AIR for TV uses this information to make sure that the text field is visible when the virtual keyboard is active.

The Rect class is defined in include/ae/stagecraft/StagecraftType.h.

IGraphicsDriver class details

The IGraphicsDriver class hierarchy and methods, plus implementations that AIR for TV provides, are given in the

following illustration:

33OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

IGraphicsDriver class hierarchy and provided implementations

The diagram shows the graphics driver implementations that AIR for TV provides. These implementations define a

class called GraphicsDriver for the DirectFB and X11 platforms.

Provide an implementation of IGraphicsDriver for your platform. You can start with one of the provided

implementations. Alternatively, you can implement your own implementation by deriving a platform-specific class

from IGraphicsDriver or GraphicsDriverBase.

For more information, see “Implementations included with source distribution” on page 11.

IGraphicsDriver class methods

CreatePlane() method

This method creates a plane to be used as a render plane. CreatePlane() parameters include the following:

• The dimensions of the plane.

A platform-specific

graphics driver implementation

PlatformGraphicsDriver1

CreatePlane()

CreateOutputPlane()

DestroyPlane()

GetScreenDims()

ResizePlane()

ResizeOutputPlane()

GetIFontInterface()

GetIKeyboardUtils()

GetGraphicsMemoryInfo()

IGraphicsDriver
(abstract)

IAEModule
(abstract)

A platform-specific

graphics driver implementation

PlatformGraphicsDriver2

Implements:

CreatePlane() for MemPlane

DestroyPlane() for MemPlane

ResizePlane()

ResizeOutputPlane()

GetIFontInterface()

GetIKeyboardUtils()

GraphicsDriverBase
(abstract)

Adds these interfaces:

StartDirectFB()

SetDirectFB()

StartDirectFBUserInputDriver()

GetDirectFB()

GetSurface()

GetRenderMutex()

static GetGraphicsDriverBase()

GraphicsDriverDirectFBBase
(abstract)

DirectFB

graphics driver

implementation

GraphicsDriver

X11

graphics driver

implementation

GraphicsDriver

A platform-specific

graphics driver

implementation

PlatformGraphicsDriver3

Adds and implements these

interfaces:

 GetRenderMutex()

 static GetGraphicsDriverBase()

34OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

• The color format of the plane, expressed as a ColorFormat enumeration value such as kARGB8888.

• A pointer to the StageWindow object calling CreatePlane(). The pointer to the StageWindow object is valid for

the life of the plane object. This pointer must not be NULL, except possibly during unit testing.

CreateOutputPlane() method

This method creates a plane to be used as an output plane. CreateOutputPlane() parameters include the following:

• A Rect object that defines the plane’s x and y coordinates and width and height. The x and y coordinates are the

upper left corner of the Rect object relative to the upper left corner of the output screen. The Rect class definition

is in include/ae/stagecraft/StagecraftTypes.h.

• A flag indicating whether to position the plane as directed by the Rect object parameter, or whether to use a default

position. When the flag indicates to use a default position, the CreateOutputPlane() method decides how to

position the plane. Your graphics driver module implementation determines the default position. For example, the

default position can be to center the plane, or to tile the plane.

• A pointer to a compatible plane. Use this pointer to provide access to an existing plane which the graphics driver

module can use to define characteristics of the new plane. For example, pass a pointer to the render plane. Then,

CreateOutputPlane() creates an optimal output plane for the blits from the render plane to the output plane. The

output plane gets the same characteristics, such as color format, as the render plane. The compatible color formats

results in faster blits.

Note: Currently, the render plane always uses color format ARGB8888. Therefore, creating the output plane from a

compatible plane is not necessary to create an output plane with the same color format.

• A pointer to the StageWindow object calling CreateOutputPlane(). The pointer to the StageWindow object is

valid for the life of the plane object. In a window-based graphical environment in which the output plane receives

user input events, use the StageWindow pointer to pass the events to the StageWindow object. This pointer must

not be NULL, except possibly during unit testing.

• The title of the window containing the output plane. Some platforms allow a window to have a title. In those cases,

use this parameter to pass the title to the output plane.

DestroyPlane() method

This method destroys a plane. The StageWindow instance calls DestroyPlane() when the host application is done

with the StageWindow instance. Also, the AIR runtime calls DestroyPlane() when it has finished with a temporary

offscreen bitmap plane. For example, consider a MovieClip is configured for bitmap caching. When ActionScript

destroys the MovieClip, the AIR runtime destroys the temporary offscreen bitmap plane it used for bitmap caching.

GetGraphicsMemoryInfo()

This method tracks graphics memory usage. This method returns these numbers:

• The total number of bytes of graphics memory on the device. Return zero if unknown.

• The total number of bytes of currently available graphics memory on the device. Return zero if unknown.

• The total number of bytes of graphics memory that the graphics driver is currently using.

35OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

GetIFontInterface() method

This method returns a pointer to an IFont interface object. If this method returns NULL, the AIR runtime uses AIR

runtime fonts whenever the AIR application specifies that a text field uses device fonts. For more information, see “The

device text renderer” on page 48.

GetIKeyboardUtils() method

This method returns a pointer to an IKeyboardUtils interface object. If this method returns NULL, the AIR runtime

assumes that:

• a physical keyboard is connected and active.

• the physical keyboard is an alphanumeric keyboard.

GetScreenDims() method

This method returns the dimensions of the device screen. The return value is a Dims object. The Dims class is defined

in include/ae/stagecraft/StagecraftTypes.h.

AIR for TV uses the return value to automatically scale down the render plane to fit into the output device. If your

platform does not use the automatic downscale feature, GetScreenDims() can return a Dims object in which both the

width and height have the value 0. Similarly, if your graphics library does not expose a device screen size value, return

Dims(0,0). For more information, see “Plane dimensions and scaling” on page 15.

The ResizeOutputPlane() method of your graphics driver also typically calls GetScreenSize(). If the requested

new size is bigger than the screen dimensions, ResizeOutputPlane() typically returns false to reject the resize

request.

ResizeOutputPlane()

This method resizes an output plane. For a typical call flow leading to this method, see “Window manipulation” on

page 9.

Two parameters of ResizeOutputPlane() are the following:

• A reference to a pointer to the OutputPlane object.

• The new dimensions of the output plane.

Your implementation can do either of the following:

• Resize the output plane using the existing OutputPlane object.

• Destroy the existing OutputPlane object and create a new one for the resized output plane.

If your implementation creates an OutputPlane object, use the other ResizeOutputPlane() parameters when calling

CreateOutputPlane(). For more information, see “CreateOutputPlane() method” on page 34. These parameters are

the following:

• A Rect object that defines the plane’s x and y coordinates and width and height.

• A pointer to a compatible plane to define characteristics of the new plane.

• A pointer to the StageWindow instance using the output plane.

• The title of the window containing the output plane. Some platforms allow a window to have a title. In those cases,

use this parameter to pass the title to the output plane.

36OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

If the resize operation fails, do one of the following, depending on your failure condition:

• Return NULL for the pointer to the OutputPlane object.

• Return the pointer that was passed as a parameter. Only return the original pointer if the output plane has the same

dimensions and contents as it did before the call to ResizeOutputPlane().

ResizePlane()

This method resizes a render plane. For a typical call flow leading to this method, see “Window manipulation” on

page 9.

The ResizePlane() parameters include the following:

• A reference to a pointer to the RenderPlane object.

• The new dimensions of the render plane.

• A pointer to the StageWindow instance using the render plane.

Your implementation can do either of the following:

• Resize the render plane using the existing RenderPlane object.

• Destroy the existing RenderPlane object and create a new one for the resized render plane.

If the resize operation fails, do one of the following, depending on your failure condition:

• Return NULL for the pointer to the RenderPlane object.

• Return the pointer that was passed as a parameter. Only return the original pointer if the render plane has the same

dimensions and contents as it did before the call to ResizePlane().

GraphicsDriverBase methods

GetGraphicsDriverBase()

This static method returns a pointer to the IGraphicsDriver singleton.

The IFont implementations for FreeType and DirectFB use this method instead of using

IAEKernel::AcquireModule("IGraphicsDriver"). These IFont implementations then use the pointer to call the

graphic driver’s GetRenderMutex()method.

IGraphicsDriver clients use GetGraphicsDriverBase() instead of

IAEKernel::AcquireModule("IGraphicsDriver") and ReleaseModule()only in the following situations:

• Repeatedly using AcquireModule() and ReleaseModule() leads to too much processing overhead.

• Calling AcquireModule() once and then holding a reference to it leads to never destroying the IGraphicsDriver

singleton. For example, consider the case where the FreeType IFont implementation uses

AcquireModule("IGraphicsDriver") in its constructor, and ReleaseModule() in its destructor. The

IGraphicsDriver singleton’s destructor deletes the IFont instance. But the IGraphicsDriver destructor is never

called because the IFont instance holds a reference to the IGraphicsDriver singleton.

GetRenderMutex()

This method provides a pointer to an IAEKernel::Mutex object. The GraphicsDriverBase instance creates the mutex

in its constructor.

37OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

The mutex is necessary because some device text renderers are not thread-safe. Therefore, the IFont implementations

for FreeType and for DirectFB use this mutex to protect the underlying device text renderer. See the following files:

• source/ae/ddk/graphicsdriver/host/IFontImplFreeType.cpp

• source/ae/ddk/graphicsdriver/directFB/IFontDirectFB.cpp

Sample implementation walkthrough

As an example, consider a graphics library called FakeGraphicsLib. This example shows how to implement

RenderPlane, OutputPlane, I2D, and IGraphicsDriver subclasses to use FakeGraphicsLib. The purpose of the example

is to show how to use your implementations of these subclasses to connect your graphics library to AIR for TV.

Fake graphics library class

The FakeGraphicsLib header file contains the following:

// FakeGraphicsLib.h
class FakeGraphicsLib {
public:

struct Dims { int width; int height; };
struct Rect { int x; int y; int width; int height; };

public:
static void Initialize();
static void Shutdown();
static char * AllocScreenBits(const Rect & rect);
static char * AllocBits(const Dims & dims);
static void FastBlit(char * pSourceBits, char pDestBits,

const Rect & sourceRect, const Rect & destRect);
static void FreeBits(char * pBits);
static bool Resize(char *pBits, int w, int h);
static bool MoveTo(char *pBits, int x, int y);
static bool SetAbove(char *pHigherPlaneBits, char *pLowerPlaneBits);
static bool SetBelow(char *pLowerPlaneBits, char *pHigherPlaneBits);
static bool SetTopMost(char *pBits);
static bool SetBottomMost(char *pBits);
static bool GetRect(char *pBits);
static bool SetVisible(char *pBits, bool bVisible);
static bool IsVisible(char *pBits);
static bool SetAlpha(char *pBits, int alpha);
static int MaxBytes();
static int AvailableBytes();

};

This graphics library provides the following:

• the Initialize() and Shutdown() methods to start and stop the graphics library.

• the AllocScreenBits() method to allocate an onscreen graphics buffer and return a pointer to the buffer.

• the AllocBits() method to allocate an offscreen graphics buffer and return a pointer to the buffer.

• the FreeBits() method to deallocate a graphics buffer.

• the FastBlit() method to provide the blit operations.

38OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

• The window manipulation methods Resize(), MoveTo(), SetAbove(), SetBelow(), SetTopMost(),

SetBottomMost(), SetVisible(), IsVisible(), and SetAlpha(). In this simple example, the

FakeGraphicsLibrary window manipulation methods correspond to the window manipulation methods in the

OutputPlane class. A real graphics library has its own set of methods for these tasks.

• the MaxBytes() and AvailableBytes() methods to information about graphics memory availability.

Sample IGraphicsDriver subclass declaration

Implement an IGraphicsDriver subclass to create plane objects that interface with the FakeGraphicsLib. The subclass

derives from the IGraphicsDriver class. Name the IGraphicsDriver subclass GraphicsDriverFakeGraphicsLib.

Define GraphicsDriverFakeGraphicsLib in a new .cpp file. Name the .cpp file GraphicsDriverFakeGraphicsLib.cpp.

Note: For simplification, this example puts the class definition in the .cpp file. You can put the class definition in a .h file.

Also, like the graphic drivers included with the source implementation, you can use an intermediary class. See “Providing

intermediary classes for public method accessibility” on page 45.

Begin the source file with the following:

// Include the interface for the Fake Graphics Library.
// Also include the interface for the I2D subclass,
// and the Graphics Driver module interface.
#include <fakegraphics/FakeGraphicsLib.h>
#include "I2DMem.h"
#include <ae/ddk/graphicsdriver/IGraphicsDriver.h>

// Use these namespaces for convenience.
using namespace ae::stagecraft;
using namespace ae::ddk::graphicsdriver;

Next, GraphicsDriverFakeGraphicsLib.cpp contains the class declaration for the GraphicsDriverFakeGraphicsLib

class. Because this subclass is concrete, it declares an implementation of each pure virtual function in the abstract

IGraphicsDriver class.

39OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

class GraphicsDriverFakeGraphicsLib : public IGraphicsDriver
{
public:

GraphicsDriverFakeGraphicsLib();
virtual ~GraphicsDriverFakeGraphicsLib();

public:

virtual RenderPlane * CreatePlane(const Dims & dims, ColorFormat colorFormat,
StageWindow * pStageWindow);

virtual OutputPlane * CreateOutputPlane(const Rect & rect, bool bDefaultPosition,
Plane * pCompatiblePlane, StageWindow * pStageWindow,
const char * pTitle);

virtual Dims GetScreenDims();
virtual void DestroyPlane(Plane * pPlane);
virtual bool ResizePlane(RenderPlane * & pPlanePointerToUpdate, const Dims & dims,

StageWindow * pStageWindow);
virtual bool ResizeOutputPlane(OutputPlane * & pPlanePointerToUpdate,

const Dims & dims, const Rect & rect,
Plane * pCompatiblePlane,
StageWindow * pStageWindow,
const char * pTitle);

virtual void GetGraphicsMemoryInfo(u64 & nGraphicsMemoryTotalToSet,
u64 & nGraphicsMemoryAvailableToSet);

virtual void GetIFontInterface() {return NULL;}
virtual void GetIKeyboardUtils() {return m_pIKbUtils};

private:
IKeyboardUtils * m_pIKbUtils;

};

Sample RenderPlane and OutputPlane subclass declarations

Implement a RenderPlane subclass and OutputPlane subclass which use FakeGraphicsLib. Name the subclasses

FakeGraphicsRenderPlane and FakeGraphicsOutputPlane. Add the code for the methods to

GraphicsDriverFakeGraphicsLib.cpp.

#define FAKEGRAPHICS_RENDERPLANE_CLASS_NAME "FakeGraphicsRenderPlane"
#define FAKEGRAPHICS_OUTPUTPLANE_CLASS_NAME "FakeGraphicsOutputPlane"

class FakeGraphicsRenderPlane : public RenderPlane
{
public:

FakeGraphicsRenderPlane()
{

m_pI2D = AE_NEW I2DMem(this);
m_pBits = NULL;

}

virtual ~FakeGraphicsRenderPlane()
{

AE_DELETE(m_pI2D);
if (m_pBits) FakeGraphicsLib::FreeBits((char *) m_pBits);

}

public:

virtual const char * GetClassName() const
{ return FAKEGRAPHICS_RENDERPLANE_CLASS_NAME; }

40OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

virtual Dims GetDims() const
{ return m_dims; }

virtual ColorFormat GetColorFormat() const
{ return m_colorFormat; }

virtual u32 GetRowBytes() const
{ return m_nRowBytes; }

virtual Color GetPixelAt(u32 x, u32 y) const
{ return Color(); }

virtual bool GetPalette(const Color * & pPaletteToSet, u32 & nNumEntriesToSet) const
{ return false; }

virtual bool SetPalette(Color * pPalette, u32 nNumEntries)
{ return false; }

virtual u8 * LockBits(bool readOnly)
{ return m_pBits; }

virtual const YUVInfo* LockPlanarYUVBits()
{ return NULL; }

virtual void UnlockBits()
{ }

virtual I2D * Get2DInterface()
{ return m_pI2D; }

virtual IGLES2 *GetIGLES2()
{return NULL; }

virtual void OnRectUpdated(const Rect & updateRect)
{ }

virtual bool Resize(const Dims& newDims)
{return FakeGraphicsLib::Resize(

(char*) m_pBits, newDims.w, newDims.h);}

public:

ColorFormat m_colorFormat;
u32 m_nRowBytes;
Dims m_dims;
u8 * m_pBits;
I2DMem * m_pI2D;

};

class FakeGraphicsOutputPlane : public OutputPlane
{
public:

FakeGraphicsOutputPlane()
{

m_pI2D = AE_NEW I2DMem(this);
m_pBits = NULL;

}

virtual ~FakeGraphicsOutputPlane()
{

AE_DELETE(m_pI2D);
if (m_pBits) FakeGraphicsLib::FreeBits((char *) m_pBits);

}

public:

virtual const char * GetClassName() const
{ return FAKEGRAPHICS_OUTPUTPLANE_CLASS_NAME; }

virtual Dims GetDims() const
{ return m_dims; }

41OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

virtual ColorFormat GetColorFormat() const
{ return m_colorFormat; }

virtual u32 GetRowBytes() const
{ return m_nRowBytes; }

virtual Color GetPixelAt(u32 x, u32 y) const
{ return Color(); }

virtual bool GetPalette(const Color * & pPaletteToSet, u32 & nNumEntriesToSet) const
{ return false; }

virtual bool SetPalette(Color * pPalette, u32 nNumEntries)
{ return false; }

virtual u8 * LockBits()
{ return m_pBits; }

virtual const YUVInfo* LockPlanarYUVBits()
{ return NULL; }

virtual void UnlockBits()
{ }

virtual I2D * Get2DInterface()
{ return m_pI2D; }

virtual IGLES2 * GetIGLES2()
{ return NULL; }

virtual void OnRectUpdated(const Rect & updateRect)
{ }

virtual bool Resize(const Dims& newDims)
{return FakeGraphicsLib::Resize((char *)m_pBits,

newDims.w, newDims.h);}
virtual bool MoveTo(const Point & pos)

{return FakeGraphicsLib::MoveTo((char *)m_pBits, pos.x, pos.y);}
virtual bool SetAlpha(u8 alpha)

{return FakeGraphicsLib::SetAlpha((char *)m_pBits, alpha);}
virtual bool SetAbove(OutputPlane * pPlane)

{
return (FakeGraphicsLib::SetAbove(

(char *) m_pBits,
(char *) ((FakeGraphicsOutputPlane*)pPlane)->m_pBits));

}
virtual bool SetBelow(OutputPlane * pPlane)

{
return (FakeGraphicsLib::SetBelow(

(char *) m_pBits,
(char *) ((FakeGraphicsOutputPlane*)pPlane)->m_pBits));

}
virtual bool SetVisible(bool bVisible)

42OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

{return FakeGraphicsLib::SetVisible((char *)m_pBits, bVisible);}
virtual bool IsVisible()

{return FakeGraphicsLib::IsVisible((char *)m_pBits);}
virtual Rect GetRect()

{return m_rect;}
virtual void Activate() {}
virtual void GetNativeWindow() {}
virtual void GetNativeDisplay() {}
virtual void GetNativePixmap() {}
virtual IEGL * GetIEGL()

{ return NULL; }

public:

ColorFormat m_colorFormat;
u32 m_nRowBytes;
Dims m_dims;
u8 * m_pBits;
I2DMem * m_pI2D;
Rect m_rect;

};

Note: These simple RenderPlane and OutputPlane subclasses use inline virtual function declarations only as a

convenience for this example. These declarations can cause compilers to generate extra code in some circumstances.

Although simple, these RenderPlane and OutputPlane subclasses illustrate these points:

• The GetClassName() method returns the name of the class defined at the top of the file.

• The GetPixelAt() method returns an empty Color object. AIR for TV uses this method only for its own unit

testing.

• The constructor creates a I2D subclass object. The Get2DInterface() method returns a pointer to the object. The

destructor destroys the object. The I2DMem class is provided with the source distribution. It provides a software

implementation of the Blit() and FillRect() methods. In an actual implementation, after initial testing, you

replace the I2DMem class with your own platform-specific I2D subclass. For more information, see “I2D class

details” on page 23.

• Memory allocation and deallocation use the AE_NEW() and AE_DELETE() macros. For details on these macros, see

“Common types and macros” on page 146.

• The window manipulation methods call the appropriate methods of FakeGraphicsLib.

Sample IGraphicsDriver subclass method definitions

Implement the methods of GraphicsDriverFakeGraphicsLib. Add the code for the methods to

GraphicsDriverFakeGraphicsLib.cpp.

43OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

GraphicsDriverFakeGraphicsLib::GraphicsDriverFakeGraphicsLib()
{

FakeGraphicsLib::Initialize();
m_pIKbUtils = IKeyboardUtilsImpl::CreateIKeyboardUtils();

}

GraphicsDriverFakeGraphicsLib::~GraphicsDriverFakeGraphicsLib()
{

FakeGraphicsLib::Shutdown();
AE_DELETE((IKeyboardUtilsImpl *)m_pIKbUtils);�

 m_pIKbUtils = NULL;
}

RenderPlane * GraphicsDriverFakeGraphicsLib::CreatePlane(const Dims & dims,

ColorFormat colorFormat,
 Stage Window * pStageWindow)

 {
if (colorFormat != kARGB8888) return NULL;
FakeGraphicsRenderPlane * pPlane = AE_NEW FakeGraphicsRenderPlane;
FakeGraphicsLib::Dims fakeDims = { dims.w, dims.h };
pPlane->m_pBits = (u8 *) FakeGraphicsLib::AllocBits(fakeDims);
return pPlane;

}

OutputPlane * GraphicsDriverFakeGraphicsLib::CreateOutputPlane(const Rect & rect,

bool bDefaultPosition,
Plane * pCompatiblePlane,
StageWindow * pStageWindow,
const char * pTitle)

{
FakeGraphicsOutputPlane * pPlane = AE_NEW FakeGraphicsOutputPlane;
FakeGraphicsLib::Rect fakeRect = { rect.x, rect.y, rect.w, rect.h };
pPlane->m_pBits = (u8 *) FakeGraphicsLib::AllocScreenBits(fakeRect);
// In this simple example, the bounding rectangle the FakeGraphicsLib provides
// is the same size as the plane dimensions. For example, the FakeGraphicsLib
// creates a window without borders or a title bar.
pPlane->m_rect = rect;
return pPlane;

}
bool GraphicsDriverFakeGraphicsLib::ResizePlane(RenderPlane * & pPlanePointerToUpdate,

const Dims & dims,
StageWindow * pStageWindow)

{
return (pPlanePointerToUpdate->Resize(dims));

}

bool GraphicsDriverFakeGraphicsLib::ResizeOutputPlane(

OutputPlane * & pPlanePointerToUpdate,
const Dims & dims,
const Rect & rect,
Plane * pCompatiblePlane,
StageWindow * pStageWindow,
const char * pTitle)

{
return (pPlanePointerToUpdate->Resize(dims));

}

44OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

Dims GraphicsDriverFakeGraphicsLib::GetScreenDims()
{

// Returns 0,0 dimensions in this simple example.
// For a real implementation, return the pixel dimensions of the device screen.
return Dims(0, 0);

}

void GraphicsDriverFakeGraphicsLib::DestroyPlane(Plane * pPlane)
{

if (pPlane && IAEKernel::GetKernel()->strcmp(pPlane->GetClassName(),
FAKEGRAPHICS_RENDERPLANE_CLASS_NAME) == 0)

 {
FakeGraphicsRenderPlane *pRenderPlane = (FakeGraphicsRenderPlane *) pPlane;
AE_DELETE(pRenderPlane);

}
else if (pPlane && IAEKernel::GetKernel()->strcmp(pPlane->GetClassName(),

FAKEGRAPHICS_OUTPUTPLANE_CLASS_NAME) == 0)
{

FakeGraphicsOutputPlane *pOutputPlane = (FakeGraphicsOutputPlane *) pPlane;
AE_DELETE(pOutputPlane);

}
}
void GraphicsDriverFakeGraphicsLib::GetGraphicsMemoryInfo(

u64 & nGraphicsMemoryTotalToSet,
u64 & nGraphicsMemoryAvailableToSet)

{
nGraphicsMemoryTotalToSet = FakeGraphicsLib::MaxBytes();
nGraphicsMemoryAvailableToSet = FakeGraphicsLib::AvailableBytes();

}

Although simple, the GraphicsDriverFakeGraphicsLib class illustrates these points:

• The constructor initializes the graphics library. The destructor shuts down the graphics library. For more

information about how and when to initialize your graphics library, see “Initializing the Graphics Driver module”

on page 45.

These methods also create and delete a IKeyboardUtils object. For a further example of an IKeyboardUtils object,

see the sample implementation in IKeyboardUtilsImpl.h and IKeyboardUtilsImpl.cpp in

source/ae/ddk/graphicsdriver.

• Both CreatePlane() and CreateOutputPlane() allocate a plane object. The methods then illustrate using the

graphics library to allocate the bitmap for the planes. In this case, the dimensions of the plane default to the

dimensions of the Stage of the AIR application. In an actual implementation, these methods sometimes further

initialize the planes. To facilitate further initializations, the RenderPlane and OutputPlane subclasses can provide

methods which CreatePlane() or CreateOutputPlane() call.

• Memory allocation and deallocation use the AE_NEW() and AE_DELETE() macros. For details on these macros, see

“Common types and macros” on page 146.

Implementation considerations

When you implement your platform-specific classes for the graphics driver module, consider the following guidelines.

45OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

Providing intermediary classes for public method accessibility

You derive your RenderPlane, OutputPlane, and IGraphicsDriver subclasses from abstract classes. Depending on your

platform needs, you sometimes want to expose other public interfaces besides the ones in the base abstract classes. To

do so, derive an intermediary abstract subclass from the RenderPlane, OutputPlane, or IGraphicsDriver class. The

abstract subclass declares other public interfaces you want to expose. Then, derive your implementation subclass from

the intermediary abstract subclass.

For example, the source distribution provides IGraphicsDriver, RenderPlane, and OutputPlane implementations for

platforms using DirectFB libraries. The intermediate class GraphicsDriverDirectFBBase derives from

IGraphicsDriver. It declares several additional public interfaces:

virtual bool StartDirectFB() = 0;
virtual bool SetDirectFB(AE_IDirectFB * pDirectFB) = 0;
virtual bool StartDirectFBUserInputDriver() = 0;
virtual AE_IDirectFB * GetDirectFB() = 0;
virtual AE_IDirectFBSurface * GetSurface(ae::stagecraft::Plane * pPlane) = 0;

These declarations are in include/ae/ddk/GraphicsDriverDirectFBBase.h. The methods are defined in

source/ae/ddk/GraphicsDriverDirectFB.cpp. A graphics driver module client, such as another module or a host

application, can include the header file, and call these methods. For example, a host application initializes the Direct

FB library, and uses SetDirectFB() to pass a pointer to the library interface to the graphics driver module.

Similarly, an intermediary subclass can allow information to pass from the graphics driver module to its client. Public

interfaces can allow the client to access structures and handles specific to the platform’s graphics library. For example,

consider a graphics library that supports a mechanism for decoding compressed image formats directly into a graphics

plane. Add a method to your IGraphicsDriver subclass to get the handle to the graphics plane. Then, a platform-

specific image decoder module can use the method to get the handle and access the graphics plane directly.

Starting with the I2D software implementation

The source distribution provides a software implementation of the I2D class. The subclass is named I2DMem. The .cpp

and .h files for I2DMem are in the directory source/ae/ddk/graphicsdriver.

Use I2DMem when you first set up your platform-specific RenderPlane and OutputPlane subclasses. Using I2DMem

allows you to test your Plane subclass interfaces without your hardware acceleration libraries. The I2DMem

implementation of the Blit() and FixedPointBlit() methods use the LockBits() methods of the source and

destination planes to get a pointer to the planes’ bitmap memory. Then the method manipulates the bitmaps directly.

Although good for initial testing, this implementation is not optimized for speed. After you verify your RenderPlane

subclass and OutputPlane subclass interfaces, substitute an I2D subclass for your platform’s hardware accelerators.

Initializing the Graphics Driver module

To run an AIR application, the stagecraft binary executable -- the host application -- creates the StageWindow

instance. The StageWindow instance loads the Graphics Driver module. When the Graphics Driver module loads, its

constructor executes.

In the FakeGraphicsLib example, the IGraphicsDriver subclass constructor initializes the FakeGraphicsLib object.

However, a platform sometimes needs to initialize the graphics driver library before creating the StageWindow

instance. Later, when AIR for TV creates a Plane object, the graphics driver module requires an interface pointer to

the graphics driver library to create the Plane object. To handle this case, add a public method to your IGraphicsDriver

subclass. The host application calls the method to set a pointer to the graphics driver library. Use the following

implementation steps for this scenario:

1 In your host application initialization code, acquire a pointer to the Graphics Driver module.

46OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

ae::ddk::graphicsdriver::IGraphicsDriver * pGraphicsDriver;
pGraphicsDriver = (ae::ddk::graphicsdriver::IGraphicsDriver *)

IAEKernel::GetKernel()->AcquireModule("IGraphicsDriver");

2 Cast the pointer to a pointer to your IGraphicsDriver subclass.

MyGraphicsDriver *pMyGraphicsDriver = (MyGraphicsDriver *) pGraphicsDriver;

3 Use the pointer to your IGraphicsDriver subclass object to access a public method you defined for passing a

graphics library interface pointer to your graphics driver module.

pMyGraphicsDriver->SetGraphicsLibraryInterfacePointer(pMyGraphicsLibraryInterface);

Your IGraphicsDriver subclass can also provide other public methods for accessing methods or data from the graphics

library.

The DirectFB graphics driver module in the source distribution contains a detailed example of a IGraphicsDriver

subclass that provides public methods for initializing a graphics library.

Creating files for your platform-specific graphics driver

Put the header and source files for your platform-specific graphics driver in a subdirectory of the thirdparty-

private/stagecraft-platforms directory. For information, see “Placing code in the directory structure” on page 151.

You can use the implementations provided by the source distribution without modification if they meet your needs.

Otherwise, copy them to use as a starting point for your own implementation. For more information on the source

distribution implementations, see “Implementations included with source distribution” on page 11.

Building your platform-specific graphics driver

For information about building your graphics driver, see “Building platform-specific drivers” on page 152.

Detailed tasks checklist

This checklist summarizes the steps for implementing a platform-specific graphics driver module.

1 Determine if you can use a graphics driver implementation provided in the source distribution. If you can, go to

step 11.

2 Implement classes you derive from RenderPlane and OutputPlane. Consider sharing code that interfaces to your

graphics library. For initial testing, use the I2DMem subclass included with the source distribution for the I2D

interface of the planes. Determine if you need a separate .h file for your Plane subclasses, or even an abstract Plane

subclass from which you derive your implementation.

3 Provide public methods in your RenderPlane and OutputPlane subclasses to do initializations beyond the

initializations in the constructor, if necessary. For example, see “Providing intermediary classes for public method

accessibility” on page 45.

4 Implement a class that derives from the IGraphicsDriver class. Determine if you need a separate .h for your

subclass, or even an abstract subclass from which you derive your implementation.

47OPTIMIZING AND INTEGRATING AIR FOR TV

The graphics driver

Last updated 9/29/2011

5 If yours is a window-based platform, add user input handling to your output plane subclass. For non-windowing

platforms, add user input handling to your IGraphicsDriver subclass.

6 Build your platform-specific graphics driver module. Follow the instructions in “Building platform-specific

drivers” on page 152.

7 Test your Plane and IGraphicsDriver subclasses using the I2DMem implementation.

8 Implement a class that derives from the I2D class. This I2D subclass interfaces with your hardware acceleration

APIs and hardware.

9 Implement a class that derives from the IEGL class if your platform supports 3D graphics with hardware.

10 Update the IGraphicsDriver.mk file to account for the new I2D and IEGL subclass files you created. See “Building

platform-specific drivers” on page 152.

11 Test using your platform-specific I2D and IEGL subclasses.

48

Last updated 9/29/2011

Chapter 3: The device text renderer

Adobe® AIR® for TV can render text fields using font outlines from three sources: embedded fonts, device fonts, and

AIR runtime fonts.

Font sources

Embedded fonts Embedded fonts are font outlines that AIR application developers embed in a SWF file. Embedding

font outlines in a SWF file ensures that the text field’s font appears the same on all target platforms. However, using

embedded fonts results in a larger file size.

Device fonts Device fonts are font outlines that are available on the device. AIR application developers specify in a

SWF file which text fields use device fonts. Using device fonts means a text field’s font can look different on different

devices. However, different SWF files running on the same device have the same appearance. Because font outlines are

not embedded, a SWF file size is smaller than when using embedded font outlines.

However, text fields that use device fonts have limitations. Specifically, the SWF content cannot do the following:

• Rotate the text field.

• Blend the text field with its background using the alpha property.

• Render the font using a non-integral point size.

AIR runtime fonts AIR runtime fonts are font outlines that are part of the AIR runtime.

Device fonts that are distributed with AIR for TV

The AIR for TV distribution includes a set of device fonts. These fonts are located in the directory:

/opt/adobe/stagecraft/fonts

When you extract your AIR for TV distribution from its tar file, this directory is automatically populated with the

distributed fonts.

The device fonts in this directory are:

Filename Typeface

Category

CourierStd.otf typewriter

CourierStd-Bold.otf typewriter

CourierStd-

BoldOblique.otf

typewriter

CourierStd-Oblique.otf typewriter

MinionPro-BoldCapt.otf serif

MinionPro-BoldItCapt.otf serif

MinionPro-Capt.otf serif

49OPTIMIZING AND INTEGRATING AIR FOR TV

The device text renderer

Last updated 9/29/2011

The directory also includes these Asian fonts:

Always include this directory in your implementation of IFont methods that search for fonts.

Note: If you do not implement an IFont interface, the AIR for TV uses the MyriadPro fonts in this directory for TLF fields

that use device fonts.

More Help topics

“Searching for font files” on page 52

“Checking for the IFont interface” on page 51

“Font files” on page 139

Classic text versus the Text Layout Framework text

AIR application developers specify in the SWF content whether each text field uses device fonts. They also specify

whether a text field uses the runtime’s classic text engine or the Text Layout Framework. The Text Layout Framework

(TLF) is a feature of AIR that provides advanced typographic and text layout features.

Both classic text and TLF text can use either embedded fonts or device fonts.

For more information, see Text in Using Flash Professional CS5.

MinionPro-ItCapt.otf serif

MyriadPro-Bold.otf sans

MyriadPro-BoldIt.otf sans

MyriadPro-It.otf sans

MyriadPro-Regular..otf sans

Filename Language Typeface

category

locale code

RyoGothicPlusN-Regular.otf Japanese sans ja

RyoTextPlusN-Regular.otf Japanese serif ja

AdobeGothicStd-Light.otf Korean sans ko

AdobeHeitiStd-Regular.otf Simplified Chinese sans zh_CN

AdobeSongStd-Light.otf Simplified Chinese serif zh_CN

AdobeMingStd-Light.otf Traditional Chinese serif zh_TW and

zh_HK

Filename Typeface

Category

http://www.adobe.com/go/learn_flash_text_en
http://help.adobe.com/en_US/flash/cs/using/index.html

50OPTIMIZING AND INTEGRATING AIR FOR TV

The device text renderer

Last updated 9/29/2011

Device text renderer role

To direct AIR for TV to process device fonts, you implement a device text renderer in your graphics driver module.

AIR for TV uses your device text renderer two ways:

• It requests your device text renderer to draw the text fields that use device fonts and use the runtime’s classic text.

Your device text renderer renders the text on a Plane object. AIR for TV provides the Plane object. Your device text

renderer allows you to take advantage of text drawing capabilities available on your device’s platform.

If you do not provide a device text renderer, AIR for TV uses AIR runtime fonts for classic text fields that use device

fonts.

• It requests your device text renderer to provide the path of the file for a particular font. It makes this request when

SWF content uses text fields that use device fonts and use TLF text. Then AIR for TV uses the font information in

the file to render the text. In this case, AIR for TV, not your device text renderer, renders the text.

If you do not provide a device text renderer, AIR for TV chooses one of the fonts in

/opt/adobe/stagecraft/fonts for TLF text fields that use device fonts.

To implement a device text renderer, use the IFont interface.

More Help topics

“Checking for the IFont interface” on page 51

Class overview

The device text renderer involves these classes:

IFont interaction with the AIR runtime

The host application is defined in “Running AIR for TV” on page 2. The host application interacts with AIR for TV to

run AIR applications. Specifically, the host application interacts with the IStagecraft module. Using this interface, the

host application creates the StageWindow instance. The StageWindow instance contains an instance of the Adobe®

AIR® runtime. The runtime loads the AIR application specified by the host application.

Class Description Header File

IFont Abstract class that defines the interfaces that AIR for TV calls to

draw device text. You provide an implementation of this

interface.

include/ae/stagecraft/StagecraftTypes.h

IFontImpl An abstract class, derived from IFont. IFont implementations

included with the source distribution implement IFontImpl.

The IFontImpl subclass declares a few more methods and data

members. You can implement the IFontImpl interface for your

IFont implementation if it meets your needs.

source/ae/ddk/graphicsdriver/IFontImpl.h

IGraphicsDriver Abstract class you implement to provide a platform-specific

graphics driver module. The GetIFontInterface()
method of your graphics driver returns a pointer to the IFont

interface.

include/ae/ddk/graphicsdriver/IGraphicsDriver.h

51OPTIMIZING AND INTEGRATING AIR FOR TV

The device text renderer

Last updated 9/29/2011

Checking for the IFont interface

When the AIR runtime loads the SWF file, it checks to see if an IFont interface implementation exists. To make this

check, the runtime calls your platform-specific IGraphicsDriver implementation’s GetIFontInterface()method. If

GetIFontInterface() returns NULL, the runtime does the following:

• For classic text that uses a device font, the runtime uses an AIR runtime font.

• For TLF text that uses a device font, the runtime uses one of these device fonts in the directory

/opt/adobe/stagecraft/fonts: MyriadPro.otf, MyriadPro-BoldIt.otf, MyriadPro-Bold.otf, or MyriadPro-

It.otf.

However, if your platform has a device text renderer, GetIFontInterface() returns a pointer to an IFont object.

Note: To give application developers control over font selection, especially in locales besides English, implement the IFont

interface. Otherwise, text fields sometimes will not render accurately if the font that the runtime chooses does not support

all the characters in the text field.

Preparing to draw device classic text

 To prepare to render device classic text when executing a SWF file, the AIR runtime does the following:

1 Calls your IFont method CreateFont(). The runtime passes CreateFont() information about the device font

that the SWF content is requesting. This information includes, for example, the name of the font and its point size.

CreateFont() returns a font handle to the runtime.

2 Uses the font handle returned from CreateFont() to get device-specific information about the font. The runtime

calls your IFont methods GetFontMetrics() and GetTextExtents() to get information. This information

includes, for example, the character ascent and descent, and the dimensions that a specific text string will use when

drawn. The runtime uses this information in its internal processing.

3 Calls your IFont interface method GetDrawMode() to determine whether your device text renderer supports

grayscale only. If so, the runtime prepares to blend in the text color after your device text renderer draws the text

in grayscale.

Drawing classic text

When the AIR runtime is ready to render classic text, it calls the IFont method DrawText(). The runtime passes

DrawText() the information necessary to render the text. This information includes, for example, the text, the text

color, and the rectangle within the Plane object into which to draw the text. DrawText() uses the information to

render the text onto the provided Plane object’s bitmap.

The IFont methods DrawText() and GetTextExtents() receive the text as an AEString object. The AEString class is

defined in include/ae/AETemplates.h. It supports the Unicode formats UTF-8 and UTF-16.

When DrawText() returns the bitmap, the AIR runtime does color blending if the device text renderer supports only

grayscale. The runtime also does any blending with other objects on the Stage.

Handling TLF text that uses device fonts

When the SWF file specifies a TLF text field that uses a device font, the AIR runtime performs the text rendering.

SWF application developers can associate the following with a TLF text field:

• a list of fonts

• a locale (for example, en_US for English or zh_CN for Simplified Chinese)

52OPTIMIZING AND INTEGRATING AIR FOR TV

The device text renderer

Last updated 9/29/2011

To get the font information for the TLF text field, the runtime does the following:

1 Calls your IFont method FindFontFile(), passing as a parameter a string naming the first font associated with the

TLF text field.

Note: If the application developer specifies a font other than _sans, _serif, or _typewriter, then the runtime

ignores the associated locale, and calls FindFontFile() with the specified font. If the developer does specify _sans,

_serif, or _typewriter, then the runtime uses the locale to select one of the fonts distributed with AIR for TV. The

runtime calls FindFontFile() with that font.

2 If FindFontFile() returns true, the runtime renders the text using the font file that FindFontFile() returns in

a parameter. The parameter specifies a string that is the path to the font file.

3 If FindFontFile() returns false, the runtime calls FindFontFile()with the next font associated with the TLF

text field. Processing returns to step 2.

If FindFontFile() returns false for each font that the application associated with the TLF text field, the runtime

does the following.

1 Calls your IFont method FindFontFile(), passing as a parameter a string naming the first font on the runtime’s

built-in list of fallback fonts.

This list of fallback fonts contains fonts that are often installed on AIR for TV devices. The list also contains the

fonts installed in the /opt/adobe/stagecraft/fonts directory.

2 If FindFontFile() returns true, the runtime renders the text using the font file that FindFontFile() returns in

a parameter. The parameter specifies a string that is the path to the font file.

3 If FindFontFile() returns false, the runtime calls FindFontFile()with the next fallback font. Processing

returns to step 2.

Note: If FindFontFile() returns false on each fallback font, the text does not render. However, this case cannot

occur if you include the /opt/adobe/stagecraft/fonts directory in the search you implement in

FindFontFile().

For more information, see “FindFontFile() method” on page 56.

Searching for font files

Your IFont implementation searches for font files in these methods:

• CreateFont() when handling classic device text.

• FindFontFile() when handling TLF device text.

• EnumerateDeviceFonts().

When you search for font files, you can:

• Use a font library such as FontConfig that searches for the font files. Always include the

/opt/adobe/stagecraft/fonts directory in the search.

• Search for the font files using code in your IFont implementation.

53OPTIMIZING AND INTEGRATING AIR FOR TV

The device text renderer

Last updated 9/29/2011

If you are using code in your IFont implementation for searching for the font files, search directories in the following

order:

1 Font directories you specify in the command-line option --fontdirs. When you use this command-line option,

AIR for TV calls your IFont implementation of SetFontSearchDirs(). In this method, save the directories passed

in as arguments.

Note: If the graphics driver’s GetIFontInterface() returns NULL, AIR for TV ignores the --fontdirs option.

2 /opt/adobe/stagecraft/fonts directory. This directory contains the fonts provided with AIR for TV. Use the

IStagecraft interface method GetStagecraftFontDirectory()to get the directory path.

3 /usr/local/share/fonts directory. This directory contains fonts that your platform provides.

More Help topics

“Device fonts that are distributed with AIR for TV” on page 48

“CreateFont() method” on page 55

“FindFontFile() method” on page 56

“EnumerateDeviceFonts() method” on page 56

Implementations included with source distribution

The source distribution for AIR for TV includes these IFont implementations.

These IFont implementations are suitable for a production environment. Use the appropriate implementation for your

platform. You can also modify these implementations to suit your platform’s needs. If you write your own IFont

implementation, you can use one of the provided implementations as a starting point. For information about where

to locate your implementation files, see “Placing code in the directory structure” on page 151.

IFont implementation File location and description

FreeType This IFont implementation is in source/ae/ddk/graphicsdriver/host/IFontImplFreeType.cpp.

Use the FreeType IFont implementation if your platform uses the FreeType font rendering

engine (www.freetype.org). This IFont implementation uses the open source library FontConfig

(www.fontconfig.org) to search for the fonts. For information about building these libraries with

AIR for TV, see “Building your platform-specific device text renderer” on page 57.

DirectFB This IFont implementation is in source/ae/ddk/graphicsdriver/directfb/IFontDirectFB.cpp.

Use the DirectFB IFont implementation if your platform uses the DirectFB (Direct Frame Buffer)

library. This IFont implementation searches for the fonts in this order in the following directories:

1 /opt/adobe/stagecraft/fonts/

2 /usr/local/share/fonts

If the font is not found in any of these paths, the DirectFB IFont implementation searches the

same paths for a default font. The default font is decker.ttf.

Null implementation This IFont implementation is in source/ae/ddk/graphicsdriver/host/IFontImplNULL.cpp. If your

device does not have a device text renderer, use this IFont implementation. The

IFontImpl::CreateIFont() method returns NULL. The NULL return causes the AIR runtime to use

AIR runtime fonts when the SWF content requests device fonts.

54OPTIMIZING AND INTEGRATING AIR FOR TV

The device text renderer

Last updated 9/29/2011

IFont and IFontImpl classes details

IFont and IFontImpl classes definitions

The abstract IFont class is the interface for the device text renderer. The IFontImpl class derives from the IFont class,

and declares a few more methods and data members. IFont implementations included with the source distribution

implement the IFontImpl interface. You can implement the IFontImpl interface for your IFont implementation if it

meets your needs. Otherwise, implement the IFont interface.

Drawing modes

Some device text renderers can draw only grayscale. Other device text renderers can draw color using a bitmap pixel

format such as ARGB8888. If your device text renderer can draw only grayscale, AIR for TV blends the text color with

the grayscale bitmap that your device text renderer draws. AIR for TV determines your device text renderer’s color

drawing mode by calling the IFont interface GetDrawMode().

If your device text renderer can draw color, implement GetDrawMode() to return kDrawModeDirect. Otherwise,

implement GetDrawMode() to return kDrawModeGrayScale. When AIR for TV calls the IFont interface DrawText(),

it passes the text color. However, if the mode is kDrawModeGrayScale, your DrawText() implementation ignores the

text color.

IFontImpl additions

The IFontImpl class, which derives from the abstract class IFont, adds these class members and methods:

• The static method CreateIFont(). Your platform-specific Plane subclass calls CreateIFont(). CreateIFont()

allocates an IFontImpl object, returning a pointer to the new object. The Plane subclass stores the pointer as a

private data member. The Plane subclass returns this pointer when AIR for TV calls GetIFontInterface().

• A pointer to the graphics driver module. Some device text renderer implementations, such as the one for DirectFB,

require access to the platform-specific graphics driver module.

• A constructor. Include platform-specific initialization in the constructor.

CreateFont()

DestroyFont()

GetFontMetrics()

GetTextExtents()

GetDrawMode()

DrawText()

FindFontFile()

SetFontSearchDirs()

EnumerateDeviceFonts()

static CreateIFont()

IFont
(abstract)

IFontImpl

55OPTIMIZING AND INTEGRATING AIR FOR TV

The device text renderer

Last updated 9/29/2011

IFont methods

For detailed definitions of return values and parameters of the IFont class methods, see

include/ae/stagecraft/StagecraftTypes.h.

CreateFont() method

AIR for TV calls this method when preparing to draw device text. It passes the following information to

CreateFont():

• The name of the device font that the SWF content has specified.

• The point size of the device font.

• Whether the device font is to be drawn in bold.

• Whether the device font is to be drawn in italics.

CreateFont() does the following:

1 Searches for the font on the device. See “Searching for font files” on page 52.

2 Creates an object representing the found font.

3 Returns a pointer to the font object.

The pointer that CreateFont() returns is a pointer to the following type:

typedef void Font;

This typedef is in the IFont class. Whenever AIR for TV calls another method of IFont, it passes this pointer.

If CreateFont() returns NULL, the SWF content does not display the device text. Therefore, implement

CreateFont() as follows:

1 If the requested font is available, return a Font pointer to it.

2 If the requested font is not available, return a Font pointer to a related font that is available. For example, return a

pointer to a font that belongs to the same font family, such as the sans serif font family. Be consistent in choosing

a related font each time a requested font is not available.

DestroyFont() method

AIR for TV calls this method when it no longer needs a device font. It passes a pointer to the Font object that was

returned with CreateFont(). Implement DestroyFont() to release all resources associated with the font.

DrawText() method

AIR for TV calls this method to draw device text. It passes the following information to DrawText():

• The pointer to the Font object.

• A pointer to a Plane object that is a render plane. Implement DrawText() to render the bitmap for the device text

onto this Plane object. If the device text renderer’s drawing mode is grayscale, then this plane uses the kCLUT8 color

format. Otherwise, the plane uses ARGB8888 color format.

• The text string to render. The text is passed as an AEString object. Therefore, the text can be in either UTF-8 or

UTF-16 format.

56OPTIMIZING AND INTEGRATING AIR FOR TV

The device text renderer

Last updated 9/29/2011

• A rectangle within the Plane object. Draw the text into this rectangle. The x and y coordinates of the rectangle are

relative to the upper left corner of the plane.

• The lower-left position of the text within the rectangle. The x and y coordinates of this position are relative to the

upper left corner of the rectangle. By positioning the text within the rectangle, AIR for TV allows some space

between the text and the periphery of the rectangle.

• The text color. Ignore this field if your device text renderer renders only in grayscale. (The value is black, however).

Note: If the font to draw is an Asian font, the font file sometimes does not contain all the glyphs that are necessary to

render the text string. Provide back-up rendering to handle these cases. Some font rendering libraries provide support for

these cases. For example, you can configure the FreeType and FontConfig libraries to handle this back-up rendering.

EnumerateDeviceFonts() method

AIR for TV calls this method to get the list of available device fonts. The device fonts can be located in any of the

directories your IFont implementation uses. These directories include the directories listed in “Searching for font files”

on page 52.

Return an array of filenames. Do not include the filename extension in the filename.

FindFontFile() method

AIR for TV calls this method when a TLF text field uses a device font. This method returns a string parameter

containing the full path of the requested font file.

The input parameters to FindFontFile() include:

• The name of the font family.

• Whether the font is in bold.

• Whether the font is in italics.

In an output parameter, return a string that specifies the path to a font file.

If the string output parameter is not NULL, set the method’s return value to true. Otherwise, set the return value to

false.

Note: TLF text currently supports only OpenType and TrueType fonts.

More Help topics

“Searching for font files” on page 52

“Handling TLF text that uses device fonts” on page 51

GetDrawMode() method

AIR for TV calls this method to determine whether your device text renderer can draw color. If it can, implement

GetDrawMode() to return kDrawModeDirect. Otherwise, implement GetDrawMode() to return

kDrawModeGrayScale. For more information, see “Drawing modes” on page 54.

57OPTIMIZING AND INTEGRATING AIR FOR TV

The device text renderer

Last updated 9/29/2011

GetFontMetrics() method

AIR for TV calls this method to get information about a font. AIR for TV passes the Font object pointer it had retrieved

by calling CreateFont(). It also passes the point size of the font. Based on this input, implement GetFontMetrics()

to return the following font information:

• The font’s ascent. This value is non-negative.

• The font’s descent. This value is non-negative.

• The font’s average character width.

Return these values in terms of point size.

GetTextExtents() method

AIR for TV calls this method to get the dimensions the device text renderer will use to draw the text. AIR for TV passes

the following information to GetTextExtents():

• The Font object pointer it had retrieved by calling CreateFont().

• The text string, passed as an AEString object. Therefore, the text can be in either UTF-8 or UTF-16 format.

• A reference to a U32 integer that GetTextExtents() sets with the width of the text that the device text renderer

will draw when DrawText() is called. Set the value in pixels.

• A reference to a U32 integer that GetTextExtents() sets with the ascender height in pixels.

• A reference to a U32 integer that GetTextExtents() sets with the descender height in pixels.

SetFontSearchDirs() method

AIR for TV calls this method when you run the stagecraft binary executable with the command-line option --

fontdirs. Save the directories that are arguments to this method. When your IFont implementation searches for

fonts, search these directories first. For more information, see “Searching for font files” on page 52.

Creating files for your platform-specific device text
renderer

Put the header and source files for your platform-specific device text renderer in a subdirectory of the thirdparty-

private/stagecraft-platforms directory. For information, see “Placing code in the directory structure” on page 151.

You can use the implementations provided by the source distribution without modification if they meet your needs.

Otherwise, copy them to use as a starting point for your own implementation. For more information, see

“Implementations included with source distribution” on page 53.

Building your platform-specific device text renderer

You build your device text renderer as part of your graphics driver module. For information about building your

graphics driver, see “Building platform-specific drivers” on page 152.

58OPTIMIZING AND INTEGRATING AIR FOR TV

The device text renderer

Last updated 9/29/2011

If your device text renderer uses the FreeType and FontConfig libraries, install the tar files for these libraries in the

directory thirdparty-private/fontengine. You can get these tar files from www.freetype.org and www.fontconfig.org. If

you are using FontConfig, also install the XML2 library tar file. When you run the make utility, it automatically untars

and builds the libfreetype.so, libfontconfig.so, and libxml2.so libraries.

Use the following libraries:

• FreeType library libfreetype.so.6.3.10 or any later stable release.

• FontConfig library libfontconfig.so.1.1.0 or any later stable release.

• XML2 library libxml2-2.7.3 or any later stable release.

59

Last updated 9/29/2011

Chapter 4: The audio and video driver

Adobe® AIR® for TV plays AIR applications. This content sometimes includes video.

The video can be embedded in a SWF file of the AIR application, or can be progressively downloaded from the local

filesystem, http:// URLs, or https:// URLs. Alternatively, the video can be streamed from an Adobe® Flash® Media

Server.

When discussing video, video refers to both the audio data and the video data. The elementary video stream, or just

video stream refers to just the video data of a video.

As a platform developer, you can provide video drivers to decode and present, the video and audio data of videos. For

some audio codecs, the driver you provide does not decode and present the audio stream. Instead, it passes the audio

stream through to an external audio/video receiver.

Audio and video driver overview

AIR for TV provides C++ interfaces to create an audio and video driver to:

• Decode and present overlay video.

• Pass compressed audio streams to an external audio/video receiver

AIR for TV requires that you implement these C++ interfaces to handle videos that use the H.264 video codec. The

video’s audio codec can be one of the following:

• AAC

• AC-3, also known as Dolby Digital

• E-AC-3, also known as Enhanced Dolby Digital or Dolby Digital plus

• DTS Digital Surround, also known as DTS Coherent Acoustics or DTS core

• DTS Express, also known as DTS LBR

• DTS-HD High Resolution Audio, also known as DTS-HD HR

• DTS-HD Master Audio, also known as DTS++ or DTS-HD MA

You cannot use the C++ interfaces to decode or present any other codecs.

Overlay video

AIR for TV supports overlay video. Overlay video means that dedicated hardware is responsible for the decoding and

presentation of an audio/video stream. Hardware planes, sometimes called overlays, perform the output composition

into a rectangular region specified by AIR for TV. AIR for TV provides C++ interfaces to direct the hardware to decode

and present videos.

Multichannel Audio

AIR for TV also supports the following multichannel (greater than two channels) audio streams included with video

content:

• AC-3, also known as Dolby Digital

60OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

• E-AC-3, also known as Enhanced Dolby Digital or Dolby Digital plus

• DTS Digital Surround, also known as DTS Coherent Acoustics or DTS core

• DTS Express, also known as DTS LBR

• DTS-HD High Resolution Audio, also known as DTS-HD HR

• DTS-HD Master Audio, also known as DTS++ or DTS-HD MA

AIR for TV provides C++ interfaces that allow you to receive a compressed multichannel audio stream and pass it

through to an external audio/video receiver. In this typical case, the audio/video receiver decodes and ouputs the

stream. However, depending on your platform and requirements, you can use these C++ interfaces to receive the

compressed audio stream and manipulate it in your own platform.

Software decoded audio and video

You cannot use the C++ interfaces to decode or present any other codecs, such as On2 VP6, Sorenson H.263, or mp3.

The AIR runtime decodes and presents all other codecs in software.

Software decoded video codecs

Specifically, the AIR runtime decodes and renders the video streams of embedded On2 VP6 and Sorenson H.263

videos using software decoders. These software decoders can also decode and render video streams from videos that

are not embedded. However, typically, using the software decoders for non-embedded videos is too slow to be

acceptable in platforms using AIR for TV. The performance is impacted because, unlike overlay video, the software

decoder passes each decoded video frame back to the AIR runtime. The runtime then composites the frame with other

layers on the Stage.

Note: The AIR runtime has no software decoder for H.264 video. Implement the C++ interfaces for the audio and video

driver to support these codecs.

Software decoded audio codecs

The AIR runtime internally provides audio software decoders that decompress the compressed audio data from the

SWF content of an AIR application into PCM (pulse code modulation) samples. These software decoders decompress

mp3, PCM, ADPCM, Nellymoser, and Speex codecs.

The internal audio decoders pass the decoded PCM samples to a software mixer in the AIR runtime. The software

mixer inside the runtime mixes multiple audio decoder outputs and sends them to the output mixer as one output.

(Overlay video sends another audio output to the hardware mixer.) You must implement this audio mixer to play the

audio output. See “The audio mixer” on page 82.

Note: The AIR runtime has no software decoder AAC or any of the multichannel audio codecs. Implement the C++

interfaces for the audio and video driver to support these codecs.

The StreamPlayer

A StreamPlayer in AIR for TV decodes and presents elementary audio or video streams. It does not return the decoded

data to the AIR runtime to composite with the rest of the application’s content. Because it presents the decoded video

stream itself, a StreamPlayer provides overlay video. The overlay video appears underneath other content from the

application.

61OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

An overlay video StreamPlayer typically handles both the audio and video streams, but if the video has no sound, then

it handles only the video stream. Similarly, if the video has no elementary video stream, then the StreamPlayer handles

only the audio stream.

A StreamPlayer provides the interfaces between AIR for TV and your platform hardware. AIR for TV provides abstract

C++ classes that define the StreamPlayer interfaces.

When you implement these interfaces for an overlay video StreamPlayer, AIR for TV does the following:

• Acquires the video. The video can also be progressively downloaded from the local filesystem or http:// URLs.

Alternatively, the video can be streamed from an Adobe® Flash® Media Server. The video can also be embedded in

the SWF content.

• Demultiplexes the audio/video stream into separate time-stamped audio and video elementary streams.

• Sets the size and position of the rectangular region for the video on the display device for the overlay video

StreamPlayer.

• Passes the elementary video and audio streams to a platform-specific video StreamPlayer, which interacts with the

platform hardware.

• Passes control sequences to the video StreamPlayer. Control sequences include play, pause, and stop.

Overlay video characteristics

In overlay video, a StreamPlayer performs both video decoding and presentation. Because the StreamPlayer does not

pass the decoded video frames back to the AIR runtime, the runtime handles overlay video as follows:

• The AIR runtime performs no rendering operations on the decoded pixels.

• Because the AIR runtime performs no rendering operations on overlay video, overlay video is displayed in a

rectangular region only. Furthermore, flipping, skewing, rotation, and other transformation operations are not

possible. Masking support for overlay video is limited to a single rectangular mask.

• Similarly, the AIR runtime does not receive the decoded audio stream. Therefore, the runtime does not mix the

decoded audio stream with other sounds that the runtime generates.

• Overlay video is always presented underneath the AIR runtime frame buffer. Therefore, blending overlay video

with graphics objects underneath the overlay video is not possible. However, the AIR runtime can blend graphics

objects on top of the overlay video rectangular region. These objects include text, bitmaps, and vector graphics. The

runtime uses the alpha (transparency) value for the objects to appropriately blend the objects on top of the overlay

video.

Class overview

The audio and video driver includes these classes:

62OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

File locations

StreamPlayer and StreamPlayerBase classes

The StreamPlayerBase abstract class derives from the StreamPlayer abstract class. StreamPlayerBase provides your

StreamPlayer implementation some capabilities common to all implementations. For example:

• A mechanism for sending events to AIR for TV.

• A mechanism for tracking buffer levels.

Your implementation of the StreamPlayer class (or StreamPlayerBase class if you choose) has these primary

responsibilities:

• Provide the memory to which AIR for TV copies the elementary audio and video stream data.

• Receive the elementary audio and video streams from AIR for TV.

• Decode and present the decoded audio and video streams to the user, using the platform hardware to do so. For

multichannel audio streams, the StreamPlayer implementation typically passes through the compressed audio

stream to an audio/video receiver.

• Send AIR for TV events that provide decoding status, such as buffer level status.

• Interact with the platform hardware to execute control sequences received from AIR for TV.

IStreamPlayer and IStreamPlayerBase classes

The IStreamPlayer abstract class provides the interfaces for implementing the factory for creating and destroying

instances of your StreamPlayerBase subclass.

Class Description

StreamPlayer Abstract class that defines the interfaces AIR for TV uses to interact with hardware that decodes

and presents audio/video streams.

StreamPlayerBase Abstract helper class derived from StreamPlayer. The StreamPlayerBase class provides

implementations of some of the pure virtual methods defined in StreamPlayer.

You can derive a platform-specific StreamPlayer from StreamPlayerBase, and implement the

remaining StreamPlayer pure virtual methods.

IStreamPlayer Abstract class which defines the interfaces for a StreamPlayer factory for creating and destroying

StreamPlayer objects.

IStreamPlayerBase Abstract helper class derived from IStreamPlayer. The IStreamPlayerBase class provides the

implementations of some of the pure virtual methods defined in IStreamPlayer.

You can derive a platform-specific IStreamPlayer from IStreamPlayerBase, and implement the

remaining IStreamPlayer pure virtual methods.

Class Header file Implementation file

IStreamPlayer include/ae/ddk/streamplayer/IStreamPlayer.h Not applicable

IStreamPlayerBase source/ae/ddk/streamplayer/IStreamPlayerBase.h source/ae/ddk/streamplayer/IStreamPlayerBase.cpp

StreamPlayer include/ae/ddk/streamplayer/StreamPlayer.h Not applicable

StreamPlayerBase source/ae/ddk/streamplayer/StreamPlayerBase.h source/ae/ddk/streamplayer/StreamPlayerBase.cpp

YUVConverter include/ae/stagecraft/StagecraftTypes.h Not applicable

63OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

Your IStreamPlayer implementation is a module that AIR for TV loads when the AIR runtime indicates video or audio

decoding is needed. The IStreamPlayerBase abstract class derives from the IStreamPlayer abstract class. You can derive

your implementation from IStreamPlayerBase. The IStreamPlayerBase class provides a mechanism to track buffer

levels, provided with StreamPlayerBase.

Your implementation of IStreamPlayer creates your platform-specific StreamPlayer.

Class interaction

An application running on your platform is a host application. The host application interacts with AIR for TV to run

AIR applications. Specifically, the host application interacts with the IStagecraft module. Using this interface, the host

application creates the StageWindow instance. The StageWindow instance contains an instance of the Adobe® AIR®

runtime. The AIR runtime loads the AIR application specified by the host application.

When the SWF content of the AIR application wants to play H.264 video, the AIR runtime creates an instance of your

IStreamPlayer subclass. Then the runtime uses the IStreamPlayer subclass instance to create an instance of your

StreamPlayer subclass. The runtime passes information to the StreamPlayer subclass instance. For example, the

runtime passes the size and position of the video rectangle, the elementary audio and video streams, and the video

control sequences.

Eventually, the AIR runtime has no more video or audio data to play. For example, the video has finished playing. At

that time, the runtime uses your IStreamPlayer subclass instance to destroy the StreamPlayer subclass instance.

StreamPlayer interaction with the AIR runtime

When creating a StreamPlayer for a H.264 video, the AIR runtime takes the following steps:

1 Tries to create a video StreamPlayer that can handle the video’s audio and video codecs.

2 If the first step fails, the video does not play, because the AIR runtime does not have any software decoders for

H.264 video.

AIR for TV

AIR runtime

Platform hardware

StageWindow

instance

interfaces to

AIR runtime

Platform-

dependent

layer

Platform StreamPlayer

Platform IStreamPlayer

(StreamPlayer factory)

64OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

More specifically, the following sequence occurs. For more information on specific methods, see “StreamPlayer

methods” on page 72 and “IStreamPlayer class methods” on page 78.

1 The AIR runtime loads the IStreamPlayer module, acquiring an IStreamPlayer instance of your IStreamPlayer

implementation.

2 The AIR runtime uses the IStreamPlayer instance to create an instance of your StreamPlayer implementation

(IStreamPlayer::CreateStreamPlayer()).

3 The AIR runtime passes the size and position of the video rectangle to your StreamPlayer instance.

4 The AIR runtime passes the buffer levels and preroll sizes to your StreamPlayer instance.

5 The AIR runtime passes the elementary audio and video streams to the StreamPlayer instance.

6 Your StreamPlayer instance decodes and presents the video frames and audio data. Typically, for multichannel

audio, the StreamPlayer instance passes the audio data to an external audio/video receiver to decode and present.

7 The AIR runtime passes video control sequences to the StreamPlayer.

8 The StreamPlayer sends events to the AIR runtime. These events indicate status about buffers and about the

StreamPlayer state, for example.

Audio and video codecs

The AIR runtime requests your IStreamPlayer instance to create an instance of your StreamPlayer subclass. In the

request, the AIR runtime passes the required audio and video codecs.

The possible codecs in the request are:

Your IStreamPlayer instance determines in its CreateStreamPlayer() implementation whether it can create a

StreamPlayer object that supports the requested codec combination. One reason CreateStreamPlayer() does not

create a StreamPlayer object is that your StreamPlayer implementation cannot handle the requested codecs. Another

reason is that your StreamPlayer implementation cannot handle another concurrent decoder.

Note: If your IStreamPlayer instance cannot handle the requested codecs for any reason, the video is not played. The AIR

runtime has no software decoding to default to for these codecs.

The codecs have corresponding values in the AudioType enumeration in StreamPlayer.h.

Video codec Audio codec

H.264 AAC

H.264 AC-3

H.264 E-AC-3

H.264 DTS Digital Surround

H.264 DTS Express

H.264 DTS-HD High Resolution Audio

H.264 DTS-HD Master Audio

No video stream AAC

H.264 No audio stream

65OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

Implementations included with source distribution

The source distribution for AIR for TV includes a StreamPlayer implementation called FFMPEGStreamPlayer. This

StreamPlayer implementation is in source/ae/ddk/streamplayer/ffmpeg.

The IStreamPlayerImpl class in this directory is the factory that creates the FFMPEGStreamPlayer object. The

FFMPEGStreamPlayer uses the open source FFMPEG library. This StreamPlayer supports video codec H.264 with an

audio codec that is either AAC, AC-3, E-AC-3, or mp3.

This StreamPlayer is a software-only implementation of an overlay video StreamPlayer for the x86Desktop platform.

It also decodes AC-3 and E-AC-3 audio streams to emulate an external audio/video receiver. However, although the

StreamPlayer downmixes these multichannel audio streams to stereo, the resulting sound is not suitable for

production environments.

In fact, regardless of codecs, use FFMPEGStreamPlayer only as a sample and debugging tool; it is not intended for use

in a product that you are releasing.

This StreamPlayer requires the FFMPEG open source library version 0.5. You can download the FFMPEG open source

library free from the Internet.

To include the FFMPEGStreamPlayer in your build of AIR for TV, do the following:

1 Retrieve the FFMPEG library, ffmpeg-0.5.tar.bz2, from the Internet. AIR for TV supports only this version of the

FFMPEG library.

2 Place the file in the stagecraft/thirdparty-private/ffmpeg/ directory.

3 Build all modules of AIR for TV, by executing the following:

make

The make utility automatically untars the FFMPEG library, builds it, and statically links it into the IStreamPlayer

module.

If you build AIR for TV without first installing the FFMPEG library, AIR for TV builds the FileWriterStreamPlayer

implementation.

StreamPlayer class details

StreamPlayer class definition

Derive your StreamPlayer implementation from the abstract StreamPlayer class.

One option is to derive your class from the abstract StreamPlayerBase class which derives from the StreamPlayer class.

StreamPlayerBase provides implementations of some of the StreamPlayer methods. You can implement a subclass of

StreamPlayerBase and provide the remaining method implementations. If a method provided by StreamPlayerBase

does not meet your needs, provide its implementation in your StreamPlayerBase subclass also.

66OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

StreamPlayer class hierarchy diagram

Threading

When processing a video, AIR for TV calls your platform-specific StreamPlayer object’s methods SendESAudio() and

SendESVideo() to send each payload of elementary stream data to the StreamPlayer. Calls that AIR for TV makes to

SendESVideo() are in a separate thread from calls to SendESAudio()

GetAudioVideoType()

GetModes()

SetVideoRegion()

GetVideoRegion()

SetOutputPlane()

GetOutputPlane()

NotifyOutputPlaneUpdate()

SetScreenRect()

GetBuffer()

ReleaseBuffer()

SendVideoES()

SendAudioES()

GetCurrentPTS()

Play()

Pause()

Stop()

Flush()

NotifyEOF()

AddNotifier()

RemoveNotifier()

SetBufferLevels()

GetBufferLevels()

GetQOSData()

SetPrerollSize()

SetVolume()

StreamPlayer
(abstract)

platform implementation

PlatformStreamPlayer

Implements:

 GetAudioVideoType()

 GetModes()

 SetVideoRegion()

 GetVideoRegion()

 SetOutputPlane()

 GetOutputPlane()

 NotifyOutputPlaneUpdate()

 SetScreenRect()

 GetBuffer()

 ReleaseBuffer()

 AddNotifier()

 RemoveNotifier()

 SetPrerollSize()

 GetQOSData()

 SetVolume()

 GetStreamPlayerModule()

Adds and implements this

interface:

 SendNotification()

StreamPlayer Base
(abstract)

67OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

Calls that AIR for TV makes to SendESVideo() are in a separate thread from calls to SendESAudio(). Furthermore,

the StreamPlayer object can choose to create an additional, separate thread for decoding an audio or video elementary

stream. Typically, the StreamPlayer does create separate threads. Therefore, calls to SendESAudio() and

SendESVideo() are asynchronous. The method returns, but a separate thread processes the elementary stream. The

FFMPEGStreamPlayer implementation provided with the source distribution has an example of separate decoding

threads.

Payload format of elementary streams

The payload format of the elementary streams that AIR for TV passes to a StreamPlayer object depends on the codec.

H.264

The first H.264 packets that AIR for TV passes to the StreamPlayer object is a sequence parameter set (SPS) and a

picture parameter set (PPS). The SPS and PPS syntax is defined in ISO 14496-10 section 7.3.1.2.

Subsequent data is sent as NAL units. The NAL units begin with a NAL unit start code prefix (defined in ISO 14496-

10 3.130) followed by the NAL Unit payload. The NAL Unit syntax is defined in ISO 14496-10, section 7.3.1 and

Annexure B.1.

The SPS and PPS data is sent again if a discontinuity in the stream occurs. A discontinuity can occur after a seek or

dynamic bit rate adjustment by AIR for TV.

AAC

AIR for TV provides the AAC data as follows:

1 An Audio Data Transport Stream (ADTS) packet as defined in ISO 14496-3 part 1 Annex 1.a and ISO 13818-7.

2 The ADTS packet is appended with the audio payloads as defined in ISO 14496-3, section 1.6.2.2.

AC-3 and E-AC-3

AIR for TV supports Dolby Digital AC-3 and E-AC-3. The data follows the standard described in Digital Audio

Compression Standard (AC-3, E-AC-3) at http://www.atsc.org/cms/index.php/standards/published-standards.

DTS

AIR for TV supports DTS Digital Surround, DTS Express, DTS-HD High Resolution Audio, and DTS-HD Master

Audio. If you are passing the compressed stream through to an external audio/video receiver, the stream is compatible

with licensed receivers. For details about these proprietary codecs, contact DTS (www.dts.com).

Buffer management

Buffer allocation

When processing a video, AIR for TV calls a StreamPlayer object’s method SendESAudio() or SendESVideo() to

send each payload of elementary stream data to the StreamPlayer. Before calling one of these methods, AIR for TV

copies the payload data into a buffer. One of the parameters passed to SendESAudio() and SendESVideo() is a

pointer to the buffer.

http://www.atsc.org/cms/index.php/standards/published-standards
http://www.dts.com

68OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

Your platform-dependent StreamPlayer object manages these buffers. Before each call to SendESAudio() and

SendESVideo(), AIR for TV calls the StreamPlayer object’s GetBuffer() method to get a pointer to a buffer’s

memory. Therefore, the StreamPlayer object determines the memory requirements. For example, the StreamPlayer

object sometimes keeps the buffers in a specific memory region which provides direct memory access to the hardware.

If the StreamPlayer object has no special memory requirements, use AE_MALLOC() to allocate the memory. In this case,

you can use the StreamPlayerBase implementation of GetBuffer().

Because SendESAudio() and SendESVideo()typically decode the data asynchronously, when these methods return,

AIR for TV does not immediately call the StreamPlayer object’s ReleaseBuffer(). The StreamPlayer object sends an

event to AIR for TV when it no longer needs the buffer. When AIR for TV receives the event, it calls the

ReleaseBuffer() method to release the buffer’s memory.

Buffer levels

The StreamPlayer object determines the high and low watermarks of its buffers. The high watermark is when the

StreamPlayer determines that further calls to SendESVideo() or SendESAudio() could overflow its buffers. The low

watermark is when the StreamPlayer object determines that it soon will have no further data to decode. The

StreamPlayer object sends events to AIR for TV whenever its buffer levels reach the high or low watermark.

AIR for TV calls the StreamPlayer object’s SetBufferLevels() method to set the high and low watermarks for the

audio stream and the video stream. However, the StreamPlayer implementation considers these levels only as hints.

The StreamPlayer implementation can use its own algorithm for determining the high and low watermarks.

The StreamPlayerBase and IStreamPlayerBase classes provide buffer tracking tools. In development builds, but not in

release builds, these tracking tools display current buffer levels. For more information, see “Buffer level tracking tools”

on page 80.

Prerolling buffer levels

A StreamPlayer object determines the size of the preroll buffer. The preroll buffer size is the number of audio and video

bytes that the StreamPlayer caches before starting to decode. AIR for TV calls the StreamPlayer object’s

SetPrerollSize() method to set the preroll size for the audio stream and the video stream. However, the

StreamPlayer implementation considers these sizes only as hints. The StreamPlayer implementation can use its own

algorithm for determining the preroll size. The StreamPlayer implementation can also use the preroll size in its

algorithm for determining the high and low watermarks.

Events

A StreamPlayer object sends asynchronous events to AIR for TV. The StreamPlayerBase class provides an

implementation for sending events.

The types of events are defined in the EventType enumeration in StreamPlayer.h. AIR for TV registers and unregisters

to receive events by calling the StreamPlayer object’s AddNotifier() and RemoveNotifier() methods.

A StreamPlayer object sends events as an Event structure in the Notifier class, also defined in StreamPlayer.h. When

an event occurs, the StreamPlayer object fills in the appropriate values of an Event structure. Then the StreamPlayer

object calls SendNotification(), implemented in StreamPlayerBase, to send the event.

The StreamPlayer object always assigns values to these members of the Event structure:

m_eventType The type of event. See the table below.

m_timestampOfEvent The time the event occurred.

m_streamerType Whether the event involves an audio stream or a video stream.

69OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

The following table lists the types of events, their descriptions, and the required and optional Event structure members

for the events.

EventType Event members Description

kBufferFull Required:

m_bufferLevel[streamType]

streamType is kVideoStream or

kAudioStream, depending on which

type of stream’s buffers have reached the

high watermark.

Optional:

m_bufferLevel[streamType]

streamType is the other stream type.

This event is required.

Send this event to notify AIR for TV to stop sending data. Send

this event each time the buffer level for the audio or video

stream buffer reaches the high watermark.

kBufferLow Required:

m_bufferLevel[streamType]

streamType is kVideoStream or

kAudioStream, depending on which

type of stream’s buffers have reached the

low watermark.

Optional:

m_bufferLevel[streamType]

streamType is the other stream type.

This event is required.

Send this event to notify AIR for TV to resume sending data.

Send this event each time the buffer level for the audio or

video stream buffer reaches the low watermark.

kBufferEmpty Required:

m_bufferLevel[streamType]

streamType is kVideoStream or

kAudioStream, depending on which

type of stream’s buffers are empty.

Optional:

m_bufferLevel[streamType]

streamType is the other stream type.

This event is required.

Send this event to notify AIR for TV to resume sending data

because the buffers are empty.

This error condition exists because the StreamPlayer object

always sends a kBufferLow event when the low watermark is

reached. If AIR for TV does not send more data in response to

kBufferLow, and it has not called NotifyEOF() to indicate

the end of the stream, this error condition occurs.

kReachedEOS Required:

m_bufferLevel[streamType]

streamType is kVideoStream or

kAudioStream, depending on which

type of stream reached the end.

Optional:

m_bufferLevel[streamType]

streamType is the other stream type.

This event is required.

Send this event when the last sample in the stream has been

decoded. The StreamPlayer object sends this event only if AIR

for TV had previously called the NotifyEOF() method.

Otherwise, when the last sample has been decoded, send

kBufferEmpty to indicate an error has occurred.

kReleaseBuffer Required:

m_pBuffer

This event is required.

Send this event to release the buffer that was passed to

SendAudioES() or SendVideoES(). If you do not send

this event, the buffer is leaked. Send this event even if the

StreamPlayer does not use the data.

70OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

The following diagram gives an example of a call sequence showing the flow of events.

kVDimAvailable Required:

m_videoWidth and m_videoHeight

This event is required.

Send this event to indicate the decoded video dimensions.

This event occurs when the video dimensions in the video

elementary stream itself change mid-stream. Because AIR for

TV does not parse the video elementary stream, the

StreamPlayer sends this event.

kStateChanged Required:

m_state

This event is required.

Send this event to indicate that the StreamPlayer object’s

state has changed. The state enumeration is defined in

StreamPlayer.h.

kPrerolling Optional:

m_bufferLevel[streamType]

streamType is kVideoStream or

kAudioStream, depending on which

type of stream’s buffers the prerolling

event applies to.

Optional:

m_bufferLevel[streamType]

streamType is the other stream type.

This event is optional.

Send this event while prerolling, before starting to decode

and display the stream. In development builds, this event

allows the buffer tracking tools to show the buffer levels

changing before decoding starts. The buffer tracking tools,

provided by StreamPlayerBase and IStreamPlayerBase,

display the buffer levels.

kFrameUpdate Optional:

m_bufferLevel[streamType]

streamType is kVideoStream or

kAudioStream, depending on the type

of stream the event is reporting.

This event is optional.

Send this event when the StreamPlayer has decoded another

frame or sample. In development builds, this event allows the

buffer tracking tools to display the buffer levels. The buffer

tracking tools, provided by StreamPlayerBase and

IStreamPlayerBase, display the buffer levels.

kError This event is optional.

Send this event to indicate an error in processing the stream.

AIR for TV reports the error using ActionScript to the AIR

application that requested the video playback.

EventType Event members Description

71OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

StreamPlayer event flow diagram

Control sequences

AIR for TV supports these control sequences: play at a normal speed, stop, pause, and play from a new position. AIR

for TV does not support slow motion, fast forward, or rewind.

Provide support for all these control sequences in your StreamPlayer implementation. Consider the following

interactions between AIR for TV and your StreamPlayer implementation.

To play overlay video, AIR for TV calls the Play() method of the StreamPlayer object. To pause, AIR for TV calls the

Pause() method. To resume playing, it calls the Play() method again.

To stop playing the video, AIR for TV calls Stop() followed by Flush(). Flush() empties the buffers. AIR for TV

then calls Play() again, and calls SendESVideo() and SendESAudio() to reload data in the buffers.

Therefore, to seek and then play from a new position, AIR for TV calls these methods:

1 Stop()

2 Flush()

3 Play(decodeToTime, pauseAtDecodeTime)

4 SendVideoES()

5 SendAudioES()

This overloaded Play() method’s first parameter, decodeToTime, specifies the timestamp that playback is to resume

from. However, AIR for TV starts sending payload data starting with the closest previous video keyframe or audio

sample to the specified timestamp. The StreamPlayer object is responsible for decoding, but not displaying, the data

up to the specified timestamp. Once the data reaches the specified timestamp, the StreamPlayer object resumes

displaying if pauseAtDecodeTime is false. If pauseAtDecodeTime is true, the StreamPlayer object pauses the video

and audio on the frame and sample that matches the decodeToTime value.

AIR runtime

AIR for TV

interfaces to AIR runtime

Platform

StreamPlayer Device driver

interface to pass

compressed data GetBuffer ()

buffer pointer

sendVideoES()

Dispatch payload to driver

return

high water mark reached

kBufferFull

low water mark reached

kBufferLow

Driver finished with payload

kBufferRelease

ReleaseBuffer()

NotifyEOF()

no more data

AIR runtime sends EOF

kReachedEOS

repeat until no more data

or receive kBufferFull

72OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

StreamPlayer methods

For detailed definitions of return values and parameters of the StreamPlayer and StreamPlayerBase class methods, see

include/ae/ddk/streamplayer/StreamPlayer.h and source/ae/ddk/streamplayer/StreamPlayerBase.h.

AddNotifier() method

The StreamPlayerBase class provides an implementation for this method. This method adds a Notifier object to your

StreamPlayer object’s list of Notifier objects. When an event occurs, such as kBufferFull or kBufferLow, a

StreamPlayer object notifies all its Notifier objects. To notify the objects, the StreamPlayer object calls the OnEvent()

method of each Notifier object. The Notifier class is defined in include/ae/ddk/streamplayer/StreamPlayer.h.

The StreamPlayerBase class provides an implementation of the StreamPlayer methods AddNotifier() and

RemoveNotifier(). It also provides an implementation of the Notifier method OnEvent(). Finally, it provides a

method called SendNotification(). Call SendNotification() whenever your StreamPlayer object has an event to

send to AIR for TV.

For more information, see “Events” on page 68.

AttachAudioSink() method

Return false. This method is no longer used.

AttachVideoSink() method

Return false. This method is no longer used.

Flush() method

AIR for TV calls this method to empty the buffers of the audio and video streams. AIR for TV calls the Flush()method

after a call to Stop()if it wants to resume playback at a different presentation timestamp.

For more information, see “Control sequences” on page 71.

Note: The StreamPlayerBase class does not provide an implementation of Flush(). Provide the implementation in your

StreamPlayer subclass.

GetAudioVideoType() method

The StreamPlayerBase class provides an implementation for this method. This method returns the audio type and the

video type that a StreamPlayer object is playing.

GetBuffer() method

The StreamPlayerBase class provides a simple implementation for this method. This method returns a pointer to a

memory block the AIR runtime uses to provide payload data to the StreamPlayer.

The StreamPlayerBase implementation of GetBuffer() allocates memory using AE_MALLOC(). If your StreamPlayer

implementation requires more specialized memory allocation, add an implementation of the GetBuffer() method to

your platform StreamPlayer class that derives from StreamPlayerBase.

73OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

One parameter that the AIR runtime passes to GetBuffer() is whether it will use the buffer for an audio stream or a

video stream. This parameter allows your StreamPlayer implementation to do the appropriate specialized memory

allocation.

For more information, see “Buffer management” on page 67.

GetBufferLevels() method

This method returns the current levels of the audio and video buffers that your StreamPlayer object manages. This

method also returns the high and low watermarks for the buffers. Depending on your StreamPlayer implementation,

the high and low watermarks provided by GetBufferLevels() do not have to be the same as the watermarks passed

in a previous call to SetBufferLevels(). The reason for the difference is that your StreamPlayer implementation

determines the watermarks based on its own requirements. These requirements do not have to involve the values

passed in SetBufferLevels(). For more information, see “Buffer management” on page 67.

Note: The StreamPlayerBase class does not provide an implementation of SetBufferLevels(). Provide the implementation

in your StreamPlayerBase subclass.

GetCurrentPTS() method

Return the timestamp of the audio sample that is currently playing. If the StreamPlayer is not processing an audio

stream (for example, for a video that has no sound), then return the timestamp of the video frame that is currently

visible.

Note: The StreamPlayerBase class does not provide an implementation of GetCurrentPTS(). Provide the

implementation in the class you derive from StreamPlayerBase.

GetModes() method

This method returns the following information to the AIR runtime:

The decode mode This mode indicates whether the StreamPlayer decodes an elementary stream using hardware

accelerators or using software decoders. The method returns a separate decode mode for the video elementary stream

and the audio elementary stream. If the StreamPlayer is video-only or audio-only, it returns that it cannot decode the

other elementary stream. Return only one decode mode for video and one decode mode for audio.

Typically, your implementation returns that the decoding is done using hardware accelerators.

The presentation mode This mode indicates the following:

• Whether the StreamPlayer can behave as an overlay video StreamPlayer. That is, it can present the audio and video

in addition to decoding it. This presentation mode is the only presentation mode available starting in AIR 3.0 for TV.

If the StreamPlayer is video-only or audio-only, it returns that it cannot present the other elementary stream.

• Whether the StreamPlayer can return the decoded audio and video data to the AIR runtime. However, this

StreamPlayer feature is no longer available starting in AIR 3.0 for TV.

The StreamPlayerBase class provides an implementation for this method. Override this implementation if it does not

apply to your StreamPlayer. The StreamPlayerBase GetModes() implementation returns the following information:

• The audio and video elementary streams are both decoded with hardware accelerators.

• The StreamPlayer both can present the decoded audio and video data. That is, it is an overlay video StreamPlayer.

74OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

GetOutputPlane() method

The StreamPlayerBase class provides an implementation for this method. This method returns a pointer to the Plane

object, that was set using SetOutputPlane(). For more information, see “SetOutputPlane() method” on page 76.

GetQOSData() method

This method provides quality of service data to the AIR runtime. Specifically:

• The current frame rate of the StreamPlayer. Return zero if the frame rate is not available.

• The number of frames skipped (dropped) since the creation of the StreamPlayer.

GetStreamPlayerModule() method

The StreamPlayerBase class provides an implementation for this method. This method returns a pointer to the

IStreamPlayerBase object that created the StreamPlayer object. StreamPlayerBase and IStreamPlayerBase provide

buffer level tracking tools that use this method.

GetVideoRegion() method

The StreamPlayerBase class provides an implementation for this method. This method returns the following:

• A Rect object specifying the size and position of the video rectangle within the StageWindow rectangle. The x and

y members of the Rect object are relative to the upper left corner of the StageWindow rectangle.

• A Rect object specifying the rectangle or subrectangle of the source video that is being displayed.

For more information, see “SetVideoRegion() method” on page 77.

NotifyEOF() method

AIR for TV calls this method for a video StreamPlayer when:

• The video stream has ended.

• Flash Media Server is streaming the video, and the stream is seeking to a new position at which play back will pause.

In this case, Flash Media Server sends no data beyond the seek position.

For audio StreamPlayers, AIR for TV calls this method when the audio stream has ended.

After calling NotifyEOF(), AIR for TV makes no further calls to GetBuffer(), or to SendVideoES() and

SendAudioES(). After receiving a call to NotifyEOF(), the StreamPlayer object:

1 Decodes the last payload data in its buffers. For overlay video, the StreamPlayer object also presents that data.

2 Sends the event kReachedEOS. For more information, see “Events” on page 68.

AIR for TV can call Play() after NotifyEOF(). After calling Play(), AIR for TV again can call GetBuffer(),

SendVideoES() and SendAudioES().

Note: The StreamPlayerBase class does not provide an implementation of NotifyEOF(). Provide the implementation in

your StreamPlayer subclass.

NotifyOutputPlaneUpdate()

AIR for TV calls this method after updating the output plane associated with a StreamPlayer.

75OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

Only software StreamPlayer implementations that blit pixels from a render plane to an output plane use an

OutputPlane object. For example, the FFMPEGStreamPlayer uses an output plane.

For typical hardware-based implementations, implement NotifyOutputPlaneUpdate() to do nothing. The

StreamPlayerBase implementation of this method does nothing.

Pause() method

The method pauses the decoding and displaying of the audio and video streams. AIR for TV calls the Play()method

to resume decoding and displaying.

For more information, see “Control sequences” on page 71.

Note: The StreamPlayerBase class does not provide an implementation of Pause(). Provide the implementation in your

StreamPlayer subclass.

Play() method

AIR for TV calls this method before it starts sending the elementary audio or video stream to the StreamPlayer.

AIR for TV uses an overloaded Play()method to perform a seek operation. The overloaded Play() takes these

parameters:

• decodeToTime. This parameter indicates to a StreamPlayer object to not display video until the presentation

timestamp is greater than or equal to decodeToTime.

• pauseAtDecodeTime. A Boolean value. If true, then the StreamPlayer object pauses playback at the time specified

by decodeToTime. If false, the StreamPlayer object resumes playback at the specified time.

For more information, see “Control sequences” on page 71.

Note: The StreamPlayerBase class does not provide an implementation of Play(). Provide the implementation in your

StreamPlayer subclass.

ReleaseBuffer() method

The StreamPlayerBase class provides a simple implementation for this method. This method deallocates the memory

previously allocated by a call to GetBuffer(). The StreamPlayerBase implementation of ReleaseBuffer()

deallocates the memory using AE_FREE(). If your StreamPlayer implementation requires more specialized memory

allocation and deallocation, add an implementation of the ReleaseBuffer() method to your platform

StreamPlayerBase subclass.

One parameter that the AIR runtime passes to ReleaseBuffer() is whether it used the buffer for an audio stream or

a video stream. This parameter allows your StreamPlayer implementation to do the appropriate specialized memory

deallocation.

For more information, see “Buffer management” on page 67.

RemoveNotifier() method

The StreamPlayerBase class provides an implementation for this method. This method removes a Notifier object from

your StreamPlayer object’s list of Notifier objects. For more information, see “AddNotifier() method” on page 72 and

“Events” on page 68.

76OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

SendNotification() method

The StreamPlayerBase class provides an implementation for this method. This method sends an event to each Notifier

object in your StreamPlayer object’s list of Notifier objects. Call this method in your StreamPlayer implementation

whenever you have an event to send to AIR for TV. For more information, see “AddNotifier() method” on page 72 and

“Events” on page 68.

SendAudioES() method

AIR for TV calls this method to send a packet of the audio elementary stream payload to the StreamPlayer object. The

parameters are as follows:

• A pointer to the buffer containing the compressed data. AIR for TV calls GetBuffer() to retrieve the buffer pointer

before calling SendAudioES().

• The number of bytes of data in the buffer.

• The presentation timestamp of the decompressed audio frame. Use the presentation timestamp to determine when

to display the data.

Note: The StreamPlayerBase class does not provide an implementation of SendAudioES(). Provide the implementation

in your StreamPlayer subclass.

SendVideoES() method

AIR for TV calls this method to send a packet of the video elementary stream payload to the StreamPlayer object. The

parameters are as follows:

• A pointer to the buffer containing the compressed data. AIR for TV calls GetBuffer() to retrieve the buffer pointer

before calling SendVideoES().

• The number of bytes of data in the buffer.

• The presentation timestamp of the decompressed video frame. Use the presentation timestamp to determine when

to display the data.

• The video frame encoding type. The VideoFrameType enumeration in StreamPlayer.h defines values for the I-

frame, P-frame, and B-frame types.

Note: The StreamPlayerBase class does not provide an implementation of SendVideoES(). Provide the implementation

in your StreamPlayer subclass.

SetBufferLevels() method

AIR for TV calls this method to suggest values for the high and low watermarks for the audio and video buffers that

your StreamPlayer object manages. For more information, see “Buffer management” on page 67.

Note: The StreamPlayerBase class does not provide an implementation of SetBufferLevels(). Provide the implementation

in your StreamPlayer subclass.

SetOutputPlane() method

The StreamPlayerBase class provides an implementation for this method. AIR for TV calls this method to provide the

StreamPlayer object a pointer to an output plane.

77OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

Only software StreamPlayer implementations that blit pixels from a render plane to an output plane use this plane

object. For example, the FFMPEGStreamPlayer uses this output plane. For typical hardware-based implementations,

implement this method to do nothing.

SetPrerollSize() method

The StreamPlayerBase class provides an implementation for this method. AIR for TV calls this method to provide the

StreamPlayer the number of bytes to preroll before presenting the video. For more information, see “Buffer

management” on page 67.

SetScreenRect() method

AIR for TV calls this method to provide an overlay video StreamPlayer the position of the StageWindow on the

physical screen.

The method takes one parameter which is a Rect object. The x and y members of the Rect object are relative to the

physical screen’s upper left corner. This Rect object, along with the Rect objects provided in SetVideoRegion(), tells

the StreamPlayer where on the physical screen to display the video.

The StreamPlayerBase class provides an implementation for this method. The implementation saves the Rect object

parameter in a StreamPlayerBase data member.

SetVideoRegion() method

The StreamPlayerBase class provides an implementation for this method. AIR for TV calls this method and the

SetScreenRect() method to provide the size and position of a video on a display.

SetVideoRegion() takes two parameters:

stageRect Specifies a rectangle or subrectangle within the StageWindow rectangle. The StageWindow rectangle is

specified with SetScreenRect(). The x and y members of the stageRect Rect object are relative to the upper left

corner of the StageWindow rectangle.

sourceRect Specifies a rectangle or subrectangle of the source video. The StreamPlayer implementation displays only

this portion of the source video.

AIR for TV also calls this method to resize and reposition the video within the StageWindow.

SetVolume()

This method sets the volume of the audio stream of a StreamPlayer.

The volume level is provided in a parameter as a value from 0 through 100.

Note: If you are passing a compressed multichannel audio stream through to an audio/video receiver without decoding

it, this method is not applicable.

Stop() method

AIR for TV calls this method to stop the decoding and playback of the audio and video streams.

For more information, see “Control sequences” on page 71.

Note: The StreamPlayerBase class does not provide an implementation of Stop(). Provide the implementation in your

StreamPlayer subclass.

78OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

IStreamPlayer class details

IStreamPlayer class definition

Derive your IStreamPlayer implementation from the abstract IStreamPlayer class.

One option is to derive your class from the abstract IStreamPlayerBase class which derives from the IStreamPlayer

class. IStreamPlayerBase provides implementations of some of the IStreamPlayer methods. You can implement a

subclass of IStreamPlayerBase and provide the remaining method implementations.

The main purpose of your IStreamPlayer object is to create and destroy your StreamPlayer object. It also provides

methods used for tracking buffer levels in a development build.

IStreamPlayer class hierarchy diagram

IStreamPlayer class methods

CreateAudioSink() method

Return NULL. This method is no longer used.

MaxStreamPlayers()

CreateStreamPlayer()

DestroyStreamPlayer()

ShowBufferLevels()

IsShowingBufferLevels()

PrintBufferLevels()

IsPrintingBufferLevels()

IStreamPlayer
(abstract)

The StreamPlayer factory

IAEModule
(abstract)

platform implementation

PlatformIStreamPlayer

Implements:

 MaxStreamPlayers()

 CreateStreamPlayer()

 DestroyStreamPlayer()

 ShowBufferLevels()

 IsShowingBufferLevels()

 PrintBufferLevels()

 IsPrintingBufferLevels()

IStreamPlayerBase
(abstract)

79OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

CreateStreamPlayer() method

This method creates a StreamPlayer object. When SWF content wants to play audio or video, the AIR runtime creates

an instance of your IStreamPlayer subclass. Then the runtime calls CreateStreamPlayer() to create an instance of

your StreamPlayer subclass. The parameters passed to CreateStreamPlayer() are the audio and video codecs to

decode. Return null if your StreamPlayer implementation cannot decode the specified codecs. Also return null if your

IStreamPlayer implementation cannot create your StreamPlayer object for any reason.

Also, create a StreamPlayer object for multichannel audio codecs that you pass through an audio/video receiver

without decoding first.

Note: If your IStreamPlayer instance cannot handle the requested codecs for any reason, the video is not played. The AIR

runtime has no software decoding to default to for these codecs.

CreateVideoSink() method

Return NULL. This method is no longer used.

DestroyAudioSink() method

This method is no longer used. Implement it to do nothing.

DestroyStreamPlayer() method

This method destroys a StreamPlayer object. A pointer parameter specifies the StreamPlayer object to destroy. When

the AIR runtime no longer has audio or video to play, it calls DestroyStreamPlayer(). For example, when the video

has finished playing, the runtime calls DestroyStreamPlayer().

DestroyVideoSink() method

Return NULL. This method is no longer used.

IsPrintingBufferLevels() method

The IStreamPlayerBase class provides an implementation of this method. This method returns true if the

IStreamPlayerBase object is printing the buffer level tracking data to the console. This tracking data is available only

in development builds.

For more information, see “Buffer level tracking tools” on page 80.

IsShowingBufferLevels() method

The IStreamPlayerBase class provides an implementation of this method. This method returns true if the

IStreamPlayerBase object is showing the buffer level tracking data. This tracking data is available only in development

builds.

For more information, see “Buffer level tracking tools” on page 80.

MaxStreamPlayers() method

This method returns the maximum number of simultaneous StreamPlayer objects that the platform can support.

Note: The IStreamPlayerBase implementation of this method returns the value 1.

80OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

PrintBufferLevels() method

The IStreamPlayerBase class provides an implementation of this method. This method takes one Boolean parameter.

If the parameter is true, the IStreamPlayerBase object outputs the buffer level tracking data to the console.

This tracking data is available only in development builds. For a detailed list of the data, see the ShowBufferLevel()

method’s definition in IStreamPlayer.h.

For more information, see “Buffer level tracking tools” on page 80.

ShowBufferLevels() method

The IStreamPlayerBase class provides an implementation of this method. This method takes one Boolean parameter.

If the parameter is true, the IStreamPlayerBase object shows the buffer level tracking data.

This tracking data is available only in development builds. For a detailed list of the data, see this method’s definition

in IStreamPlayer.h.

For more information, see “Buffer level tracking tools” on page 80.

Creating files for your platform-specific audio or video
driver

Put the header and source files for your platform-specific audio or video driver in a subdirectory of the thirdparty-

private/stagecraft-platforms directory. For information, see “Placing code in the directory structure” on page 151.

You can copy the implementations provided by the source distribution as a starting point for your own

implementation. For more information on the source distribution implementations, see “Implementations included

with source distribution” on page 65.

Building your platform-specific audio or video driver

For information about building your audio or video driver, see “Building platform-specific drivers” on page 152.

Buffer level tracking tools

The IStreamPlayerBase and StreamPlayerBase classes provide tools for tracking buffer levels. These tools are for Linux

development builds only. By deriving your IStreamPlayer and StreamPlayer classes from IStreamPlayerBase and

StreamPlayerBase, you can use these tools.

The tools provide:

• A graphical display of your audio and video stream buffer levels. The display overlays the video.

When AIR for TV acquires the IStreamPlayer module, it adds a StreamPlayer related shell command to a set of shell

commands. These shell commands are useful for testing AIR for TV. The StreamPlayer related shell command is

the following:

81OPTIMIZING AND INTEGRATING AIR FOR TV

The audio and video driver

Last updated 9/29/2011

streambuffers [on|off]

Use this shell command to turn on and off the graphical display of buffer levels.

• A textual display of your audio and video stream buffer levels. AIR for TV displays the text on its interactive shell.

Use the stagecraft executable command-line parameter --spdump or the StageWindowParameters property

m_bStreamPlayerDump to turn on this text output.

A description of the displayed data is in include/ae/ddk/streamplayer/IStreamPlayer.h.

82

Last updated 9/29/2011

Chapter 5: The audio mixer

Adobe® AIR® for TV plays AIR applications that include SWF content. This content often produces PCM sound

samples for audio playback. To direct AIR for TV to use the audio output hardware and APIs of your target platform,

you implement the audio mixer interfaces. The interfaces are abstract C++ classes.

The source distribution provides an audio mixer implementation for Linux® systems that use Advanced Linux Sound

Architecture (ALSA). If your platform uses ALSA, use this ALSA audio mixer. If your platform does not use ALSA,

implement the audio mixer interfaces yourself.

Class overview

The audio mixer includes these classes:

AudioOutput class overview

An AudioOutput instance does the following:

• Manages the buffers that AIR for TV uses to pass PCM samples to the AudioOutput instance.

• Converts the sample rate of the incoming samples to the sample rate of the audio output hardware, if necessary.

• Sets the volume of the outgoing audio.

• Directs the audio output to the platform-specific audio output hardware.

• Provides information to the AIR runtime. This information includes, for example, the number of bytes in some

number of samples and the current latency.

IAudioMixer class overview

The IAudioMixer class, derived from IAEModule, provides a singleton audio mixer module. It does the following:

• Creates and destroys the platform-specific AudioOutput instances.

• Indicates to the AIR runtime whether it supports a specified combination of sample rate, channel number, and

sample format.

Class or structure Description

AudioOutput Abstract class that you implement. This class defines the interfaces that AIR for TV uses to send

its PCM samples to the audio output hardware.

An AudioOutput instance is a sink of audio PCM samples coming from the AIR runtime.

This class is declared in include/ae/ddk/audiomixer/IAudioMixer.h.

IAudioMixer Abstract class, derived from IAEModule, that you implement to provide a singleton audio mixer

module. AIR for TV uses this singleton object as a factory to create and destroy platform-specific

AudioOutput objects.

This class is declared in include/ae/ddk/audiomixer/IAudioMixer.h.

83OPTIMIZING AND INTEGRATING AIR FOR TV

The audio mixer

Last updated 9/29/2011

Class interaction

The host application is defined in “Running AIR for TV” on page 2. The host application interacts with AIR for TV to

run AIR applications which include SWF content. Specifically, the host application interacts with the IStagecraft

module. Using this interface, the host application creates the StageWindow instance. The StageWindow instance

contains an instance of the Adobe® AIR® runtime. The AIR runtime loads the AIR application specified by the host

application.

The following diagram and sections summarize the interactions between the StageWindow instance, the AIR runtime,

the IAudioMixer singleton, the AudioOutput instance, and the hardware.

Audio mixer architecture

Note: The StageWindow instance has exactly one AudioOutput instance, even though SWF content sometimes has

multiple concurrent audio streams. For example, a game sometimes has music playing as well as sound effects. The AIR

runtime internally mixes these audio streams in software and presents one PCM sample stream to the AudioOutput

instance.

Acquiring the audio mixer module

When the SWF content running in the StageWindow instance has audio output to play, the AIR runtime acquires the

IAudioMixer module. This audio mixer module is the singleton instance of your platform-specific IAudioMixer class.:

Creating and destroying an AudioOutput instance

The AIR runtime uses the IAudioMixer singleton to create an instance of your platform-specific AudioOutput class.

The runtime creates at most one AudioOutput instance. The runtime calls the singleton’s CreateAudioOutput()

method, passing information about the PCM data to play. This information includes, for example, the sample rate and

the number of channels.

When the SWF content no longer has sound output to play, the AIR runtime asks the IAudioMixer singleton to

destroy the AudioOutput instance. For example, when the AIR application ends, the IAudioMixer singleton destroys

the AudioOutput instance. The AudioOutput instance immediately stops playback, closes connections to the audio

output hardware, and releases any allocated resources.

StageWindow instance

Audio Output Hardware

AIR

runtime

to

Audio

Out

Hardware Mixer Device

IAudioMixer

platform implementation

(a singleton)

AudioOutput

platform implementation

Other

Inputs

84OPTIMIZING AND INTEGRATING AIR FOR TV

The audio mixer

Last updated 9/29/2011

The AIR runtime and AudioOutput instance interaction

The AIR runtime interacts with the AudioOutput instance to do the following:

• Get buffers to fill with PCM samples.

• Pass buffers filled with PCM samples to the AudioOutput instance. The AudioOutput instance queues these buffers

for processing and playing.

• Get information about the number of bytes in a sample, and the current latency in playing samples. The AIR

runtime uses the latency information to keep the audio output synchronized with video that it is playing.

• Set the volume for the hardware output of the PCM samples.

• Tell the AudioOutput instance to reset itself.

PCM sample format and rate

The AIR runtime sends PCM samples to the AudioOutput instance. The PCM samples are 16-bit little endian, mono

or stereo, and left-right sample interleaved in the case of stereo. The sample rate is currently 44,100 Hz. Support this

format in your audio mixer implementation.

Note: The AIR runtime also supports PCM samples that are 8 bits wide. It also supports sample rates of 22,050 Hz, 11,025

Hz, and 5,500 Hz. However, the runtime does not yet send samples with these characteristics to the AudioOutput

instance. Nevertheless, your implementation should handle these other formats and sample rates for possible future

feature integration.

Sample rate conversion

If the incoming sample rate for an AudioOutput instance is not the same as your platform’s output sample rate,

perform sample rate conversion.

Audio output from overlay video

Besides supporting audio output from an AudioOutput instance, AIR for TV also supports the audio stream of overlay

video. Consider when SWF content of the StageWindow instance is playing an overlay video. In this case, AIR for TV

passes the compressed audio stream to a StreamPlayer instance.

The StreamPlayer instance does hardware accelerated audio decoding. For overlay video, the decoded audio is not

returned to the AIR runtime. Instead, the resulting decoded stream is input to your platform’s hardware mixer

interface. Support at least one such audio input in your platform hardware. The StreamPlayer instance provides the

method SetVolume() for setting the volume of its audio stream. For more information, see “The audio and video

driver” on page 59.

Audio output from audio decoders

Some platform implementations perform hardware accelerated audio decoding on an audio stream, and then pass the

decoded samples back to the AIR runtime. The audio stream is sometimes part of a video, or it can be a compressed

mp3, PCM, or ADPCM stream in the SWF content.

Whatever the source of the audio stream, software in the AIR runtime internally mixes the returned decoded samples

with the other sounds in the SWF content. The runtime passes the mixed samples to the AudioOutput instance.

A StreamPlayer instance does the hardware accelerated audio decoding. For more information, see “The audio and

video driver” on page 59.

85OPTIMIZING AND INTEGRATING AIR FOR TV

The audio mixer

Last updated 9/29/2011

Thread usage

Your implementation of the AudioOutput class can be threadless and have a synchronous interface. The AIR runtime

creates a thread when it creates an AudioOutput instance. It uses this thread for getting and filling the instance’s

buffers. Because of the separate thread, the main thread of the runtime is not blocked while waiting for the

AudioOutput instance’s buffers to become available.

Using a thread-safe implementation for your subclass of IAudioMixer is the most robust choice. AIR for TV creates

your IAudioMixer subclass as a singleton object. However, it uses the IAudioMixer object to create only one

AudioOutput instance. Therefore, concurrent calls to IAudioMixer interfaces from different threads within the

process do not occur. However, a thread-safe implementation is protected from future changes within AIR for TV.

Buffer underflow notification

Some clients of the IAudioMixer interface need to be informed about buffer underflow. For example, a StreamPlayer

implementation that uses a free-running audio clock needs to be aware of audio output discontinuities. This

knowledge allows the StreamPlayer to resynchronize the video presentation with the audio output.

When an IAudioMixer client requires underflow notification, it passes a pointer to an underflow callback method to

IAudioMixer::CreateAudioOutput(). Your implementation of the AudioOutput class calls this callback method

when underflow occurs. If an IAudioMixer client does not require underflow notification, it passes NULL for the

pointer.

The following table shows examples in the source distribution that use an underflow callback method.

Note: When the AIR runtime calls your platform’s IAudioMixer::CreateAudioOutput() method, it passes NULL for the

pointer to the underflow callback method.

Implementations included with source distribution

The source distribution for AIR for TV includes these audio mixer implementations.

Example File

An AudioOutput subclass that calls the

underflow callback method.

The ALSA implementation of the AudioOutput class in

source/ae/ddk/AudioMixer/alsa/AudioOutputAlsa.cpp.

An IAudioMixer client that uses an

underflow callback method.

The FFMPEGStreamPlayer in

source/ae/ddk/StreamPlayer/ffmpeg/AudioPlayer.cpp and

FFMPEGStreamPlayer.cpp.

86OPTIMIZING AND INTEGRATING AIR FOR TV

The audio mixer

Last updated 9/29/2011

Implementation tasks overview

To implement a platform-specific audio mixer on a platform which does not use ALSA, do the following high-level

tasks:

• Implement a class that derives from the AudioOutput class.

• Implement a class that derives from the IAudioMixer class.

• In your subclass implementations, convert the sample rate of the incoming samples to the sample rate of the audio

output hardware, if necessary.

• Use your AudioOutput implementation to direct audio output to your platform-specific audio output hardware.

If your platform does use ALSA, your only task is to include the ALSA implementation in your platform build. See

“Building your platform-specific audio mixer” on page 91.

AudioOutput class methods

Derive a class from the AudioOutput class to provide your platform-specific audio output handling. The AudioOutput

class hierarchy and methods are shown in the following illustration:

Audio mixer

implementation

File location and description

Mock A mock audio mixer implementation simply discards the PCM samples.

Copy these files as a basis for your platform-specific audio mixer implementation.

The mock audio mixer is in the directory source/ae/ddk/audiomixer/mock.

File This audio mixer implementation writes the PCM samples’ bytes to a file for test

purposes.

The file audio mixer is in the directory source/ae/ddk/audiomixer/file.

ALSA An ALSA audio mixer implementation uses the ALSA PCM and Simple Mixer interfaces.

This implementation is suitable for a production environment.

The ALSA mixer is in the directory source/ae/ddk/audiomixer/alsa.

87OPTIMIZING AND INTEGRATING AIR FOR TV

The audio mixer

Last updated 9/29/2011

AudioOutput class hierarchy

BytesToSamples()

This method returns the number of time samples in a given number of bytes. When the audio stream has multiple

channels, each complete time sample is made up of one PCM sample from each of the channels. For example, with 16-

bit PCM samples, a complete time sample of a mono signal is 16 bits. For a stereo signal, a complete time sample in

this case is 32 bits.

Note: This complete sample is sometimes also known as a frame. A frame is defined as a unit containing one PCM sample

for each channel. Using this terminology, this method returns the number of frames in a given number of bytes.

Therefore, the return value of BytesToSamples() depends on some of the values used to initialize the AudioOutput

instance. Specifically, use the audio format and number of audio channels passed to

IAudioMixer::CreateAudioOutput()to help determine the value BytesToSamples() returns.

GetBuffer()

This method returns a pointer to a buffer and the size of the buffer in bytes. The AIR runtime uses this buffer to pass

PCM samples to the AudioOutput instance. A call to WaitForAvailableBuffer() precedes the call to

GetBuffer()to assure that a buffer is available.

If GetBuffer() successfully returns a buffer, set its return value to AudioOutput::kErrorNoError. This value is

defined in IAudioMixer.h in the AudioOutput::Error enumeration.

However, if no buffer is available, do the following:

• Set the buffer pointer to return to NULL.

• Return AudioOutput::kErrorBufferNotAvailable_Full. This error value is also defined in IAudioMixer.h in

the AudioOutput::Error enumeration.

You can implement GetBuffer() as non-blocking, since the AIR runtime always calls the blocking

WaitForAvailableBuffer() method before calling GetBuffer().

GetBufferingInfo()

This method provides information about the buffers that the AudioOutput instance uses. Specifically, it provides the

following:

• The number of buffers the AudioOutput instance uses.

Pause()

Resume()

Reset()

WaitForAvailableBuffer()

GetBuffer()

GetBufferingInfo()

QueueBuffer()

SetVolume()

GetLatencyInSamples()

SamplesToBytes()

BytesToSamples()

AudioOutput
(abstract)

platform implementation

PlatformAudioOutput

88OPTIMIZING AND INTEGRATING AIR FOR TV

The audio mixer

Last updated 9/29/2011

• The number of bytes per buffer.

GetLatencyInSamples()

This method returns the current latency of the AudioOutput instance. The latency is expressed as a number of

complete time samples. The value is the number of complete time samples that have been passed to the AudioOutput

instance in QueueBuffer() but have not yet been played.

When the audio stream has multiple channels, each complete time sample is made up of one PCM sample from each

of the channels. For example, with 16-bit samples, a complete time sample of a mono signal is 16 bits. For a stereo

signal, a complete time sample in this case is 32 bits.

Note: This complete time sample is sometimes also known as a frame. A frame is defined as a unit containing one PCM

sample for each channel. Using this terminology, this method returns the number of frames that have been queued but

not yet played.

AIR for TV uses this value to provide synchronization when the SWF content is playing a video.

Pause()

The AIR runtime never calls Pause(). Therefore, you can implement this method as a no-op. The Pause() and

Resume() methods are placeholders for future releases of AIR for TV.

QueueBuffer()

This method queues a buffer of PCM samples from the AIR runtime for the AudioOutput instance to process and play.

The buffer pointer passed to this method is the one that the AudioOutput instance returned in GetBuffer(). Also,

the size in bytes passed to this method cannot be greater than the size returned in GetBuffer().

The AudioOutput instance processes and plays the PCM samples in queued buffers in the order received. It stops only

if the one of the following occurs:

• The AIR runtime calls Reset().

• The AIR runtime deletes the AudioOutput instance (by calling IAudioMixer::DestroyAudioOutput()).

The method QueueBuffer() returns an AudioOutput::Error enumeration value. This enumeration is defined in

IAudioMixer.h. Possible return values for QueueBuffer() are the following:

• kErrorNoError when successful.

• kErrorBadPointer when the pointer passed into the method is NULL. Also, return this value if the pointer passed

is not a pointer that GetBuffer() returned.

• kErrorNumBytesGreaterThanBufferSize when the number of bytes passed into the method is greater than the

number returned by GetBuffer(). Do not process any of the bytes.

Reset()

This method discards any buffered audio samples. It resets the AudioOutput instance to its initial state, ready to

receive PCM samples for playing on the audio output hardware.

The AIR runtime calls Reset().

89OPTIMIZING AND INTEGRATING AIR FOR TV

The audio mixer

Last updated 9/29/2011

Resume()

The AIR runtime never calls Resume(). Therefore, you can implement this method as a no-op. The Pause() and

Resume() methods are placeholders for future releases of AIR for TV.

SamplesToBytes()

This method returns the number of bytes in a given number of time samples. When the audio stream has multiple

channels, each complete time sample is made up of one PCM sample from each of the channels. For example, with 16-

bit samples, a complete time sample of a mono signal is 16 bits. For a stereo signal, a complete time sample in this case

is 32 bits.

Note: This complete time sample is sometimes also known as a frame. A frame is defined as a unit containing one PCM

sample for each channel. Using this terminology, this method returns the number of bytes in a given number of frames.

Therefore, the return value of SamplesToBytes() depends on some of the values used to initialize the AudioOutput

instance. Specifically, use the audio format and number of audio channels passed to

IAudioMixer::CreateAudioOutput()to help determine the value SamplesToBytes() returns.

SetVolume()

This method is a placeholder for future development. Implement it to do nothing.

The purpose of this method is to set the output level of an AudioOutput instance’s audio output. The output level is

passed as a value between 0 and 0xFFFF. This range is linear, where 0 means muted and 0xFFFF is full volume.

However, the AIR runtime never calls its AudioOutput instance’s SetVolume() method. The runtime sets the volume

of individual sounds within its SWF content when software mixing the individual sounds.

WaitForAvailableBuffer()

This method does not return until at least one buffer is available, blocking the calling thread of the AIR runtime.

The AIR runtime always calls WaitForAvailableBuffer() before calling GetBuffer() to ensure that a buffer is

available.

The method WaitForAvailableBuffer() returns an AudioOutput::Error enumeration value. This enumeration

is defined in IAudioMixer.h. Possible return values for WaitForAvailableBuffer() are the following:

• kErrorNoError when successful. At least one buffer is available.

• kErrorBufferNotAvailable_TimedOut when no buffers become available within a platform-dependent amount

of time.

• kErrorBufferNotAvailable_Full when playback is paused and no buffers are available. Because platform-

dependent pause is not supported in this release of AIR for TV, this return value is a placeholder.

For more information about threading issues, see “Thread usage” on page 85.

IAudioMixer class methods

Derive a class from IAudioMixer to create your platform-specific audio mixer module. The IAudioMixer class

hierarchy and methods are shown in the following illustration:

90OPTIMIZING AND INTEGRATING AIR FOR TV

The audio mixer

Last updated 9/29/2011

IAudioMixer class hierarchy

CreateAudioOutput()

This method creates and initializes an AudioOutput instance, returning a pointer to the new instance. Make the new

AudioOutput instance ready to receive PCM samples for playing on the audio output hardware as soon as it is created.

This method receives parameters to determine how to initialize the AudioOutput instance. The parameters are the

following:

• The sample rate in hertz of the incoming data.

• The audio sample format. The AIR runtime typically uses 16-bit little endian. The formats are listed in the

AudioFormat enumeration in IAudioMixer.h.

• The number of audio channels (one or two). For example, this value is two for a stereo audio stream.

• A pointer to a callback method for handling buffer underflow. When your AudioOutput instances experiences

buffer underflow, call this callback method if the pointer is not NULL. For more information, see “Buffer underflow

notification” on page 85.

Return a pointer to the new AudioOutput instance, if successful. Otherwise, return NULL.

DestroyAudioOutput()

This method destroys an AudioOutput instance that was created with IAudioMixer::CreateAudioOutput().

The IAudioMixer singleton destroys the AudioOutput instance. The AudioOutput instance immediately stops

playback, closes connections to the audio output hardware, and releases any allocated resources.

IsAudioTypeSupported()

This method determines whether the audio mixer implementation supports a specified combination of sample rate,

number of channels, and audio sample format. Return true if the combination is supported. Otherwise, return false.

If IsAudioTypeSupported() returns false for a particular combination, then CreateAudioOutput() returns

NULL for the same combination.

CreateAudioOutput()

DestroyAudioOutput()

IsAudioTypeSupported()

IAudioMixer
(abstract)

IAEModule
(abstract)

platform implementation

PlatformIAudioMixer

91OPTIMIZING AND INTEGRATING AIR FOR TV

The audio mixer

Last updated 9/29/2011

Creating files for your platform-specific audio mixer

Put the header and source files for your platform-specific audio mixer in a subdirectory of the thirdparty-

private/stagecraft-platforms directory. For information, see “Placing code in the directory structure” on page 151.

You can use the implementations provided by the source distribution as a starting point. If your implementation uses

ALSA, your only task is to build the provided source with your platform.

For more information on the source distribution implementations, see “Implementations included with source

distribution” on page 85.

Building your platform-specific audio mixer

For information about building your audio mixer, see “Building platform-specific drivers” on page 152.

If you are using the provided ALSA implementation of the audio mixer, your only task is to include it in your platform

build. Do the following:

• Follow the instructions in “Building platform-specific drivers” on page 152 to create your platform subdirectory

and Makefile.config file. An example of a platform subdirectory is:

<stagecraft installation directory>/products/stagecraft/thirdparty-
private/yourCompany/stagecraft-platforms/yourPlatform

• Copy the IAudioMixer.mk file from <stagecraft installation

directory>/products/stagecraft/build/linux/platforms/x86Desktop to your platform subdirectory.

• Build your platform according to the instructions in “Building platform-specific drivers” on page 152. Doing so

builds the ALSA implementation of the IAudioMixer module. The build process puts the resulting IAudioMixer.so

library in your platform targets directory, <stagecraft installation directory>/build/stagecraft/linux/yourPlatform.

Testing your audio mixer

An audio testing utility helps you to test your IAudioMixer implementation. The utility is a binary executable called

audiotest.

The audiotest executable plays the part of AIR for TV. It allows you to test your IAudioMixer and AudioOutput

implementations without running AIR for TV. It uses your implementations the same way that AIR for TV does.

The audiotest executable provides you a simple command-line interface to do the following:

• Send up to nine simultaneous audio streams to nine AudioOutput instances of your audio mixer implementation.

The audio streams are tones that the audiotest driver generates. It automatically selects a different frequency for

each tone.

One of the nine audio streams can be a file. The file is lzBabe_11k_stereo.pcm, located in the testfiles directory of

your target build directory. For example:

<stagecraft installation
directory>/build/stagecraft/linux/yourPlatform/debug/bin/testfiles

• Specify the sample rate of each tone.

• Specify whether a tone is mono, stereo, or stereo with a different frequency for each channel.

92OPTIMIZING AND INTEGRATING AIR FOR TV

The audio mixer

Last updated 9/29/2011

• Temporarily stop sending an audio stream to your audio mixer.

• Resume sending an audio stream to your audio mixer.

• Set the volume of an audio stream.

• Mute an audio stream. Muting calls the AudioOutput instance’s SetVolume() method, passing 0 for the volume

level.

• Delete the audio stream. The audiotest executable stops sending the audio stream, and deletes it from its set of audio

streams.

Building and running the audiotest executable

To build the audiotest executable, do the following:

1 Set your SC_PLATFORM and SC_BUILD_MODE environment variables as specified in “Building platform-specific

drivers” on page 152.

2 From the directory <stagecraft installation directory>/products/stagecraft/build/linux, build the audiotest

executable with the following command:

make audiotest

The make utility puts the audiotest executable in your target build directory. For example:

<stagecraft installation directory>/build/stagecraft/linux/yourPlatform/debug/bin

It also puts the test file lzBabe_11k_stereo.pcm in the testfiles directory under the target build directory.

Note: To build all of AIR for TV plus test modules such as audiotest and cppunittest, execute the following command:

make test

To run the audiotest executable, do the following:

1 Change to the target build directory. For example:

<stagecraft installation directory>/build/stagecraft/linux/yourPlatform/debug/bin

2 Add the working directory the LD_LIBRARY_PATH environment variable.

export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

3 Run the audiotest executable

./audiotest

The audiotest executable prompts you to enter commands on the command line.

93

Last updated 9/29/2011

Chapter 6: The image decoder

Adobe® AIR® for TV plays AIR applications. This content often includes JPEG and PNG images. AIR for TV provides

software decoders that decode these images. However, decoding these images with a dedicated hardware decoder is

faster. This speed can make the AIR application startup faster and provide better response time.

To direct AIR for TV to use a hardware image decoder and associated APIs of your target platform, you implement

the image decoder interfaces. The interfaces are abstract C++ classes.

Class overview

The image decoder includes these classes, which are defined in include/ae/ddk/imagedecoder/IImageDecoder.h:

The methods you implement for your platform-specific image decoder module (IImageDecoder subclass) are:

• CreateImageDecoder()

• DestroyImageDecoder()

The methods you implement for your platform-specific image decoder (ImageDecoder subclass) are:

• DecodeImageHeader()

• DecodeImageData()

• AbortDecode()

• GetAdjustedScaleDims()

Class interaction and logic flow

The host application is defined in “Running AIR for TV” on page 2. The host application interacts with AIR for TV to

run AIR applications. Specifically, the host application interacts with the IStagecraft module. Using this interface, the

host application creates the StageWindow instance. The StageWindow instance contains an instance of the Adobe®

AIR® runtime. The AIR runtime loads the AIR application specified by the host application.

The SWF content of an AIR application can include PNG and JPEG images. The AIR runtime and your platform-

specific image decoder module and image decoder interact to decode the images.

Class or structure Description

ImageDecoder Abstract class that you implement that defines the interfaces that AIR for TV uses to decode a

JPEG or PNG image.

IImageDecoder Abstract class, derived from IAEModule, that you implement. The IImageDecoder subclass is the

factory for creating and destroying your platform-specific image decoder.

DecodeRequest Abstract class that the AIR runtime module implements to provide information about which

type of image decoder to create, and how to decode the image.

94OPTIMIZING AND INTEGRATING AIR FOR TV

The image decoder

Last updated 9/29/2011

Acquiring the image decoder module

When the AIR runtime renders an image from the SWF content, the runtime acquires the image decoder module. The

image decoder module is an instance of your platform-specific IImageDecoder subclass.

Setting up the decode request

The AIR runtime asks the image decoder module to create an image decoder. But first, it creates and initializes an

instance of a class that implements the DecodeRequest interface. The runtime initializes the DecodeRequest object

with the following information:

• The type of the source image: JPEG or PNG.

• A pointer to the encoded image data for the source image.

• The size of the encoded image data.

• A pointer to a MemoryWatchdog object.

Creating the image decoder

After creating and initializing the DecodeRequest object, the AIR runtime asks the image decoder module to create an

image decoder. To do so, the runtime calls the CreateImageDecoder() method of the image decoder module. The

runtime passes a pointer to the DecodeRequest object as a parameter in the method call.

In your implementation of CreateImageDecoder(), use the type of the source image in the DecodeRequest object to

determine how to create your platform-specific image decoder. In your newly created image decoder, save the pointer

to the DecoderRequest object. The image decoder uses the methods of the DecoderRequest object throughout its

lifecycle.

Decoding the image header

After creating the image decoder, the AIR runtime asks it to decode the image header. To do so, the runtime calls the

DecodeImageHeader() method of your platform-specific image decoder. Your implementation of

DecodeImageHeader() includes the following tasks:

1 Use these DecodeRequest object methods to get information about the image: GetSourceImageType(),

GetSourceData(), GetSourceDataSize(). Use the DecodeRequest object method GetMemoryWatchdog() to get

a pointer to a MemoryWatchdog object for allocating and deallocating system memory.

Note: Do not call any other methods of the DecodeRequest object at this point in the life cycle of the image decoder.

Other methods do not yet have valid data to return.

2 Decode the header information. If not null, use the MemoryWatchdog pointer for system memory allocation and

deallocation.

3 Call the NotifyImageHeaderDecodeComplete() method of the DecodeRequest object. You pass this method the

height, width, and color format of the image. You also pass this method whether the image has transparency (alpha)

data. The DecodeRequest object stores this information.

95OPTIMIZING AND INTEGRATING AIR FOR TV

The image decoder

Last updated 9/29/2011

Preparing to decode the image data

After your image decoder has decoded the header data, the AIR runtime prepares to decode the image data. This

preparation includes some tasks that affect your image decoder. Specifically, the AIR runtime:

• Prepares a Plane object. Your image decoder decodes the image data into this Plane object. The AIR runtime stores

a pointer to the Plane object in the DecodeRequest object. Later, your image decoder uses the

GetDecodeTargetPlane() method of the DecodeRequest object to get the pointer.

• Determines the scale factor. For JPEG images, your image decoder uses this factor to downscale the image during

decoding. For images which are not JPEG images, the AIR runtime sets this factor to 1. The runtime stores the scale

factor in the DecodeRequest object. Later, your image decoder uses the GetScaleFactor() method of the

DecodeRequest object to get the scale factor.

• Adjusts the image dimensions (for JPEG images only). Some image decoder implementations can scale down an

image while decoding. Doing so is efficient when a decoded image has large dimensions, but will be scaled down

for display. If your image decoder can scale down an image, implement the ImageDecoder method

GetAdjustedScaledDims() to return the dimensions of what the decoded image size will be. If your image

decoder cannot scale down an image while decoding, return the same dimensions as the input parameters.

Decoding the image data

After making preparations for decoding the image data, the AIR runtime calls the DecodeImageData() method of

your platform-specific image decoder. Your implementation of DecodeImageData() includes the following tasks:

1 Use these DecodeRequest object methods to get information about the image: GetSourceImageType(),

GetSourceData(), GetSourceDataSize().

2 Use these DecodeRequest object methods to get information decoded in the previous call to DecodeHeaderData():

GetHeaderImageWidth(), GetHeaderImageHeight(), and GetHeaderImageColorFormat().

3 Use the DecodeRequest object method GetTargetDecodePlane()to get a pointer to the plane in which to decode

the image.

4 Call the Plane object’s Lock() method to get a pointer to the bitmap of the plane. Don’t forget to call the Plane

object’s Unlock() method when decoding is complete.

5 Use the Plane object’s GetClassName() method to determine the type of the Plane object. Determining the type

is necessary if your DecodeImageData() implementation accesses publicly accessible methods for that specific

Plane type. Cast the Plane object pointer to the more specific type. For example:

ae::stagecraft::Plane * pPlane = m_pDecodeRequest->GetDecodeTargetPlane();
if (strcmp(pPlane->GetClassName(), MY_PLATFORM_PLANE_CLASS_NAME) == 0)
{

MyPlatformPlane * pMyPlatformPlane = (MyPlatformPlane *) pPlane;
pMyPlatformPlane->MyPublicMethod();

}

6 Decode the image data. If not null, use the MemoryWatchdog pointer for system memory allocation and

deallocation. The DecodeRequest object’s GetMemoryWatchdog()returns this pointer.

7 Call the Plane object’s Unlock() method if you previously called the Lock() method.

8 Call the NotifyImageDataDecodeComplete() method of the DecodeRequest object.

The AIR runtime now has the decoded image in the bitmap from the Plane object. The runtime deletes the

DecodeRequest object. It also destroys the image decoder by calling the DestroyImageDecoder() method of the

image decoder module.

Note: The AIR runtimes applies alpha multiplication, so do not apply alpha multiplication in your image decoder.

96OPTIMIZING AND INTEGRATING AIR FOR TV

The image decoder

Last updated 9/29/2011

Interleaved calls to DecodeImageHeader() and DecodeImageData()

For each image, the AIR runtime always calls the image decoder’s DecodeImageHeader() method before the

DecodeImageData() method. However, the runtime sometimes interleaves calls to these methods for multiple images.

Implement your image decoder to expect interleaved calls. The following list illustrates a possible interleaved calling

sequence.

1 DecodeImageHeader() for image A

2 DecodeImageHeader() for image B

3 DecodeImageData() for image A

4 DecodeImageHeader() for image C

5 DecodeImageData() for image B

6 DecodeImageData() for image C

Aborting an image decode request

Sometimes the AIR runtime attempts to cancel a request it previously made to decode an image. This attempt occurs

when, for example, the StageWindow instance exits before the SWF content finishes playing. The AIR runtime calls

your ImageDecoder object’s AbortDecode() method. In AbortDecode(), provide the logic to stop decoding the

image header or data, depending on the state of your ImageDecoder. Depending on your implementation, this method

can do nothing.

Note: The thread calling AbortDecode() is not the same as the thread which called your ImageDecoder object’s

DecodeImageHeader() and DecodeImageData() methods. Therefore, code AbortDecode() in a thread-safe

manner.

Synchronous or asynchronous implementation

Your implementations of the image decoder methods DecodeImageHeader() and DecodeImageData() can be either

synchronous or asynchronous. If you implement them synchronously, call

NotifyImageHeaderDecodeComplete()or NotifyImageDataDecodeComplete()before returning. If you

implement them asynchronously, return without calling the notification method. However, as soon as the header or

image data has been decoded, call the appropriate notification method.

Implementations included with source distribution

The source distribution for AIR for TV includes a JPEG image decoder software implementation and a PNG image

decoder software implementation. The files are in source/ae/ddk/imagedecoder. You can copy these files as a basis for

your own implementations.

97OPTIMIZING AND INTEGRATING AIR FOR TV

The image decoder

Last updated 9/29/2011

Creating files for your platform-specific image decoder

Put the header and source files for your platform-specific image decoder in a subdirectory of the thirdparty-

private/stagecraft-platforms directory. For information, see “Building platform-specific drivers” on page 152.

You can use the implementations provided by the source distribution without modification if they meet your needs.

Otherwise, copy them to use as a starting point for your own implementation. For more information on the source

distribution implementations, see “Implementations included with source distribution” on page 96.

Building your platform-specific image decoder

For information about building your image decoder, see “Building platform-specific drivers” on page 152.

File Description

IImageDecoderImpl.h

IImageDecoderImpl.cpp

An implementation of the IImageDecoder module. This image decoder module creates

either a JpegImageDecoder object or a PngImageDecoder object, depending on the

type of image.

ImageDecoderImpl.h

ImageDecoderImpl.cpp

An abstract implementation of the ImageDecoder class. The JpegImageDecoder and

PngImageDecoder classes derive from ImageDecoderImpl. The ImageDecoderImpl

class provides implementations of methods common to the JpegImageDecoder and

PngImageDecoder classes.

JpegImageDecoder.h

JpegImageDecoder.cpp

An implementation of the ImageDecoderImpl class for decoding JPEG images.

PngImageDecoder.h

PngImageDecoder.cpp

An implementation of the ImageDecoderImpl class for decoding PNG images.

98

Last updated 9/29/2011

Chapter 7: The system driver

The system driver provides information about your platform to Adobe® AIR® for TV. AIR for TV uses this information

for these purposes:

• To support ActionScript requests for information.

• To support ActionScript extensions.

• To support logic that is internal to AIR for TV.

The system driver has one abstract class ISystemDriver which derives from IAEModule. The ISystemDriver class is

defined in include/ae/ddk/systemdriver/ISystemDriver.h.

ISystemDriver class hierarchy

Implementations included with source distribution

The source distribution includes an ISystemDriver implementation for the x86Desktop platform.

You can copy this implementation as a starting point for your own. It is available in source/ae/ddk/systemdriver. For

information about building your system driver, see “Building platform-specific drivers” on page 152.

ISystemDriver methods

Implement the ISystemDriver methods to provide information about your platform. For detailed definitions of return

values and parameters of the ISystemDriver class methods, see include/ae/ddk/systemdriver/ISystemDriver.h.

GetOSVersionString()
GetPlatformName()
GetPlatformArchitecture()
Has AC3()
HasEAC3()
HasDTS()
HasDTSExpress()
HasDTSHD_HR()
HasDTSHD_MA()
GetNumberOfCPUs()
GetFSCompatibleCurrentUsername()

ISystemDriver
(abstract)

platform implementation

PlatformISystemDriver

IAEModule
(abstract)

99OPTIMIZING AND INTEGRATING AIR FOR TV

The system driver

Last updated 9/29/2011

GetFSCompatibleCurrentUsername()

Returns a string parameter that is the name of the current user. The string must adhere to the filesystem’s filename

constraints because AIR for TV uses the name as a directory name.

Consider the following cases when implementing GetFSCompatibleCurrentUsername():

• Each user corresponds to one operating system user on your platform. In this case,

GetFSCompatibleCurrentUsername()can return the operating system user name. For example, on Linux,

getenv("USER") returns this name.

• Your platform has only one user, such as root or another designated user on Linux systems. In this case,

GetFSCompatibleCurrentUsername()can return the operating system user name or any string that adheres to

the filesystem’s filename constraints.

• Your platform provides user accounts and names at an application level higher than the operating system software.

In this case, GetFSCompatibleCurrentUsername()can return one of these user names.

If this method returns an empty string, then AIR for TV uses the string "default".

Note: AIR for TV calls this method only one time when the AIR for TV process starts.

More Help topics

“User-specific data files” on page 139

“AIR application filesystem access” on page 141

GetNumberOfCPUs()

Returns a u32 value that is the number of CPUs on the device. The number of CPUs can impact the runtime’s

processing decisions. For example, when more than one CPU is available, the runtime tries to spread frame rendering

among the CPUs.

GetOSVersionString()

Returns a string parameter that is the operating system version of the device. The ActionScript property

flash.system.Capabilities.os returns this string.

GetPlatformArchitecture()

Returns a string parameter that is the name of the architecture of the device. For example, this string is "x86", "mips",

or "arm".

More Help topics

“GetPlatformName()” on page 99

GetPlatformName()

Returns a string parameter that is the platform name of the device.

This string is used with the string that GetPlatformArchitecture() returns. Together, they are the same string as the

name attribute of the platform element in an extension.xml descriptor file. An extension.xml descriptor file is part of

an ActionScript extension package. On the device, the extension’s platform-specific files are located in a directory with

this same name.

100OPTIMIZING AND INTEGRATING AIR FOR TV

The system driver

Last updated 9/29/2011

For example, consider a TV manufacturer named MyOEM that uses an x86 processor in its device:

• GetPlatformName() typically returns the string "MyOEM".

• GetPlatformArchitecture() typically returns the string "x86".

• The name of the platform element of the extension.xml file is the string "MyOEM-x86".

• The extension’s platform-specific files are located in a directory called MyOEM-x86.

For more information, see Developing Native Extensions for Adobe AIR.

More Help topics

“GetPlatformArchitecture()” on page 99

HasAC3()

Returns an unsigned integer that indicates:

• Whether the platform can decode AC-3.

• Whether the platform can pass through the compressed AC-3 stream to an audio/video receiver.

• Whether the platform does not support AC-3.

The return value is a bitwise-or of values from the AudioCodecCapabilities enumeration in ISystemDriver.h.

HasEAC3()

Returns an unsigned integer that indicates:

• Whether the platform can decode E-AC-3.

• Whether the platform can pass through the compressed E-AC-3 stream to an audio/video receiver.

• Whether the platform does not support E-AC-3.

The return value is a bitwise-or of values from the AudioCodecCapabilities enumeration in ISystemDriver.h.

HasDTS()

Returns an unsigned integer that is a bitwise-or of values from the AudioCodecCapabilities enumeration in

ISystemDriver.h. The bits indicate:

• Whether the platform can decode DTS.

Set this bit to 1 if and only if your stream player sends its output to your decoder and your decoder has received full

CA certification from DTS, Inc.

• Whether the platform can pass through the compressed DTS stream to an audio/video receiver.

Always set this bit to 0.

• Whether the platform does not support DTS.

http://www.adobe.com/go/learn_air_as_extensions_en

101OPTIMIZING AND INTEGRATING AIR FOR TV

The system driver

Last updated 9/29/2011

HasDTSExpress()

Returns an unsigned integer that is a bitwise-or of values from the AudioCodecCapabilities enumeration in

ISystemDriver.h. The bits indicate:

• Whether the platform can decode DTS Express.

Set this bit to 1 if and only if your stream player sends its output to your decoder and your decoder has received

DTS Express certification from DTS, Inc.

• Whether the platform can pass through the compressed DTS Express stream to an audio/video receiver.

Always set this bit to 0.

• Whether the platform does not support DTS Express.

HasDTSHD_HR()

Returns an unsigned integer that is a bitwise-or of values from the AudioCodecCapabilities enumeration in

ISystemDriver.h. The bits indicate:

• Whether the platform can decode DTS-HD High Resolution Audio.

Set this bit to 1 if and only if your stream player sends its output to your decoder and your decoder has received

DTS-HD HR certification from DTS, Inc.

• Whether the platform can pass through the compressed DTS-HD High Resolution Audio stream to an audio/video

receiver.

Always set this bit to 0.

• Whether the platform does not support DTS-HD High Resolution Audio.

HasDTSHD_MA()

Returns an unsigned integer that is a bitwise-or of values from the AudioCodecCapabilities enumeration in

ISystemDriver.h. The bits indicate:

• Whether the platform can decode DTS-HD Master Audio.

Set this bit to 1 if and only if your stream player sends its output to your decoder and your decoder has received

DTS-HD MA certification from DTS, Inc.

• Whether the platform can pass through the compressed DTS-HD Master Audio stream to an audio/video receiver.

Always set this bit to 0.

• Whether the platform does not support DTS-HD Master Audio

102

Last updated 9/29/2011

Chapter 8: Locale support

AIR for TV supports the flash.globalization package, which harnesses the cultural support capabilities of the platform.

This package makes it easier for AIR applications to follow the cultural conventions of individual users. These cultural

conventions include, for example:

• date and time formats

• number and currency formats

• string comparison and sorting

• string conversion to upper and lowercase

• parsing numbers and currencies

For more information, see Overview of the flash.globalization package in ActionScript 3.0 Developer's Guide.

To make your platform implementation of AIR for TV support the flash.globalization package, AIR for TV provides

two options:

• Use an implementation based on the ICU library (http://site.icu-project.org). See “ICU library support for

flash.globalization” on page 102.

• Use an implementation based on the glibc library or uclibc library. See “glibc or uclibc library support for

flash.globalization” on page 103. This option is the default.

ICU library support for flash.globalization

One option for implementing flash.globalization package support in AIR for TV is to use the ICU library. AIR for TV

distributes the ICU library tar file in the following directory:

<AIR for TV installation directory>/products/stagecraft/thirdparty/ICU

To direct AIR for TV to use the ICU library, set the following variable in your platform’s Makefile.config file:

SC_GSLIB_ICU := yes

When SC_GSLIB_ICU is set to yes, when you build AIR for TV, the make utility adds the following tasks:

• Untars the ICU library.

• Builds the ICU library.

• Statically links the ICU library with the AIR for TV binaries.

For more information on building AIR for TV, see “Placing code in the directory structure” on page 151 and “Building

platform-specific drivers” on page 152.

Although using the ICU library supports the flash.globalization package, it increases the size of the AIR for TV

binaries. This disadvantage is solved by using glibc or uclibc library support for flash.globalization.

http://www.adobe.com/go/learn_as3_flash_globalization_en
http://www.adobe.com/go/learn_cs5_as3devguide_en
http://site.icu-project.org

103OPTIMIZING AND INTEGRATING AIR FOR TV

Locale support

Last updated 9/29/2011

glibc or uclibc library support for flash.globalization

One option for implementing flash.globalization package support in AIR for TV is to base the support on the glibc

library or uclibc library. AIR for TV uses this option as the default choice in its make utility.

This option requires an implementation of the locale driver. The locale driver has one abstract class ILocaleUtils which

derives from IAEModule.

The ILocaleUtils class is defined in include/ae/ddk/localedriver/ILocaleUtils.h. The methods to implement have a one-

to-one correspondence with Linux locale functions.

An advantage of using the locale driver instead of the ICU library is the size of the AIR for TV binary is smaller.

Implementation included with source distribution

AIR for TV provides a default implementation for the locale driver. The default implementation is in the file

source/ae/ddk/localedriver/LocaleUtilsGlibc.cpp.

This default implementation uses a set of glibc or uclibc library functions to provide extended locale support. If this

set of functions works on your platform, you can use this default locale driver implementation.

However, if the extended locale support library functions do not work on your platform, provide your own

implementation of the ILocaleUtils class. The ILocaleUtils methods you implement have a one-to-one correspondence

with Linux methods of the same name.

To use the default implementation or your own implementation, see “Building platform-specific drivers” on page 152.

Command-line locale option

The stagecraft binary executable takes a command-line option --locale to set the locale. This command-line option

causes AIR for TV to pass the locale value you specify to the locale driver’s setlocale() method. If you do not specify

this command-line option, AIR for TV passes the value en_US.UTF-8 to the setlocale() method.

The default implementation of ILocaleDriver that is included in the source distribution handles the following

scenarios:

• You do not specify the --locale option.

The default implementation sets the locale to en_US.UTF-8.

• You specify the --locale option, and your platform supports that locale.

The default implementation sets the locale to the value you specify.

• You do specify the --locale option, but your platform does not support that locale. This case occurs if the C library

function setlocale on your platform does not accept the value.

The default implementation sets the locale to the value that your platform’s setlocale function uses when given

"" as its locale parameter. If the setlocale function does not provide a result when passed "", the default

ILocaleDriver implementation sets the locale to en_US.UTF-8.

104

Last updated 9/29/2011

Chapter 9: Integrating with your platform

Adobe® AIR® for TV provides interfaces to load and run AIR applications on the target platform. These interfaces are

the IStagecraft and StageWindow interfaces. A C++ application that runs on your platform uses these interfaces. This

C++ application is the stagecraft binary executable, also called the host application.

Use the stagecraft binary executable as your platform’s host application. The AIR for TV source distribution provides

the stagecraft binary executable. Its source file is stagecraft_main.cpp in the directory source/executables/stagecraft.

Typically, you use this host application without modification.

The host application uses IStagecraft and StageWindow interfaces that load and run an AIR application in AIR for TV.

However, your platform-specific modules, such as the graphics driver, can use some of the other interfaces that these

classes provide.

Class overview

The following table describes the overall functionality of the IStagecraft and StageWindow interfaces:

105OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

Further information follows about using these interfaces in the host application or in your platform-specific modules.

For detailed method signatures and additional comments, see the header files.

Note: If you have the source distribution of AIR for TV, the IStagecraft implementation is in

source/ae/stagecraft/IStagecraftImpl.cpp. The StageWindow implementation is in

source/ae/stagecraft/StageWindowImpl.cpp.

Stagecraft library initialization and shutdown

Note: Typically, only the stagecraft binary executable uses these methods.

Use the IStagecraft interface method InitializeStagecraftLibrary() to load and initialize AIR for TV.

Class Description Header File

IStagecraft IStagecraft is the main interface into AIR for TV. The binary

distribution of AIR for TV contains the implementation of this

interface. Use the IStagecraft interface methods to:

• Initialize and shutdown AIR for TV.

• Create, configure, run, and destroy the StageWindow instance.

• Dispatch user input events.

• Show the usage of command-line parameters for AIR for TV.

• Look up the directories that AIR for TV uses.

include/ae/stagecraft/IStagecraft.h

StageWindow StageWindow is the interface to use to manipulate the

StageWindow instance. The binary distribution of AIR for TV

contains the implementation of this interface. Use the

StageWindow interface methods to:

• Configure the parameters of the StageWindow instance.

• Provide or create planes for the StageWindow instance.

• Load and run an AIR application in the StageWindow instance.

• Manipulate the graphics window associated with the

StageWindow instance.

• Handle user input events for the StageWindow instance.

• Get information about the StageWindow instance. This

information includes: the status, the planes, location on the

screen, and the dimensions of the stage of the AIR application.

• Associate data from the host application or platform-specific

module with the StageWindow instance.

• Track the memory usage of the StageWindow instance.

• Register and unregister for notifications from the StageWindow

instance.

include/ae/stagecraft/StageWindow.h

StageWindowNo

tifier

Abstract class you implement to receive events about the

StageWindow instance.

include/ae/stagecraft/StageWindow.h

106OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

InitializeStagecraftLibrary() does the following:

1 Loads and initializes the AEKernel library. This library provides the AcquireModule() interface. You can use the

AcquireModule() interface to load any other module of AIR for TV.

2 Loads the IStagecraft module.

Typically, you call InitializeStagecraftLibrary() from your host application’s main function. Pass the argc and

argv parameters of main to InitializeStagecraftLibrary():

IStagecraft * pIStagecraft = IStagecraft::InitializeStagecraftLibrary(argc, argv);

When your host application no longer needs AIR for TV, use UninitializeStagecraftLibrary():

if (pIStagecraft) IStagecraft::UninitializeStagecraftLibrary();

Call UninitializeStagecraftLibrary() from the same thread that called InitializeStagecraftLibrary().

However, you can use in any thread the IStagecraft interface pointer that InitializeStagecraftLibrary()

returned.

StageWindow instance creation and deletion

Note: Typically, only the stagecraft binary executable creates the StageWindow instance.

An AIR application runs in the StageWindow instance. To create the StageWindow instance, use the following

IStagecraft interface method:

CreateStageWindow()

Call this method with or without a parameter. The parameter specifies the configuration for the StageWindow

instance. For example, in your main function, do the following:

StageWindow *pStageWindow;
if (pIStagecraft)
{

// Create the StageWindow instance. The StageWindow instance initializes its
// StageWindow parameters with the default values.
pStageWindow = pIStagecraft->CreateStageWindow();

}

The following example creates the StageWindow instance with a configuration parameter:

StageWindow *pStageWindow;
if (pIStagecraft)
{

// Create the StageWindow instance. Use InitParameters() to set the
// parameters to the default values. Then, change some parameters.
// Here, the code sets the URL of the SWF file to play.
StageWindowParameters swParams;
pIStagecraft->InitParameters(swParams);
swParams.m_pContentURL = "http://www.myserver.com/myswf.swf";
pStageWindow = pIStagecraft->CreateStageWindow(swParams);

}

For more information on the default parameter values, see “Default StageWindow instance parameter values” on

page 109.

To delete the StageWndow instance, use the following IStagecraft interface method:

107OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

DestroyStageWindow()

Pass this method a pointer to the StageWindow instance to delete. For example:

pIStagecraft->DestroyStageWindow(pStageWindow);

Call DestroyStageWindow() when, for example, the AIR application has finished playing, or when a user requests to

stop viewing the AIR application. Also, call this method to clean up the StageWindow instance if an error occurs.

StageWindow instance configuration

You can configure the StageWindow instance as follows:

• Create, then configure, the StageWindow instance.

• Configure the StageWindow instance when you create it.

The definitions of the StageWindow parameters that configure the StageWindow instance are in the StageWindow.h

file.

Command-line parameters

One way to configure the StageWindow instance is with the command-line parameters of the host application. Some

StageWindow and IStagecraft interface methods take as parameters the argc and argv parameter values of your

main() function. For the list of parameter values, see Getting Started with Adobe AIR for TV (PDF).

Use the IStagecraft interface method ShowUsage() to output the usage of the command-line options to the console,

such as the Linux shell.

Note: If you use the interface methods that use argc and argv, do not use any command-line parameters that are not

specific to AIR for TV.

Create, then configure, the StageWindow instance

Note: Typically, only the stagecraft binary executable uses these methods.

Create the StageWindow instance, allowing the StageWindow constructor to set its parameters to the default. Then,

configure the parameters.

Use the IStagecraft interface method CreateStageWindow() with no parameters to create the StageWindow instance.

Then, use the StageWindow interface method Configure() to configure the parameters. You pass Configure() the

configuration settings. This method is overloaded. You can pass it either a StageWindowParameters object or the

command-line parameters. The following example passes a StageWindowParameters object:

http://www.adobe.com/go/GettingStartedWithAdobeAIRForTV/

108OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

StageWindow *pStageWindow;

// Create the StageWindow instance. The StageWindow instance initializes its
// StageWindow parameters with the default values.
pStageWindow = pIStagecraft->CreateStageWindow();

// Later, when you have the configuration settings available, configure
// the StageWindow instance. This example sets up a StageWindowParameters
// object with the default parameter values. Then it fills in the URL
// of the SWF file to play.

StageWindowParameters swParams;
pIStagecraft->InitParameters(swParams);
swParams.m_pContentURL = "http://www.myserver.com/myswf.swf";
pStageWindow->Configure(swParams);

The following example initializes the StageWindow instance with the command-line arguments:

StageWindow *pStageWindow;
// Create the StageWindow instance. Let the StageWindow instance configuration
// use the default values.
pStageWindow = pIStagecraft->CreateStageWindow();
// Now configure the StageWindow instance to use the command-line parameters.
pStageWindow->Configure(argc, argv);

For more information on the default parameter values, see “Default StageWindow instance parameter values” on

page 109.

Configure the StageWindow instance when you create it

Note: Typically, only the stagecraft binary executable uses these methods.

Create the StageWindow instance, passing a StageWindowParameters object to configure the parameters. You can set

the StageWindowParameters object to the values from the command-line parameters or any other values you choose.

The following example initializes the StageWindow instance with the command-line parameters upon creation. It uses

a convenient IStagecraft interface method called ParseCommandLineParameters(). This method initializes a

StageWindowParameters object to the configuration values from the command line of your host application.

StageWindow *pStageWindow;

// Create the StageWindow instance, passing it the command-line parameters.
StageWindowParameters swParams;
if (pIStagecraft->ParseCommandLineParameters(argc, argv, swParams))
{

pStageWindow = pIStagecraft->CreateStageWindow(swParams);
}
else {

// A failure occurred when parsing the command-line parameters.
}

The following example uses default parameters, except for the URL of the application to play:

109OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

StageWindow *pStageWindow;

// Create the StageWindow instance. Pass it the default parameters, except
// set the URL of the SWF file to play. Use InitParameters() to set the
// parameters to the default values.
pIStagecraft->InitParameters(swParams);
swParams.m_pContentURL = "http://www.myserver.com/myswf.swf";
pStageWindow = pIStagecraft->CreateStageWindow(swParams);

For more information on the default parameter values, see “Default StageWindow instance parameter values” on

page 109.

Default StageWindow instance parameter values

When you create the StageWindow instance, the StageWindow constructor initializes the instance to have the default

configuration. Similarly, you can use the IStagecraft interface method InitParameters() to initialize a

StageWindowParameters object to the default values.

The following table gives the default configuration values of a StageWindowParameters object:

StageWindowParameters data member Default value

m_pContentURL NULL

m_pKeymapURL NULL

m_pFlashModuleName "IFlashRuntimeLib"

m_pRenderPlane NULL

m_pOutputPlane NULL

m_contentDims ae::stagecraft::Dims(0, 0)

m_outputDims ae::stagecraft::Dims(0, 0)

m_outputRect ae::stagecraft::Rect(0, 0, 0, 0)

m_renderColorFormat ae::stagecraft::kNullColorFormat

m_outputColorFormat ae::stagecraft::kNullColorFormat

m_bCreateOutputPlane true

m_bScaleRenderPlaneToFit true

m_pTitle NULL

m_pStageWindowNotifier NULL

m_nBGAlpha 255

m_profile ae::stagecraft::kTV

m_pSSLClientCertTable NULL

m_pSSLCertsDir NULL

m_bRenderPlaceholderForUnsupportedVersions true

m_bUnthrottleFramerate false

110OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

Loading and running an AIR application

Note: Typically, only the stagecraft binary executable calls the methods to load and run an AIR application.

Once you have created and configured the StageWindow instance, you can run an AIR application in it. To run the

AIR application, you have the following options:

• Call the StageWindow interface method RunToCompletion() to do all the tasks involved with running an AIR

application in the StageWindow instance. These tasks are: loading the AIR application, creating the planes, and

starting playback of the AIR application.

• Call individual StageWindow interface methods for each task. These methods are: LoadSWF() or

LoadSWFAsync(), CreatePlanes(), SetRenderPlane(), SetOutputPlane(), and Play().

m_outputNotifyFlags Debug mode:

ae::stagecraft::kOutputNotifyFlagsASTrace

Release mode: 0

m_nFrameRateNotifyPeriodMS 5000

m_nMaxMemoryUsageBytes 0

m_bLoop true

m_pRelativeBaseUrl NULL

m_pAirBaseUrl NULL

m_pAirCommandLine NULL

m_bKeyMaster false

m_pProxyHost NULL

m_proxyPort 80

m_pProxyUserName NULL

m_pProxyPassword NULL

m_openGLMode ae:::stagecraft::kOpenGLModeDefault

m_bDCTS false

m_bStreamPlayerDump false

m_pExtensionsDir "/opt/adobe/stagecraft/extensions/"

m_pFontDirs NULL

m_bInstrumentTime false

m_Locale "en_US.UTF-8"

StageWindowParameters data member Default value

111OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

Invoking all tasks to run an AIR application

Call the StageWindow interface method RunToCompletion() to do the following tasks:

1 Load the AIR application into the AIR runtime. If the AIR application is already loaded, RunToCompletion() skips

this step. To load the AIR application, RunToCompletion() calls the StageWindow interface method LoadSWF().

2 Create the render plane and output plane, if necessary. To create the planes, RunToCompletion() calls the

StageWindow interface method CreatePlanes().For more information about CreatePlanes(), see

“Controlling individual tasks for running an AIR application” on page 111.

3 Start playing the AIR application. RunToCompletion() calls the StageWindow interface method Play().

RunToCompletion() does not return until one of the following events occurs:

• The AIR application finishes playing.

• An error occurs that causes the AIR application to stop playing.

• End-user interaction stops playback of the AIR application.

The following code shows an example of using RunToCompletion():

// Create a StageWindow instance, passing it the command-line parameters.
// The command-line parameters include a SWF file on the local filesystem.

StageWindow *pStageWindow;
StageWindowParameters swParams;
if (pIStagecraft->ParseCommandLineParameters(argc, argv, swParams))
{

pStageWindow = pIStagecraft->CreateStageWindow(swParams);
if (pStageWindow != NULL)
{

if (pStageWindow->RunToCompletion())
{

// RunToCompletion() returned true.
// The AIR application finished playing successfully.

}
else
{

// An error occurred while the AIR application was playing.
}

}
else {

// An error occurred when creating the StageWindow instance.
}

}
else {

// An error occurred when parsing the command-line parameters.
}

Controlling individual tasks for running an AIR application

You can use the StageWindow interface methods to more directly control the tasks involved in running an AIR

application. These methods are:

• LoadSWF(). Use this blocking method to load the AIR application into the AIR runtime. This method returns when

loading has completed.

112OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

• LoadSWFAsync(). Use this non-blocking method to load a AIR application. The method asynchronously loads the

file into the AIR runtime. Use a StageWindowNotifier object to determine when loading is complete. For more

information, see “Events about loading AIR applications” on page 116.

• CreatePlanes(). Use this method to load the AIR application and create the planes for the StageWindow instance.

CreatePlanes() first calls LoadSWF() if the AIR application has not yet been loaded. Then, CreatePlanes() uses

the StageWindowParameters fields configured for the StageWindow instance to determine how to create the

planes. CreatePlanes() uses graphics driver module methods to create the planes.

CreatePlanes() does not always create planes. Specifically, CreatePlanes()creates a render plane only if you set to

NULL the value for the StageWindowParameters field m_pRenderPlane. CreatePlanes()creates an output plane

only if you set m_pOutputPlane to NULL and set m_bCreateOutputPlane to true. These StageWindowParameters

values are the defaults.

• SetRenderPlane(). Call this method from your host application if your host application creates the render plane

before creating the StageWindow instance. You can use GetRenderPlane() to get a pointer to the render plane

currently in use.

• ResetRenderPlane(). Call this method from your host application to change the render plane that the

StageWindow instance uses.

• SetOutputPlane(). Call this method from your host application if your host application creates the output plane

before creating the StageWindow instance. You can use GetOutputPlane() to get a pointer to the output plane

currently in use.

• Play(). Call this method to begin or resume playback of the AIR application. Play() is non-blocking. Therefore,

use Play() if you want the control to pause and resume playback.

Pausing and resuming AIR application playback

You can pause the playback of the AIR application. Use the StageWindow interface method Pause(). When you want

to resume playback, use Play(). If you want to be able to pause and resume playback, realize that

RunToCompletion() is a blocking method. Therefore, if you use it, use another thread to pause and resume.

Terminating AIR application playback

You can terminate the playback of an AIR application. Use the StageWindow interface method Terminate(). Pass as

a parameter the termination status -- either kStatusComplete or one of the error statuses. These statuses are listed in

the StageWindowStatus enumeration in StageWindow.h. For more information, see “Status values” on page 113.

If you want to be able to terminate playback, realize that RunToCompletion() is a blocking method. Therefore, if you

use it, use another thread to terminate playback.

Getting authored Stage dimensions

At authoring time, an AIR application developer sets the Stage dimensions for the application. Use the StageWindow

interface method GetSWFAuthoredStageDims()to get these dimensions.

Note: Until the StageWindow instance is in the kStatusLoaded state, this method returns a Dims object that has a width

and a height of 0. For more information, see “Status values” on page 113.

113OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

Getting the screen location

Use the StageWindow interface method GetRectOnScreen()to get the location and dimensions of the display

window associated with the StageWindow instance. The returned value is the bounding rectangle for the window

associated with the StageWindow instance’s output plane. For more information, see “GetRect() method” on page 21.

Client contexts

You can associate information from your host application or platform-specific module with the StageWindow

instance. This information is called a client context. Use the StageWindow interface methods SetContext() and

GetContext() to set and retrieve client contexts for the StageWindow instance.

When you call SetContext(), pass a name for the context. The name is a pointer to a character string. You also pass

SetContext() a pointer to the data you want to associate with the StageWindow instance. For example:

// pMyData is a pointer to an instance of some class
// in the host application or platform-specific module.
pStageWindow->SetContext("StageWindow1",(void *) pMyData);

The StageWindow instance stores the data for you to retrieve later. To retrieve the data, use the same context name:

pMyData = pStageWindow->GetContext("StageWindow1");

StageWindow event handling

The StageWindow instance maintains a status. Your host application or platform-specific module can get the status.

It can also receive asynchronous events about the status.

Status values

The status of the StageWindow indicates its processing state or error condition. The status values are defined in the

StageWindowStatus enumeration value in include/ae/stagecraft/StageWindow.h.

The status values are divided into three categories:

• The states of the StageWindow instance. These status values begin with kStatus. The following StageWindow

interface methods use or set the status value: Configure(), LoadSWF(), LoadAsyncSWF(), CreatePlanes(),

SetRenderPlane(), ResetRenderPlane(), SetOutputPlane(), RunToCompletion(), Play(), and Pause().

The following IStagecraft interface methods also use or set the status value: CreateStageWindow()and

DestroyStageWindow().

For more information, see “State transition table” on page 116.

• Errors that can occur in the StageWindow instance. These status values begin with kError. When an error occurs,

the StageWindow instance stops processing. Destroy the StageWindow instance. See “StageWindow instance

creation and deletion” on page 106.

• Information about the StageWindow instance. These status values begin with kInfo. These status values report

information such as the following: plane rendering and resizing updates, window move updates, StageWindow

instance focus updates, and non-fatal rendering errors.

Note: The values kInfoWindowActivated and kInfoWindowDeactivated are placeholders for future releases of

AIR for TV.

114OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

Getting the status

To get the status, use the StageWindow interface method GetStageWindowStatus(). This method returns a

StageWindowStatus enumeration value. For example:

if (pStageWindow->GetStageWindowStatus() == kStatusReadyToAnimate)
{

pStageWindow->Play();
}

To check if the StageWindow instance has terminated, use the static StageWindow interface method

IsStageWindowStatusTerminal(). For example:

if (ae::stagecraft::IsStageWindowStatusTerminal (pStageWindow->GetStageWindowStatus())
{

pIStagecraft->DestroyStageWindow(pStageWindow);
}

To check if the StageWindow instance has terminated in error, use the static StageWindow interface method

IsStageWindowStatusErrorTerminal().

Note: Use the IStagecraft interface method StageWindowStatusToString() to convert a StageWindowStatus

enumeration value to a text string. This method is useful, for example, for debugging.

Getting event notifications

Your host application or platform-specific module sometimes needs to wait to perform some action until a particular

event occurs in the StageWindow instance. An event occurs whenever:

• The StageWindow instance changes states (kStatus events).

• The StageWindow instance has an unrecoverable error (kError events).

• The StageWindow instance has information to report (kInfo events).

To receive these events, follow these steps:

1 Derive a class from the StageWindowNotifier class in include/ae/stagecraft/StageWindow.h. Your subclass

implements the OnStageWindowNotification() method. This method’s parameters provide event information.

AIR for TV calls this method when an event occurs.

2 Create an instance of your StageWindowNotifier subclass.

3 Register the StageWindowNotifier subclass object with the StageWindow instance.

Note: The AIR runtime calls your OnStageWindowNotification() method. Therefore, do not call any blocking

methods from within OnStageWindowNotification().

For example, the following code defines a class derived from StageWindowNotifier.

115OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

class MyNotifier:public StageWindowNotifier
{
public:

 virtual void OnStageWindowNotification(StageWindow * pStageWindow,
StageWindowStatus nStatus,
const StageWindowStatusData * pStatusData);

};

void MyNotifier::OnStageWindowNotification(StageWindow * pStageWindow,

StageWindowStatus nStatus,
const StageWindowStatusData * pStatusData)

{
IStagecraft * pIStagecraft =

(IStagecraft *) IAEKernel::GetKernel()->AcquireModule("IStagecraft");
switch (nStatus)
{

case kStatusLoaded:
// Code for handling kStatusLoaded.
// For example, notify another thread to CreatePlanes()
break;

case kStatusReadyToAnimate:

// Code for handling kStatusReadyToAnimate.
// For example, notify another thread to Play()
break;

case kStatusComplete:

// Code for handling kStatusComplete.
// For example, notify another thread to destroy the StageWindow instnace;
break;

case kErrorIncompleteConfiguration:

// Code for Error handling.
// For example, notify another thread to destroy the StageWindow instnace;
break;

// Include other cases that your host application
// or platform-specific module is interested in.

}
}

The following code creates an instance of the StageWindowNotifier subclass and registers it with the StageWindow

instance.

MyNotifier *pMyNotifier = AE_NEW MyNotifier;
pStageWindow->RegisterNotifier(pMyNotifier);

When you no longer require events from the StageWindow instance, unregister the notifier. For example:

pStageWindow->UnregisterNotifier(pMyNotifier);

For some events, OnStageWindowNotification() also receives a pointer to a StageWindowStatusData structure:

• When the event is kInfoLoadProgress, the StageWindowStatusData structure contains the number of bytes

loaded and the total number of bytes to load. You receive this event when you load an AIR application from a

network URL. For more information, see “Events about loading AIR applications” on page 116.

116OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

• When the event is kInfoRenderPlaneUpdated or kInfoOutputPlaneUpdated,

OnStageWindowNotification() receives a pointer to a Rect object. The Rect value indicates the position and size

of the updated rectangle of the plane. Rect is defined in include/ae/stagecraft/StagecraftTypes.h.

Note: Another way to get plane update events is with the Plane method OnRectUpdated(). For more information,

see “OnRectUpdated() method” on page 20.

Events about loading AIR applications

When you use LoadSWF() or LoadSWFAsync() to load an AIR application, you receive the following events:

1 a kStatusLoading event.

2 zero or more kInfoLoadProgress events indicating how many bytes out of N bytes have been loaded. These

events show the loading progress.

3 a final kInfoLoadProgress event indicating that N bytes out of N bytes have been loaded.

4 a kStatusLoaded event. This event includes no byte information.

Note: The current release of AIR for TV does not send kInfoLoadProgress events.

State transition table

The StageWindow instance transitions among the kStatus states in the StageWindowStatus enumeration. You can

call some interface methods only when the StageWindow instance is in certain states. These state-dependent methods

then typically change the state.

The following table summarizes the state transitions for each state-dependent method. The table lists the expected

state change as well as the most likely errors. However, when checking for error states, do not consider this list a

complete set.

Method States in which you can call the

method

State after calling the method

IStagecraft::CreateStageWindow() StageWindow instance not yet

created.

kStatusUnconfigured

IStagecraft::CreateStage-
Window(const StageWindowParameters &
params)

StageWindow instance not yet

created.

kStatusConfigured

Or one of these error states:

kErrorIncompleteConfiguration

kErrorModuleUnavailable

kErrorNotEnoughMemory

StageWindow::Configure() kStatusUnconfigured kStatusConfigured

Or one of these error states:

kErrorIncompleteConfiguration

kErrorModuleUnavailable

kErrorNotEnoughMemory

117OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

StageWindow::LoadSWF()

StageWindow::LoadSWFAsync()

kStatusConfigured kStatusLoading while loading is in

progress.

kStatusLoaded after loading is

complete.

Or one of these error states:

kErrorInvalidURL

kErrorNotEnoughMemory

kErrorCorruptMovie

kErrorStartupFailure

StageWindow::CreatePlanes() kStatusConfigured

kStatusLoaded

kStatusReadyToAnimate

Or one of these error states:

kErrorModuleUnavailable

kErrorRenderPlaneCreationFailu
re

kErrorOutputPlaneCreationFailu
re

StageWindow:Play() kStatusReadyToAnimate

kStatusPaused

kStatusPlaying

StageWindow::Pause() kStatusPlaying kStatusPaused

StageWindow::RunToCompletion() kStatusConfigured

kStatusLoaded

kStatusReadyToAnimate

kStatusPlaying

kStatusComplete

StageWindow::SetRenderPlane() kStatusConfigured

kStatusLoaded

The StageWindowParameters

field m_pRenderPlanewas not

previously set.

kStatusReadyToAnimate

Or this error state:

kErrorIncompatibleRenderPlane

StageWindow::ResetRenderPlane() kStatusConfigured

kStatusLoaded

kStatusReadyToAnimate

kStatusPlaying

kStatusPaused

The state is unchanged.

Or this error state:

kErrorIncompatibleRenderPlane

StageWindow::SetOutputPlane kStatusConfigured

kStatusLoaded

kStatusReadyToAnimate

The StageWindowParameters

field m_pOutputPlanewas not

previously set.

The state is unchanged.

IStagecraft::DestroyStageWindow() Any state. The StageWindow instance is destroyed.

Method States in which you can call the

method

State after calling the method

118OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

Window manipulation

The StageWindow instance controls a window that is displayed on your device. You can use the StageWindow instance

to manipulate the window. The types of window manipulation are the following:

• Moving a window to new coordinates on the display.

• Resizing a window.

• Changing whether a window is visible.

• Setting the alpha (transparency) of a window.

Moving a window

To move a window, use the StageWindow method MoveTo(). This method moves the window to the coordinates that

you specify in the parameter. The coordinates specify the upper left corner of the window. The coordinates are relative

to the upper left corner of the dimensions returned from the GetScreenDims() of the IGraphicsDriver subclass.

The following code shows an example of calling MoveTo(). The code moves the window so that its upper left corner is:

• 100 pixels from the left of the upper left corner of the display.

• 200 pixels from the top of the upper left corner of the display.

Point pos(100,200);
pStageWindow->MoveTo(pos);

Resizing a window

To resize a window, use the StageWindow method Resize(). This method resizes the window to the dimensions that

you specify in the parameter. The position of the upper left corner of the window does not change.

The following code shows an example of calling Resize().

Dims newDims(1000, 800);
pStageWindow->Resize(newDims);

Changing the visibility

You can make a window visible or not visible. Consider the following scenario. Multiple AIR for TV processes are

running, or an AIR for TV process is running concurrently with other processes that use your platform’s windows. In

this scenario, changing the visibility of the StageWindow can be useful.

To do so, use the StageWindow interface SetVisible(). To check whether a window is visible, use IsVisible().

Suppose the window with the focus is set to not visible. The graphics driver implementation is responsible for changing

the focus to another window. For more information, see “SetVisible() method” on page 23.

The following code checks if a window is visible. If it is visible, it makes it not visible.

119OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

if (pStageWindow->IsVisible()) {
if (pStageWindow->SetVisible(false))
{

// SetVisible(false) was successful.
}
else
{

// SetVisible(false) failed.
}

}

Setting the alpha

You can set the alpha (transparency) of a window. To do so, use the StageWindow interface SetAlpha(). You specify

the alpha in a parameter that ranges from 0 to 255. A value of 0 means transparent. A value of 255 means opaque.

This alpha is not the same as the alpha applied to SWF content. AIR for TV continues to render the SWF content using

the SWF content alpha values. This alpha is platform-dependent. For example, a platform implementation applies the

alpha to the border, title, and contents of a window.

The following code sets the alpha of a window.

if (pStageWindow->SetAlpha(100))
{

// SetAlpha(100) was successful.
}
else
{

// SetAlpha(0) failed.
}

Consider the following scenario. Multiple AIR for TV processes are running, or an AIR for TV process is running

concurrently with other processes that use your platform’s windows. Suppose you use SetAlpha(0) on the window

with the focus. Change the focus to another window if that is what you want. For more information, see “SetAlpha()

method” on page 22.

User input events

User input events occur, for example, when a user presses a key on a remote control device or other user input device.

The StageWindow and IStagecraft interfaces provide methods for directing these user input events to the AIR

application running in the StageWindow instance.

The methods that direct user input events to the StageWindow instance are in both IStagecraft.h and StageWindow.h.

The methods are the following:

• DispatchKeyDown()

• DispatchKeyUp()

• DispatchMouseButtonDown()

• DispatchMouseButtonUp()

• DispatchMouseMove()

• DispatchScrollWheelScroll()

120OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

Typically, the graphics driver module is responsible for calling these methods. For more information, see “User input

handling” on page 9

The methods DispatchKeyUp() and DispatchKeyDown()each take an unsigned long (u32) parameter that specifies

the key. Constants for these values are in include/ae/stagecraft/StagecraftKeyDefs.h. For example:

#define AEKEY_LEFT 0x00400025 ///< used to dispatch Key.LEFT

Therefore, when the user presses the Left Arrow key on a remote control device, your graphics driver module calls the

following function:

pStageWindow->DispatchKeyDown(AEKEY_LEFT);

AIR for TV then passes the key value to the SWF content. The SWF content uses the ActionScript Key class to

determine which key the user pressed or released. The Key class has a constant definition for each key. For example,

the constant Key.LEFT is for the Left Arrow key. AIR provides a standard set of key constants. AIR for TV adds to this

standard set. For example, a remote control device typically has keys for changing the volume, playing and pausing

videos, and accessing a menu. The Key class constant definitions are in the file Key.as in the directory

docs/distributable.

Each Key class constant definition corresponds to a AE_KEY definition in StagecraftKeyDefs.h. For example,

AEKEY_VOLUME_UP in StagecraftKeyDefs.h corresponds to Key.VOLUME_UP in Key.as. AEKEY_LEFT corresponds to

Key.LEFT. However, the actual values of the AE_KEY definition and the Key class constant definition are not the same.

Sometimes an AIR application that was developed for a desktop expects events for keys that are not on a remote control

device. You can provide a key map for such an AIR application. A key map maps a key that the user entered to a key

that the AIR application expects. For more information, see Key Mapping in Getting Started with Adobe AIR for TV

(PDF).

If your remote control device has keys not covered by StagecraftKeyDefs.h and Key.as, you can work with Adobe to

add key codes to a specific range of keycodes. However, you cannot change the existing key definitions in these files.

Then you distribute your platform-specific Key.as file to AIR application developers for your device.

Remote control key input modes

Often devices that run AIR for TV have remote control devices that have less functionality than most desktop

computer keyboards. AIR for TV provides key input modes to help minimize the impact these differences in

functionality have on the behavior of AIR applications.

AIR application event expectations

Consider the following scenarios:

• A user presses and releases a key. On a computer keyboard, the keyboard sends a Key Down event, followed some

milliseconds later with a Key Up event. However, some remote control devices send a Key Down event immediately

followed by a Key Up event, without any time interval in between the events. These remote control devices do not

wait for the user to release the key before sending the Key Up event. Therefore, the length of time the user holds

down the key is not reflected in event timing.

An AIR application sometimes depends on this event timing between Key Down and Key Up events to determine

what action to take. For example, the time interval between Key Down and Key Up events sometimes determines

how far to move a video game character.

http://www.adobe.com/content/dam/Adobe/en/devnet/devices/pdfs/GettingStartedWithAdobeAIRForTV.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/devices/pdfs/GettingStartedWithAdobeAIRForTV.pdf

121OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

• A user presses and holds a key. On a computer keyboard, the keyboard driver sends a Key Down event followed by

multiple Key Repeat events. When the user releases the key, the keyboard driver sends a Key Up event. This event

sequence allows an AIR application to handle one keypress as multiple keypresses. For example, a text editor

application echoes out the letter ‘h’ while the user holds down the ‘h’ key. The user does not press the ‘h’ key

multiple times to enter “Ahhhhhhhhhh”.

Some remote control devices also send this sequence of events. However, some remote control devices send

multiple Key Down events, but no Key Up event. Other remote control devices send multiple pairs of Key Down

and Key Up events, but nothing to indicate the user is holding the key down.

Modes

AIR for TV solves these user scenarios using key input modes. Use the IStagecraft interface SetKeyInputMode() to

set the key input mode. The key input modes, defined in StagecraftTypes.h, are the following:

• kManual (the default value)

• kSimulateHold

• kSimulateHoldAndRepeat

When calling SetKeyInputMode(), consider the following points:

• Call SetKeyInputMode() once before calling DispatchKeyDown() or DispatchKeyUp() for the StageWindow

instance.

• SetKeyInputMode() does nothing and returns false if you call it more than once.

• SetKeyInputMode() does nothing and returns false if you call it after calling DispatchKeyDown() or

DispatchKeyUp().

Manual mode

Use the kManual mode if your remote control device driver sends Key Up, Key Down, and Key Repeat events.

This mode covers the remote control device that behaves similarly to a computer keyboard in the way it sends these

events. You dispatch Key Down and Key Up events to the IStagecraft instance or the StageWindow instance using

DispatchKeyDown() and DispatchKeyUp(). For Key Repeat events, also use DispatchKeyDown().

Simulate hold mode

Use the kSimulateHold mode if your remote control device driver sends Key Down events, but no Key Up events.

Also use this mode if your remote control device driver sends a Key Up event immediately after a Key Down event,

without any elapsed time in between.

When you specify this mode in SetKeyInputMode(), you also specify a hold time. After each Key Down event, AIR

for TV waits the hold time and then sends a Key Up event to the AIR runtime. If the remote control device driver sends

a Key Up event and you dispatch it using DispatchKeyUp(), AIR for TV ignores the Key Up event. Therefore, the

AIR application behaves correctly when it depends on receiving a Key Up event some time after a Key Down event.

Consider the scenario when the remote control device driver sends subsequent Key Down events before the hold time

elapses. AIR for TV sends the matching Key Up event for the first Key Down event before processing the next Key

Down event. Then, it waits the hold time after the most recent Key Down event before sending the next Key Up event.

Therefore, the AIR application receives multiple Key Down/Key Up pairs, allowing it to behave correctly when the user

quickly presses a key multiple times.

122OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

Simulate hold and repeat mode

Use the kSimulateHoldAndRepeat mode if your remote control device driver:

• Follows each Key Down event that it sends with a matching Key Up event some time later.

• Does not send Key Repeat events.

Following each Key Down event some time later with a Key Up event means that an AIR application behaves correctly

when it depends on this event sequence. Furthermore, when the user presses and holds a key, this mode causes AIR

for TV to simulate the Key Repeat events.

For AIR for TV to simulate Key Repeat events, you specify a hold time and a repeat interval in SetKeyInputMode().

Consider the following scenario. The remote control device driver sends a Key Down event, but does not send a Key

Up event within the hold time specified. AIR for TV sends a Key Down event to the AIR runtime each time the repeat

interval elapses. When the remote control device driver sends the matching Key Up event, AIR for TV stops sending

the repeated Key Down events. Therefore, the AIR application behaves correctly when the user presses and holds a key.

Note: AIR for TV ignores multiple Key Down events in this mode. That is, consider a remote control device driver that

sends multiple Key Down events before sending the matching Key Up event. If you call DispatchKeyDown() for these

additional Key Down events, AIR for TV ignores them.

Tracking memory usage

Allocating memory

The StageWindow instance creates a MemoryWatchdog object. Use this object to allocate large blocks of system

memory. Doing so tracks and limits the memory that you associate with the StageWindow instance. This memory

tracking is useful during your development process.

Use the StageWindow interface method GetMemoryWatchdog() to get a pointer to the MemoryWatchdog object.

ae::stagecraft::MemoryWatchdog * pMemoryWatchdog = pStageWindow->GetMemoryWatchdog();

The MemoryWatchdog class is defined in StageWindow.h. It provides the following methods:

• Alloc()

• Free()

• GetBytesUsed()

• GetBytesAvailable()

The memory limit is specified as the m_nMaxMemoryUsageBytes parameter to the StageWindow instance. The

corresponding command-line parameter is memlimit. If this parameter has the default value 0, the StageWindow

instance does not limit memory usage for the StageWindow instance.

When you use the Alloc() and Free() methods, the MemoryWatchdog object does the following:

• Tracks how much memory has been allocated.

• Checks whether a memory allocation exceeds the maximum amount. If so, the MemoryWatchdog object

terminates the associated AIR runtime by calling the StageWindow instance’s Terminate() method. Use your

StageWindowNotifier object to receive the resulting kErrorNotEnoughMemory event in your host application. You

can then destroy the StageWindow instance.

123OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

Tracking memory

The AIR runtime relies on your graphics driver implementation to provide graphics memory usage information. See

“GetGraphicsMemoryInfo()” on page 34.

Note: The StageWindow interface has a placeholder method GetMemoryInfo() for possible future tracking of the

StageWindow instance’s memory usage. However, this method is not yet fully implemented. Therefore, do not use it or

related methods: IncrementGraphicsMemoryUsedCount() and DecrementGraphicsMemoryUsedCount().

Looking up directories that AIR for TV uses

The IStagecraft interface provides methods to look up the directories that AIR for TV uses. For details on AIR for TV

filesystem usage and these directories, see “Filesystem usage” on page 137.

Use the IStagecraft interface to look up:

• The AIR for TV base directory. This directory is the base directory for all files related to AIR for TV. The base

directory is /opt/adobe/stagecraft.

Method: GetStagecraftBaseDirectory().

• The data directory that AIR for TV uses. This directory’s subdirectories store, for example, the file cache of network

assets. AIR applications also use this directory’s subdirectories for their data.

Method: GetStagecraftDataDirectory().

• The directory in which AIR for TV is executing. This directory contains the AIR for TV executables and libraries.

Method: GetStagecraftBinDirectory().

• The directory that AIR for TV uses for private user-specific data. This directory contains both user-specific AIR for

TV data and user-specfic AIR application data.

Method: GetStagecraftUserPrivateDataDirectory().

• The directory that AIR for TV uses for temporary data files.

Method: GetStagecraftTempDirectory().

• The directory that an AIR application uses for private temporary data files.

Method: GetApplicationPrivateTempFileDirectory().

• The directory for fonts that AIR for TV provides.

Method: GetStagecraftFontDirectory().

All the methods provide a full path name.

More Help topics

“Filesystem usage” on page 137

124OPTIMIZING AND INTEGRATING AIR FOR TV

Integrating with your platform

Last updated 9/29/2011

HTTP proxy server parameter updates

Use the StageWindow interface method UpdateProxyParameters() to update the proxy information for the

StageWindow instance. You can call this method while the StageWindow instance is running. For more information,

see “HTTP requests through a proxy server” on page 136.

125

Last updated 9/29/2011

Chapter 10: Network asset cache

The StageWindow instance executes an AIR application. Sometimes the AIR application gets network assets, such as

other SWF files, or images and videos. Adobe® AIR® for TV can cache network files onto the device’s filesystem.

By using this file cache feature, you can minimize downloads of network assets. The next time the StageWindow

instance requests a network asset, AIR for TV loads the asset from the file cache.

Some features of the file cache are:

• When AIR for TV exits and later runs again, the file cache is persistent across the sessions.

• If the network asset changes, AIR for TV updates the asset in the file cache.

• You can configure the various size characteristics of the file cache.

Adobe recommends that you do not use one file cache among multiple AIR for TV processes. Doing so can result in

one process modifying the cache and affecting other processes. For example, consider one process setting the

maximum number of entries in the cache. All the processes using the cache are affected. The change can delete cache

entries that another process uses.

Note: The network asset cache applies only to AIR for TV. It is not the same feature as the Player cache described in About

the Player cache in Using Flex 4.

Configuration file

When AIR for TV starts, it uses a configuration file to determine characteristics of the file cache. The configurable

settings are the following:

MAX_CACHE_SIZE The maximum number of bytes in the cache. The number of bytes in the cache includes the

combined size of all cached files, including any meta data.

MAX_CACHE_ENTRIES The maximum number of files in the cache.

MAX_CACHE_ENTRY_SIZE The maximum size of each file in the cache. The Content-Length HTTP header specifies the

size of a file. The maximum entry size includes the file size as well as meta data that AIR for TV associates with the file.

The configuration file is file-cache.conf. Its location is in the directory /opt/adobe/stagecraft/data/config directory on

your target device.

If you do not provide a file-cache.conf file, AIR for TV uses default values for the configurable settings. Also, if a value

you provide is less than the minimum allowed value, AIR for TV uses the minimum allowed value. These values are

summarized in the following table:

Default value Minimum value

MAX_CACHE_SIZE 1048576 1024

MAX_CACHE_ENTRIES 0 0

MAX_CACHE_ENTRY_SIZE 65536 1024

http://www.adobe.com/go/learn_flex4_playercache_en
http://www.adobe.com/go/learn_flex4_playercache_en
http://help.adobe.com/en_US/flex/using/index.html

126OPTIMIZING AND INTEGRATING AIR FOR TV

Network asset cache

Last updated 9/29/2011

If the value of MAX_CACHE_ENTRIES is 0, AIR for TV caches no network files. To enable file caching, set

MAX_CACHE_ENTRIES to a positive value.

Note: Do not programmatically change the configuration values using the ICacheManager module. This module is for

internal AIR for TV use only.

Caching algorithm

When an AIR application attempts to download a network asset, AIR for TV determines the following:

• Whether the asset is already in the file cache.

• Whether to add the asset to the file cache.

• Whether to delete other assets from the file cache to make space for the new asset.

AIR for TV uses the HTTP header Content-Length to determine if the asset is smaller than the maximum entry size.

It uses Content-Length along with the HTTP header Last-Modified to determine if the asset matches an asset

already in the file cache. AIR for TV does not cache assets from servers that do not support the Content-Length and

Last-Modified HTTP headers.

The general algorithm that AIR for TV uses for caching is the following:

Download the HTTP headers.
if the HTTP header Content-Length <= the maximum size of a cache entry

If the file is already in the cache
If the file size and modification dates match the cache entry

Use the file in the cache.
Else the size and modification dates do not match the cache entry

Download the file from the network.
Replace the file in the cache.

End If
Else the file is not already in the cache.

Download the file from the network.
Save the file to the cache.
Delete an older file if necessary.

End If
Else the file is too large to be a cache entry.

Download the file from the network.
End if

AIR for TV deletes files from the cache when:

• the size of the cache exceeds the maximum.

• the number of cached files exceeds the maximum.

AIR for TV deletes the file that it has accessed least recently. AIR for TV does not delete a file that is in use. Instead, it

proceeds to the next least recently used file.

If AIR for TV encounters any errors when manipulating the file cache, it downloads the requested file from the

network.

127OPTIMIZING AND INTEGRATING AIR FOR TV

Network asset cache

Last updated 9/29/2011

Persistence across sessions

The file cache is persistent across sessions of AIR for TV. AIR for TV saves meta data about each cached network asset.

The meta data is in files that are in the cache directory. When AIR for TV starts, it reads the meta data files to find out

what network assets (files) are in the cache. The meta data files have the suffix .ae_meta.

AIR for TV includes the meta data in its calculations to determine the following:

1 whether the size of the cache exceeds the maximum.

2 whether a network asset exceeds the maximum cache entry size.

128

Last updated 9/29/2011

Chapter 11: Networking

Adobe® AIR® for TV supports networking using HTTP and HTTPS, as well as interaction with Adobe® Flash® Media

Server. AIR for TV also supports networking using sockets and secure sockets.

SWF content

AIR for TV can load AIR applications installed on the local file system. It can also directly run a local SWF file. The

starting SWF file can load additional SWF content from the local filesystem or from http://URLs. You can also enable

AIR for TV to allow SWF content to load additional SWF files from https://URLs.

Video content

AIR for TV supports SWF-embedded video as well as video content that is delivered over the network. Specifically,

AIR for TV supports the following:

• Video content delivered from the local filesystem.

• Video content delivered with the http:// or https:// protocols.

• Video content from Adobe Flash Media Server using the RTMP, RTMPS, RTMPE, RTMPT, RTMPTE, and

RTMFP protocols.

Flash Media Server support

AIR for TV provides the following Flash Media Server support:

• Support for dynamic streaming. For more information regarding dynamic streaming, see Dynamic Streaming in

Adobe Flash Media Server 4.0 Developer's Guide.

• Support for SWF verification. For more information, see Configuring security features in Adobe Flash Media Server

4 Configuration, and Administration.

• RTMP, RTMPS, RTMPE, RTMPT, RTMPTE, and RTMFP support.

HTTP feature support

AIR for TV also supports these HTTP features:

• HTTP requests through proxy servers.

• HTTP cookies.

• HTTP authentication.

Sockets and secure sockets support

For more information about the support that AIR for TV provides for sockets, see “Sockets and HTTP connections”

on page 150.

http://www.adobe.com/go/learn_fms_dynstream_en
http://www.adobe.com/go/learn_fms_devguide_en
http://www.adobe.com/go/learn_fms_config_security_en
http://www.adobe.com/go/learn_fms_configadmin_en
http://www.adobe.com/go/learn_fms_configadmin_en

129OPTIMIZING AND INTEGRATING AIR FOR TV

Networking

Last updated 9/29/2011

Linking the cURL library

AIR for TV requires the cURL library for networking access. To enable AIR for TV to use the cURL library, do one of

the following:

• Statically link the cURL library with your build of AIR for TV. Link statically if you do not already have the cURL

library on your root filesystem on your target device.

• Dynamically link the cURL library when running AIR for TV. Link dynamically if you already have the cURL

library on your root filesystem on your target device. AIR for TV supports version 7.20.1of the cURL library.

Specify your choice in the makefile variable SC_LIBCURL_PREFERENCE. Your Makefile.config file defines this variable.

For more information about Makefile.config, see “Creating your platform Makefile.config file” on page 152. Possible

values for SC_LIBCURL_PREFERENCE are the following:

• stagecraft-built to statically link. This value is the default.

• rootfs-linked to dynamically link.

Static Linking

For static linking, do the following:

1 Set SC_LIBCURL_PREFERENCE in Makefile.config to stagecraft-built.

2 If you have the source distribution of AIR for TV, verify the file curl-7.20.1.tar.gz is in the directory

stagecraft/thirdparty/curl.

3 If you do not have the source distribution of AIR for TV, retrieve the file curl-7.20.1.tar.gz from the Internet to your

build machine. Put the file in the directory stagecraft/thirdparty/curl.

4 Build all modules of AIR for TV, by executing the following:

make

The make utility automatically untars the cURL package, builds it, and statically links it into modules that require it.

Dynamic Linking

For dynamic linking, you put the cURL header files and libraries in directories on your root filesystem. You set

variables in your Makefile.config indicating the directories. Specifically, do the following steps to build AIR for TV:

1 Set SC_LIBCURL_PREFERENCE in Makefile.config to rootfs-linked.

2 Set SC_ROOTFS to the root filesystem. The default value is /.

3 Set SC_LIBCURL_ROOTFS_INCLUDE_DIR to a directory in the root filesystem. The default value is /usr/include.

4 Set SC_LIBCURL_ROOTFS_LIB_DIR to a directory in the root filesystem. The default value is /usr/lib.

5 Build all modules of AIR for TV, by executing the following:

make

When you put the root filesystem onto the target device:

1 Put the cURL libraries in the directory you specified in SC_LIBCURL_ROOTFS_LIB_DIR.

2 Do not put the cURL header files on your target device.

130OPTIMIZING AND INTEGRATING AIR FOR TV

Networking

Last updated 9/29/2011

HTTPS support

For HTTPS operation, AIR for TV requires the following:

• the openssl library, version 1.0.0d.

• a certificate authority (CA) certificate bundle

Linking the openssl library

To enable AIR for TV to use the openssl library, do one of the following:

• Statically link the openssl library with your build of AIR for TV. Link statically if you do not already have the openssl

library on your root filesystem on your target device.

• Dynamically link the openssl library when running AIR for TV. Link dynamically if you already have the openssl

library on your root filesystem on your target device. AIR for TV supports version 1.0.0d of the openssl library.

However, other versions possibly also work.

Specify your choice in the makefile variable SC_LIBOPENSSL_PREFERENCE. Your Makefile.config file defines this

variable. For more information about Makefile.config, see “Creating your platform Makefile.config file” on page 152.

Possible values for SC_LIBOPENSSL_PREFERENCE are the following:

• stagecraft-built to statically link. This value is the default.

• rootfs-linked to dynamically link.

If you do not provide a value for SC_LIBOPENSSL_PREFERENCE, https:// operations are not enabled.

Static Linking

For static linking, do the following:

1 Set SC_LIBOPENSSL_PREFERENCE in Makefile.config to stagecraft-built.

2 Retrieve the file openssl-1.0.0d.tar.gz from the Internet to your build machine. See http://www.openssl.org/source/.

Put the file in the directory stagecraft/thirdparty-private/openssl.

3 Build all modules of AIR for TV, by executing the following:

make

The make utility automatically untars the openssl package, builds it, and statically links it into modules that require it.

Dynamic Linking

For dynamic linking, you put the openssl header files and libraries in directories on your root filesystem. You set

variables in your Makefile.config indicating the directories. Specifically, do the following steps to build AIR for TV:

1 Set SC_LIBOPENSSL_PREFERENCE in Makefile.config to rootfs-linked.

2 Set SC_ROOTFS to the root filesystem. The default value is /.

3 Set SC_LIBOPENSSL_ROOTFS_INCLUDE_DIR to a directory in the root filesystem. The default value is

/usr/include.

4 Set SC_LIBOPENSSL_ROOTFS_LIB_DIR to a directory in the root filesystem. The default value is /usr/lib.

5 Build all modules of AIR for TV, by executing the following:

make

http://www.openssl.org/source/

131OPTIMIZING AND INTEGRATING AIR FOR TV

Networking

Last updated 9/29/2011

When you put the root filesystem onto the target device:

1 Put the openssl libraries libssl.so and libcrpto.so in the directory you specified in

SC_LIBOPENSSL_ROOTFS_LIB_DIR.

2 Do not put the openssl header files on your target device.

Certificate authority (CA) certificates

For HTTPS operation, AIR for TV, using the openssl library, accesses a CA certificate bundle at runtime. A file called

ca-bundle.crt contains the CA certificate bundle. The openssl library requires the bundle in this file format.

A typical source for the CA certificate bundle is the open source Mozilla browser. This browser uses a file called

certdata.txt. Convert the certdata.txt file into a ca-bundle.crt file with the following steps:

1 Find the latest version of the certdata.txt file from the Mozilla Central open source repository at

http://mxr.mozilla.org.

2 Retrieve a Perl script that converts the certdata.txt file to a ca-bundle.crt file. The Perl script is mk-ca-bundle.pl.

Find the script in the curl open source library distribution at http://curl.haxx.se. Search the site for mk-ca-

bundle.pl. Download the file.

3 Find the line in mk-ca-bundle.pl that begins:

my $url = 'http://

Verify the URL points to the latest version of certdata.txt. Modify the URL if necessary.

4 Run mk-ca-bundle.pl to generate the ca-bundle.crt file.

Put the ca-bundle.crt file in the target root filesystem so that AIR for TV can access it at runtime. You can do one of

the following:

• Put ca-bundle.crt file in the directory /opt/adobe/stagecraft/data/config/ssl/certs/encrypted if the file is encrypted.

If the ca-bundle.crt file is not encrypted, put the file in /opt/adobe/stagecraft/data/config/ssl/certs/unencrypted.

Adobe recommends that you store ca-bundle.crt in one of these directories if you are statically linking the openssl

library.

• Put the ca-bundle.crt file in any other directory in the target root filesystem. However, in this case, link to ca-

bundle.crt from /opt/adobe/stagecraft/data/config/ssl/certs/encrypted or

/opt/adobe/stagecraft/data/config/ssl/certs/unencrypted. Adobe recommends this file setup if you are dynamically

linking the openssl library.

• Use the stagecraft binary executable command-line option --sslcertsdir to specify the directory containing the

ca-bundle.crt file. Put the ca-bundle.crt file in a subdirectory named encrypted/ or unencrypted/ of the directory

you specify. For more information, see Getting Started with Adobe AIR for TV (PDF).

For more information about the /opt/adobe/stagecraft directory, see “Filesystem usage” on page 137.

Note: If you are encrypting certificates, see “Certificate encryption” on page 134.

HTTPS verification

To verify that you have correctly set up HTTPS support in AIR for TV, do the following:

1 Verify that the date and time are correctly set on the target system.

2 Use Adobe® Flash® Professional CS5 or other authoring tool to create an AIR application that executes the following

ActionScript 3.0 code:

http://www.adobe.com/go/GettingStartedWithAdobeAIRForTV/

132OPTIMIZING AND INTEGRATING AIR FOR TV

Networking

Last updated 9/29/2011

package
{

import flash.display.Sprite;
import flash.events.*;
import flash.net.URLLoader;
import flash.net.URLRequest;

public class HttpsXml extends Sprite
{

private var xmlLoader:URLLoader;
private var xmlData:XML;

public function HttpsXml()
{

super();
xmlLoader = new URLLoader();
xmlLoader.addEventListener(Event.COMPLETE, LoadXml);
xmlLoader.addEventListener(IOErrorEvent.IO_ERROR, ioErrorHandler);
xmlLoader.addEventListener(HTTPStatusEvent.HTTP_STATUS, onHttpStatus);
xmlLoader.load(new URLRequest("https://www.wellsfargo.com"));

}
private function onHttpStatus(e:HTTPStatusEvent):void
{

trace(e.toString());
}
private function LoadXml(e:Event):void
{

xmlData = new XML(e.target.data);
trace("Download succeeded \n" + xmlData.toString());

}
private function ioErrorHandler(event:IOErrorEvent):void {

trace("Download failed \n" + event.toString());
}

}
}

3 Run the AIR application on your target system. For more information, see Getting Started with Adobe AIR for TV

(PDF).

4 Verify that the truncated contents of the Wells Fargo home page displays in the FLASH_TRACE output. This

output appears on the command line.

Note: If you are running AIR for TV in release mode, use the command-line option --astrace to view the

FLASH_TRACE output.

HTTPS mutual authentication

AIR for TV supports Secure Sockets Layer (SSL) mutual authentication. The AIR runtime can have a table of SSL client

certificates. The table maps target host names to certificate and private key identifiers. When AIR for TV attempts an

HTTPS connection, it looks in this mapping table for the target host name. Then, it uses the associated certificate and

private key identifiers in SSL mutual authentication with the target host.

To specify the mapping table to use in the AIR runtime, do one of the following:

• Use the command-line parameter sslclientcerttable:

--sslclientcerttable sslclientcerttable-string

http://www.adobe.com/go/GettingStartedWithAdobeAIRForTV/
http://www.adobe.com/go/GettingStartedWithAdobeAIRForTV/

133OPTIMIZING AND INTEGRATING AIR FOR TV

Networking

Last updated 9/29/2011

• Use the m_pSSLClientCertTable string parameter of the StageWindowsParameter object you pass to the

StageWindow instance.

The following example string shows the format of the sslclientcerttable-string and the

m_pSSLClientCertTable parameter:

[hostname1.com^certfilname1.pem^keyfilename1.pem][hostname2.com^certfilname2.pem^keyfilename
2.pem]

Note: You can specify multiple associations. This example shows only two.

Brackets surround each association of a host name, certificate file, and private key. Carets separate the three items.

Each item is URL encoded. Therefore, if you have brackets or carets in your host name or filenames, URL encode them

first. To URL encode a name, use the %xx URL character hexadecimal encoding syntax. Then, you can use brackets

and carets as delimiters.

All client certificates and keys must be stored in /opt/adobe/stagecraft/config/data/ssl/certs/encrypted or

/opt/adobe/stagecraft/config/data/ssl/certs/unencrypted. The choice depends on whether you encrypt the certificates

and private key files. You can link the encrypted/ or unencrypted/ directories to other locations in the filesystem,

or override the directories with the --sslcertsdir command-line option to the stagecraft binary executable. For

more information, see “Certificate authority (CA) certificates” on page 131.

For example, to authenticate with http://www.myhost.mydomain, using the encrypted certificate file mycert.pem and

the private key file mykey.pem, use the following command-line argument:

stagecraft --sslclientcerttable [www.myhost.mydomain^mycert.pem^mykey.pem]
/opt/adobe/stagecraft/apps/MyApp

This command causes the AIR runtime to use the files

/opt/adobe/stagecraft/config/data/ssl/certs/encrypted/mycert.pem and

/opt/adobe/stagecraft/config/data/ssl/certs/encrypted/mykey.pem for SSL mutual authentication with host

http://www.myhost.mydomain.

Specify multiple target host entries as follows:

stagecraft --sslclientcerttable
[www.myhost.mydomain^mycert.pem^mykey.pem][myhost2.com^cert2.pem^key2.pem]
/opt/adobe/stagecraft/apps/MyApp

Consider the case where you also override the certificate directory using the --sslcertsdir command-line option.

In this case, AIR for TV looks for the files you specify with --sslclientcerttable in the directory you specified with

--sslcertsdir.

Note: If you are encrypting the certificates and private key files, see “Certificate encryption” on page 134.

Handling certificate errors

Three classes of errors can occur in the openssl library regarding SSL client certificates.

• Fatal errors. The openssl library terminates the HTTPS connection attempt. The AIR application or your host

application handles these certificate failures the same as any HTTP or HTTPS connection failure. For example, if

an AIR application attempts a network file access using ActionScript such as LoadVars(), the AIR application

handles the failure. If your host application attempts to load a network SWF file using a StageWindow method such

as LoadSWF() or RunToCompletion(), the host application handles the failure.

• Informational warnings. The openssl library ignores these warnings.

• Possibly fatal warnings. The openssl library passes these warnings to AIR for TV to determine whether the warning

is fatal. You can override the AIR for TV default handling.

134OPTIMIZING AND INTEGRATING AIR FOR TV

Networking

Last updated 9/29/2011

To override the default handling, you modify a method in the INet module of AIR for TV. Do the following:

1 In your thirdparty-private directory, create a subdirectory os/net. For example:

<installation directory>/products/stagecraft/thirdparty-private/<yourCompany>/stagecraft-
platforms/os/net

For more information, see “Placing code in the directory structure” on page 151.

2 Copy source/ae/os/net/HttpConnectionImpl.cpp to the os/net directory you created.

3 Modify the method HttpConnectionImpl::HandleSSLEvent() in the HttpConnectionImpl.cpp in your os/net

directory.

4 Modify the Makefile.config and INet.mk files and rebuild the INet module as described in “Building platform-

specific drivers” on page 152.

AIR for TV passes two parameters to HandleSSLEvent():

• An SSLEvent object. The SSLEvent class is defined in include/ae/os/net/HttpConnection.h. The object includes the

reason for the warning. See the enumeration SSLAlert in HttpConnection.h.

• A Boolean that indicates whether the default handling is fatal.

In your implementation of HandleSSLEvent(), do the following:

1 Use the SSLEvent object and logic specific to your platform to determine whether to make the event fatal.

2 Return 0 if you want the event to be fatal. Otherwise, return 1.

If HandleSSLEvent() returns 0, then the openssl library treats the error as a fatal error, and terminates the HTTPS

connection attempt. If HandleSSLEvent() returns 1, then the openssl library treats the error as an informational

warning.

Certificate encryption

You can choose to encrypt the files in /opt/adobe/stagecraft/data/config/ssl/certs. These files include:

• The ca-bundle.crt file (see “Certificate authority (CA) certificates” on page 131)

• Certificate files (see “HTTPS mutual authentication” on page 132)

• Private key files (see “HTTPS mutual authentication” on page 132)

Put encrypted files in:

/opt/adobe/stagecraft/data/config/ssl/certs/encrypted

Put unencrypted files in:

/opt/adobe/stagecraft/data/config/ssl/certs/unencrypted

To encrypt the files, do the following:

• Use the Advanced Encryption Standard (AES) Cipher Algorithm in Cypher Block Chaining (CBC). See

http://www.ietf.org/rfc/rfc3602.txt.

• Use the 16-byte key that is embedded in your hardware.

• Use the following Initialization Vector (IV):

0x94, 0x03, 0x87, 0xA0, 0xF3, 0x30, 0xD2, 0x96, 0x20, 0x0B, 0x73, 0x47, 0x79, 0x31, 0x78, 0x25

• Pad with zeros. The AES requires padding to maintain a 16-octet (128 bit) block size.

135OPTIMIZING AND INTEGRATING AIR FOR TV

Networking

Last updated 9/29/2011

• Create a thirdparty-private ISecurityDriver module based on the ISecurityDriver implementation in

source/ae/ddk/securitydriver. In ISecurityDriverImpl.cpp, modify the first row of the dummyKeys128 array to use

your 16-byte key.

For AIR for TV to use the 16-byte key embedded in your hardware, do the following:

• Create a thirdparty-private ISecurityDriver module based on the ISecurityDriver implementation in

source/ae/ddk/securitydriver.

• In ISecurityDriverImpl.cpp, modify the first row of the dummyKeys128 array to use your 16-byte key.

• Build your ISecurityDriver module. See “Building platform-specific drivers” on page 152.

Note: AIR for TV uses the same encryption key to encrypt ActionScript SharedObject instances on the local filesystem.

HTTP cookie support

AIR for TV supports HTTP persistent cookies and session cookies using the curl library’s cookie-jar feature. AIR for

TV stores each AIR application’s cookies in an application-specific directory:

/app-storage/<app id>/Local Store

The cookie file is named cookies.

Note: AIR on other devices, such as desktop devices, does not store cookies separately for each application. Application-

specific cookie storage supports the application and system security model of AIR for TV.

Users of the AIR for TV device have no way of controlling, setting, and managing cookies, except as provided

specifically through an AIR for TV application. Therefore, once a cookie is set, it is permanent on the device.

Therefore, Adobe recommends that you implement a mechanism for end users to manage the cookies on the AIR for

TV device.

An AIR for TV application developer can use the ActionScript property URLRequest.manageCookies just as they do

for other platforms as follows:

• Set manageCookies to true. This value is the default. It means that AIR for TV adds cookies to HTTP requests and

remembers cookies in the HTTP response.

However, even when manageCookies is true, the application can manually add a cookie to an HTTP request using

URLRequest.requestHeaders. If this cookie has the same name as a cookie that AIR for TV is managing, the

request contains two cookies with the same name. The values of the two cookies can be different.

• Set manageCookies to false. This value means that the application is responsible for sending cookies in HTTP

requests, and for remembering the cookies in the HTTP response.

More Help topics

“File.applicationStorageDirectory” on page 142

URLRequest

RTMPE support

AIR for TV supports RTMPE and RTMPTE. The module that supports these protocols is libIRTMPDigest. Contact

Adobe to get the libIRTMPDigest module.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLRequest.html

136OPTIMIZING AND INTEGRATING AIR FOR TV

Networking

Last updated 9/29/2011

This module is available only in release mode. Therefore, if you are building in debug mode, you cannot use these

protocols. If AIR for TV does not include this module, it operates properly but does not support RTMPE or RTMPTE.

HTTP requests through a proxy server

AIR for TV supports HTTP requests through a proxy server. You can specify proxy information for the StageWindow

instance. When you specify a valid proxy host IP address to the StageWindow instance, all HTTP requests in the AIR

application are sent to the proxy server. The proxy information that you specify includes the following:

• the proxy host IP address. Specify a string value in dotted decimal notation: xxx.xxx.xxx.xxx where xxx is 0 – 255.

• the proxy server port. Specify an integer value for the port.

• a user login name for the proxy server. Specify a string value.

• the password for the user. Specify a string value.

For the user name and password strings, do not include the characters '\0' or '.' Other value restrictions depend on

restrictions used by the authentication between the host and the client.

Specify the proxy information to the StageWindow instance in one of the following ways:

• Pass the proxy information in the StageWindowParameters object when you configure the StageWindow instance.

For more information, see “StageWindow instance configuration” on page 107.

• Pass the proxy information as command-line parameters to your host application. For more information, see

Getting Started with Adobe AIR for TV (PDF).

• Use the StageWindow interface method UpdateProxyParameters() to update the proxy information while the

StageWindow instance is running.

HTTP authentication

AIR for TV has the same support of HTTP authentication as AIR on other platforms, with one exception. The

exception is that an AIR application cannot authenticate requests using a dialog box. AIR for TV does not support the

authentication dialog box. The AIR application can, however, set the user credentials using the URLRequestDefaults

class. For more information, see Setting URLRequest defaults (AIR only) in the ActionScript 3.0 Developer's Guide.

http://www.adobe.com/go/GettingStartedWithAdobeAIRForTV/
http://www.adobe.com/go/learn_air_URLRequest_en
http://www.adobe.com/go/learn_cs5_as3devguide_en

137

Last updated 9/29/2011

Chapter 12: Filesystem usage

On Linux systems, Adobe® AIR® for TV restricts all its file access as well as the file access of the applications it runs.

With a few exceptions, the file access is restricted to the following directory and its subdirectories:

/opt/adobe/stagecraft

Note: This directory can be a Linux symbolic soft link.

This directory is called the AIR for TV base directory.

Restricted access to the AIR for TV base directory has the following benefits:

• You can easily support different versions of AIR for TV, which allows for easier upgrades. Make

/opt/adobe/stagecraft a symbolic soft link to the Adobe for TV installation directory.

• Files related to AIR for TV are isolated from operating system and middleware installations.

• You can set access permissions for all files related to AIR for TV by setting the permissions on a single directory:

/opt/adobe/stagecraft. If you install multiple versions of AIR for TV, you can apply the access permissions to

/opt/adobe.

• You can easily back up an AIR for TV installation and its installed application and user information. Because all

the application and user data is in subdirectories under the AIR for TV base directory, backing up

/opt/adobe/stagecraft backs up everything.

Make /opt/adobe a writable directory, and ensure that all directories and files under /opt/adobe are also write able,

including the directories that you link to.

When you are working on a development platform, you have more latitude in file placement. See “Development

environment directories” on page 144.

More Help topics

“Exceptions to filesystem access restrictions” on page 144

Subdirectories of the AIR for TV base directory

The following subdirectories are at the top level of the AIR for TV base directory:

apps/ This subdirectory contains installed AIR applications

bin/ This subdirectory contains the AIR for TV binaries, including executables and shared libraries.

data/ This subdirectory contains the data files that AIR for TV uses. It also contains the data files that AIR applications

use. Ensure that this subdirectory is writable. If it is not, AIR for TV and the applications it runs cannot function

correctly.

extensions/ This subdirectory contains the device-bundled ActionScript extensions you install.

Configuration files directory

AIR for TV uses various configuration files while executing. These files are in the following subdirectory:

138OPTIMIZING AND INTEGRATING AIR FOR TV

Filesystem usage

Last updated 9/29/2011

/opt/adobe/stagecraft/data/config

SSL certificate directory

AIR TV uses SSL certificates for https operations and secure socket operations. The following directory is the default

directory for storing the SSL certificates:

/opt/adobe/stagecraft/data/config/ssl/certs

Put encrypted certificates in:

/opt/adobe/stagecraft/data/config/ssl/certs/encrypted

Put unencrypted certificates in:

/opt/adobe/stagecraft/data/config/ssl/certs/unencrypted

You can override this directory with the --sslcertsdir command-line option.

For more information, see “Certificate authority (CA) certificates” on page 131 and “HTTPS mutual authentication”

on page 132.

Network asset cache directory

The directory for the network asset cache configuration file is:

/opt/adobe/stagecraft/data/config/file-cache

This directory contains the file named file-cache.conf. This file specifies configuration values for the network asset

cache, such as the maximum number of cached network files.

The cached network assets are stored in the directory:

/opt/adobe/stagecraft/data/file-cache

For more information, see “Network asset cache” on page 125.

Cookie storage

AIR for TV stores HTTP persistent and session cookies in each application’s application storage directory:

/app-storage/<app id>/Local Store

The cookie file is named cookies.

More Help topics

“HTTP cookie support” on page 135

“File.applicationStorageDirectory” on page 142

Debugging files

AIR for TV can log debugging information. AIR for TV puts these “dump” files in the following directory:

/opt/adobe/stagecraft/data/dump

139OPTIMIZING AND INTEGRATING AIR FOR TV

Filesystem usage

Last updated 9/29/2011

DCTS log files

When you run DCTS with AIR for TV, AIR for TV puts the DCTS log files in:

/opt/adobe/stagecraft/data/users/<username>/dump/Logs

The value of <username> is the value provided by ISystemDriver::GetFSCompatibleCurrentUsername().

More Help topics

“File.userDirectory, File.desktopDirectory, and File.documentsDirectory” on page 143

Font files

AIR for TV provides font files in the following directory:

/opt/adobe/stagecraft/fonts

When you extract your AIR for TV distribution from its tar file, this directory is automatically populated with the fonts

that AIR for TV provides.

Furthermore, your platform can put font files that you provide in the following directory:

/usr/local/share/fonts

Finally, you can use the stagecraft binary executable command-line parameter --fontdirs to specify other directories

where your platform provides font files.

More Help topics

“Device fonts that are distributed with AIR for TV” on page 48

“Searching for font files” on page 52

“Exceptions to filesystem access restrictions” on page 144

User-specific data files

AIR for TV reads and writes data files that are specific to a user. For example, these files can include:

• User-specific configuration and data files that AIR for TV uses. These data files include, for example, ActionScript

SharedObject files, or content certificates.

• User-specific data files that the AIR application uses.

The meaning of a user depends on your platform:

• Each user corresponds to one operating system user on your platform.

• Your platform has only one user, such as root or another designated user on Linux systems.

• Your platform provides user accounts and names at an application level higher than the operating system software.

140OPTIMIZING AND INTEGRATING AIR FOR TV

Filesystem usage

Last updated 9/29/2011

The ISystemDriver implementation you provide includes a method called GetFSCompatibleCurrentUsername().

Implement this method to return a string representing the current user, depending on your platform’s meaning of a

user. AIR for TV calls this method one time when it starts. For details about this method, see “The system driver” on

page 98.

Given your implementation of GetFSCompatibleCurrentUsername(), AIR for TV stores user-specific data in the

following directory:

/opt/adobe/stagecraft/data/users/<user name>

The directory <user name> is the return value of GetFSCompatibleCurrentUsername().

If GetFSCompatibleCurrentUsername() returns an empty string, AIR for TV uses the following directory for user-

specific data:

/opt/adobe/stagecraft/data/users/default

Note: If the user-specific directory does not exist, AIR for TV creates it.

AIR for TV creates the subdirectories it needs under the user directory. Similarly, an AIR application creates the

subdirectories it needs.

More Help topics

“Looking up directories that AIR for TV uses” on page 123

Temporary files

Temporary files include:

• Files that AIR for TV uses for private temporary data. These files are in:

/tmp/.stagecraft

The IStagecraft method GetStagecraftTempDirectory() returns this directory.

The directory includes these subdirectories:

/tmp/.stagecraft/process
/tmp/.stagecraft/process/.namedlocklock
/tmp/.stagecraft/process/.sharedmemlock
/tmp/.stagecraft/process/namedlock
/tmp/.stagecraft/process/sharedmem

• Files that AIR applications use for private temporary data. These files are in:

/tmp/.stagecraft/app-tmp/<process id>

The subdirectory <process id> is the process identifier that IAEKernel::GetProcessID() returns. In Linux

platforms, this value is the return value of the Linux system call getpid().

The IStagecraft method GetApplicationPrivateTempFileDirectory() returns this directory.

The AIR for TV process exits when the application finishes executing. Before exiting, AIR for TV removes the files

in this directory, and removes the <process id> subdirectory.

141OPTIMIZING AND INTEGRATING AIR FOR TV

Filesystem usage

Last updated 9/29/2011

More Help topics

“File.CreateTempDirectory() and File.CreateTempFile()” on page 143

“Exceptions to filesystem access restrictions” on page 144

Mounted volumes

AIR for TV looks in the following directory to determine mounted storage volumes:

/opt/adobe/stagecraft/data/volumes

AIR for TV considers any subdirectory of this directory a mounted storage volume. However, typically, to mount a

storage volume, place a symbolic link in this directory. Point the symbolic link to the volume root directory.

For example, consider a volume that is a USB stick with the volume label “USB1” that is mounted on /mnt/usb. To

add this volume so AIR for TV can use it, create the following symbolic link:

/opt/adobe/stagecraft/data/volumes/USB1

The symbolic link USB1 links to /mnt/usb.

Note: The /opt/adobe/stagecraft/data/volumes directory is the only directory that all AIR applications and users

share.

AIR application filesystem access

An AIR application uses the ActionScript 3.0 class flash.filesystem.File to access the filesystem. The AIR application

can access a limited set of filesystem locations. AIR for TV prohibits the application from accessing any other

filesystem locations.

Using ActionScript 3.0, the AIR application uses specific directory names to access the filesystem. These names are for

ActionScript 3.0 use and do not correspond to the directory with that name on the filesystem. AIR for TV maps the

ActionScript 3.0 directory names to actual filesystem locations. The directory names that ActionScript 3.0 can use are:

/app/ The read-only application directory for the running AIR application.

/app-storage/ The read-write application storage directory for the running AIR application.

/home/ The read-write user directory.

/tmp/ The read-write temporary directory for the running AIR application.

/volumes/ The read-only directory containing zero or more read-write subdirectories that represent mounted

volumes. These directories are typically symbolic links.

If an application tries to access a prohibited directory, the runtime throws an exception that ActionScript code can

catch.

File.applicationDirectory

An application can access its application directory. The application directory is the directory in which the application

is installed.

The File class has a static, read-only property called applicationDirectory, which is itself a File object.

142OPTIMIZING AND INTEGRATING AIR FOR TV

Filesystem usage

Last updated 9/29/2011

url property URL scheme

File.applicationDirectory has a url property. The url property uses the app URL scheme. That is, the url property

begins with the string "app:/”.

Note: This value is the same in all AIR applications, not just applications that AIR for TV runs.

File.nativePath value

File.applicationDirectory is a File object. The object’s nativePath property has the following value:

/app

Therefore, an AIR application accesses its installation directory using File.applicationDirectory or /app. The AIR

application cannot access the directory using the actual directory location.

Filesystem location

The actual directory that File.applicationDirectory refers to is located at:

/opt/adobe/stagecraft/apps/<app id>

The value of <app id> is the same as the <id> tag in the AIR application’s application.xml file.

File.applicationStorageDirectory

An application can access its application storage directory. The application directory is the directory in which the

application stores application-specific and user-specific private data.

The File class has a static, read-only property called applicationStorageDirectory, which is itself a File object.

url property URL scheme

File.applicationStorageDirectory has a url property. The url property uses the app-storage URL scheme. That is, the

url property begins with the string "app-storage:/”.

Note: This value is the same in all AIR applications, not just applications that AIR for TV runs.

File.nativePath value

File.applicationStorageDirectory is a File object. The object’s nativePath property has the following value:

/app-storage/<app id>/Local Store

The value of <app id> is the same as the <id> tag in the AIR application’s application.xml file.

Therefore, an AIR application accesses its storage directory using File.applicationStorageDirectory or /app-

storage/<app id>/Local Store. The AIR application cannot access the directory using the actual directory

location.

Filesystem location

The actual directory that File.applicationStorageDirectory refers to is located at:

/opt/adobe/stagecraft/data/users/<username>/app-data/<app id>/app-storage/<app id>/Local Store

The value of <username> is the value provided by ISystemDriver::GetFSCompatibleCurrentUsername().

The value of <app id> is the same as the <id> tag in the AIR application’s application.xml file.

143OPTIMIZING AND INTEGRATING AIR FOR TV

Filesystem usage

Last updated 9/29/2011

File.userDirectory, File.desktopDirectory, and File.documentsDirectory

On a desktop computer, consider the following read-only, static File objects:

• File.desktopdirectory is the computer user’s desktop directory.

• File.documentsDirectory is the directory in which the operating system stores user documents by default.

• File.userDirectory is the user’s home directory, and all AIR applications can use it.

On a device running AIR for TV, the use of a desktop or user documents is not applicable. As for a user’s home

directory, AIR for TV does not use this concept. For security on the device, AIR for TV isolates each user’s user-specific

data for each AIR application.

File.nativePath value

File.userDirectory, File.desktopDirectory, and File.documentsDirectory each are a File object. Each object’s

nativePath property has the following value:

/home

Therefore, an AIR application accesses its user’s directory using File.userDirectory or /home. The AIR application

cannot access the directory using the actual directory location.

Filesystem location

The directory that File.userDirectory, File.documentsDirectory, and File.desktopDirectory refer to is located at:

/opt/adobe/stagecraft/data/users/<username>/app-data/<app id>/home

The value of <username> is the value provided by ISystemDriver::GetFSCompatibleCurrentUsername().

The value of <app id> is the same as the <id> tag in the AIR application’s application.xml file.

File.CreateTempDirectory() and File.CreateTempFile()

An AIR application can create temporary files and directories using the static functions

File.CreateTempDirectory() and File.CreateTempFile(). These methods return a File object that refers to a

temporary file or directory.

AIR for TV deletes these temporary files and directories when the AIR for TV process exits.

File.nativePath value

When running in AIR for TV, the nativePath value of the File object returned from File.CreateTempDirectory()

or File.CreateTempFile() is:

/tmp

Filesystem location

The directory that /tmp refers to is located at:

/tmp/.stagecraft/app-tmp/<pid>

The value of <pid> is the process identifier of the process running AIR for TV.

More Help topics

“Temporary files” on page 140

144OPTIMIZING AND INTEGRATING AIR FOR TV

Filesystem usage

Last updated 9/29/2011

File.getRootDirectories()

AIR applications call the static method File.getRootDirectories() to get an array of File objects. Each File object

corresponds to a filesystem root directory.

On AIR for TV, the array contains only one File object. This File object represents the directory “/”.

StorageVolumeInfo.storageVolumeInfo.getStorageVolumes()

The singleton read-only instance of the StorageVolumeInfo class provides the method getStorageVolumes(). This

method returns a Vector object of StorageVolume objects. Each StorageVolume object corresponds to a currently

mounted storage volume.

On AIR for TV, each StorageVolume object corresponds to a symbolic link or actual subdirectory under the following

directory:

/opt/adobe/stagecraft/data/volumes

When a symbolic link is added to the volumes directory, the StorageVolumeInfo object dispatches a

flash.events.StorageVolumeChangeEvent with type STORAGE_VOLUME_MOUNT.

When a symbolic link is removed from the volumes directory, the StorageVolumeInfo object dispatches a

flash.events.StorageVolumeChangeEvent with type STORAGE_VOLUME_UNMOUNT.

Exceptions to filesystem access restrictions

AIR for TV limits its filesystem access, and the filesystem access of the AIR applications it runs, to the AIR for TV base

directory:

/opt/adobe/stagecraft

However, AIR for TV makes some exceptions to this rule. AIR for TV also accesses the following directories:

• /usr/local/share/fonts. For details, see “Font files” on page 139.

• /tmp/.stagecraft. For details, see “Temporary files” on page 140.

• /dev/fb0

• /dev/random

• /dev/urandom

• /dev/tty

• /dev/meminfo

Note: AIR for TV, not the AIR application that it runs, can access these directories. AIR applications cannot access these

directories.

Development environment directories

On a development environment, you are not required to use the /opt/adobe/stagecraft directory and

subdirectories.

145OPTIMIZING AND INTEGRATING AIR FOR TV

Filesystem usage

Last updated 9/29/2011

For example, you can install an AIR application in any directory, and AIR for TV can run it. Similarly, you can install

the AIR for TV binaries in any directory, and you can still run AIR for TV.

However, when it runs, AIR for TV looks for the /opt/adobe/stagecraft/data directory and the

/tmp/.stagecraft directory. If AIR for TV does not find these directories, it creates them.

On your production target platform, always create and use the /opt/adobe/stagecraft directory and

subdirectories.

146

Last updated 9/29/2011

Chapter 13: Coding, building, and testing

The Adobe® AIR® for TV source distribution provides a Linux® implementation of commonly used programming

types, macros, and functions. If your platform uses a different operating system, a system developer for your platform

provides the implementations. You, as a platform driver developer, however, only work with the definitions and

interfaces of these programming constructs.

AIR for TV also provides a framework for using the make utility to build your platform-specific drivers. The build

process for AIR for TV requires you to place your source and header files in specific directories. The build process also

depends on configuration files you provide.

For testing your platform implementations, AIR for TV provides a suite of unit tests. It also provides a utility to

measure the performance of your drivers.

Directory structure

Depending on your situation, you are developing your AIR for TV platform-specific code using one of the following:

• The AIR for TV source distribution.

• A software development kit distribution. The kit contains one or both of the Driver Development Kit (DDK) and

the Extension Development Kit (EDK).

The source distribution unzips to the following directory structure:

<installation directory>/
flash/
products/

AIR/
stagecraft/

build/
include/
source/
thirdparty/

sdk-packages/
third_party/

Common types and macros

The file AETypes.h is in <installation directory>/products/stagecraft/include/ae. (In these examples, stagecraft is the

installation directory of AIR for TV.) AETypes.h provides typedefs and macros based on the toolchain or operating

system. This file is the only file that contains #ifdefs based on the operating system. The AETypes.h file in the source

distribution provides the implementation for Linux platforms. If your platform does not use Linux, a system developer

for your platform provides the implementation.

Use these typedefs and macros to keep your platform-specific drivers portable. In your platform-specific driver, use

the following typedefs and macros.

• Typedefs for common character and integer types. For example:

147OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

typedef unsigned char u8;

• Macros for swapping bytes. For example:

#define AE_SWAP16(n) ((((n) >> 8) & 0x00FF) | (((n) << 8) & 0xFF00))

• Macros for converting numbers between big endian and little endian order. For example:

#define AE_BE32(n) AE_SWAP32((n))

• Macros for memory allocation and deallocation. For example:

#define AE_NEW ::new(NULL, 0, (AEMem_Selector_AE_NEW_DELETE *)0)

The file also includes debug versions of the memory macros. The debug versions provide additional information

about the memory manipulation.

Kernel functionality

AIR for TV architecture includes a kernel called the Adobe Electronics Kernel. The kernel provides AIR for TV some

fundamental functionality. For example, the kernel provides the ability to load modules, to work with threads, and to

do string processing. The source distribution provides the kernel implementation for Linux platforms. If your

platform does not use Linux, a system developer for your platform provides the kernel implementation.

As a developer of platform-specific drivers, you also use some of the kernel functionality. The public interface file is in

<installation directory>/products/stagecraft/include/ae/IAEKernel.h.

To access kernel methods, use the static GetKernel() method. For example:

IAEKernel::Thread *pThread = IAEKernel::GetKernel()->CreateThread()

Fixed-point numbers

The kernel provides the FixedPoint class. Use this class to do fixed-point arithmetic and comparisons using integer

numerators and denominators.

Time

Your platform’s kernel implementation provides a set of methods related to time. For example, these methods include

GetTimeGMT(), TimeToCalendarTime(), SetTimer(), and Sleep(). For a complete list of time-related methods, see

IAEKernel.h.

These methods work with objects derived from the Time abstract class. A Time class implementation works with time

in nanoseconds, and provides the following:

• Get and Set methods for number of nanoseconds, microseconds, milliseconds, and seconds.

• Arithmetic and comparison operators.

• Methods for setting the Time to a constant representing forever and for checking for forever.

Some of the kernel methods also use a CalendarTime object. The CalendarTime class works with the date and time,

given as the year, month, day, hour, minute, and second.

The kernel also provides a CountdownTimer class. Use this class for setting a time duration and checking on its

progress.

148OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

Threads

Use your platform’s kernel implementation of CreateThread(), DestroyThread(), and GetCurrentThread()for

thread manipulation. These methods work with objects derived from the Thread abstract class. Your platform’s kernel

also provides an implementation of the Thread class. The Thread class implementation provides public methods to do

the following:

• Run the thread.

• Detach the thread.

• Wait for the thread to finish running.

• Get and set the thread’s priority and stack size.

• Yield the CPU.

• Get the name of the thread.

Locks

Your platform’s kernel implementation provides mutex functionality with the CreateMutex() and DestroyMutex()

methods. The kernel also provides implementations of the following classes that relate to mutex functionality:

Lockable An abstract class providing Lock() and Unlock()methods.

Mutex An abstract class derived from Lockable() that adds a TryLock() method.

ScopedLock A class to ensure that a Mutex object is unlocked when the ScopedLock object goes out of scope.

Events

Your platform’s kernel implementation provides the Event class. Use the Event class for setting, clearing, and waiting

on events.

The kernel provides the methods CreateEvent() and DestroyEvent(). The method CreateEvent() allows you to

choose whether the new event requires you to manually reset (clear) the event.

Messages and message queues

Your platform’s kernel implementation provides the Message and MessageQueue classes. The kernel also provides the

methods CreateMessageQueue() and DestroyMessageQueue(). Use these classes and methods to send and receive

messages.

Memory and string manipulation

Your platform’s kernel implementation provides a set of memory and string manipulation functions. For example, the

kernel provides an implementation of memcpy(), strcmp(), and strcat(). For the complete list, see IAEKernel.h.

The kernel implementation also provides a method called GetMemoryInfo(). This method provides information

about operating system memory usage.

149OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

Templates

The file AETemplates.h in <installation directory>/products/stagecraft/include/ae includes the following templates:

• AEArray

• AETokenArray

• AEHashTable

• AEMin and AEMax

• AESmartModule (This template simplifies using IAEModule singletons.)

Unicode strings

The class AEString is defined in <installation directory>/products/stagecraft/include/ae/AETemplates.h. This class

supports both UTF-8 and UTF-16 encoded formats. It provides typical string manipulation functionality such as:

• Setting and getting a string.

• Appending characters to a string.

• Emptying a string.

• Getting a character at a particular index of a string.

For details, see the class definition in AETemplates.h

Operating system functionality

AIR for TV includes modules for interacting with the operating system of your platform. These modules are the

following:

IFileSystem Provides file system operations.

IProcess Provides interprocess locks and shared memory.

INet Provides socket and HTTP operations.

The source distribution provides the implementation of these modules for Linux platforms. If your platform does not

use Linux, a system developer for your platform provides the implementations.

The public interface files are in <installation directory>/products/stagecraft/include/ae/os.

File manipulation

The public interface files for file manipulation are in <installation

directory>/products/stagecraft/include/ae/os/filesystem in IFileSystem.h and File.h.

The IFileSystem.h file contains the definition of the IFilesystem module. Use this module for the following tasks:

• Creating and destroying files.

• Creating and destroying FileIterator objects, used to iterate through the files and subdirectories in a specified

directory.

150OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

• Generating a temporary filename.

• Getting and setting the current working directory of the process running AIR for TV.

• Converting a file URL to a file path.

• Getting the user’s home directory and the system directory. On Linux systems, the system directory is typically /etc.

The File.h file contains the definition of the File class and the FileIterator class. The File class contains the methods you

need for file manipulation. For example, use this class to do the following:

• Open and close files.

• Read and write to files.

• Seek to a position in a file.

• Create directories.

For a complete list of methods, see IFileSystem.h and File.h.

Interprocess locks and shared memory

The public interface files for interprocess locks and shared memory are in <installation

directory>/products/stagecraft/include/ae/os/process in IProcess.h, NamedLock.h, and SharedMemory.h.

The IProcess.h file contains the definition of the IProcess module. Use this module to create and destroy named locks

and shared memory. Use a NamedLock object to provide mutual exclusion among operating system processes. Use a

SharedMemory object, which derives from NamedLock, to share a region of memory among operating system

processes.

Note: These objects are not thread-safe. To provide thread-safety, create a separate NamedLock object or SharedMemory

object in each thread. Then, these objects provide locking or safe memory access among threads as well as among

processes.

The NamedLock.h file contains the definition of the NamedLock class. This class contains methods such as Lock(),

Unlock(), and IsLocked(). For a complete list of methods, see NamedLock.h.The SharedMemory.h file contains the

definition of the SharedMemory class. This class contains the methods GetAddress() and GetSize(). For details, see

SharedMemory.h.

Sockets and HTTP connections

The public interface files for sockets and HTTP connections are in <installation

directory>/products/stagecraft/include/ae/os/net/ in INet.h, Socket.h, and HttpConnection.h.

The INet.h file contains the definition of the INet module. This module provides interfaces for tasks such as:

• Creating and destroying sockets and secure sockets.

• Creating and destroying HTTP connections.

• Converting between Internet Protocol version 4 (IPv4) 32-bit addresses and dot notation.

• Resolving a host name to an IPv4 32-bit address

• Getting network adapter addresses and DNS records

• Checking the structural validity of an X509 certificate

• Checking whether SSL is available

For details, see INet.h.

151OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

The Socket.h file contains the definition of these socket classes:

• The Socket class.

• The TCPSocket class

• The UDPSocket class

• The LocalSocket class

• The SecureSocket class

These classes, along with supporting classes and enumerations, provide interfaces for tasks such as:

• Opening and closing a socket or secure socket.

• Sending and receiving data on a socket or secure socket.

• Configuring a socket or secure socket.

• Supporting TLS functionality. This functionality includes retrieving information from a server’s SSL certificate, and

adding trusted certificates necessary for a particular secure socket connection.

Another class in Socket.h is SocketEventObserver. This class provides interfaces for checking for when socket-related

events occur.

For details, see Socket.h.

The HttpConnection.h file contains the definition of the HttpConnection class. This class provides interfaces for the

tasks such as:

• Setting up a URL request.

• Performing a GET or POST request.

• Receiving notifications when a response is available.

• Handling Secure Sockets Layer events.

 For details, see HttpConnection.h.

Placing code in the directory structure

When you develop a platform-specific driver, create a subdirectory for your platform in the following directory:

<installation directory>/products/stagecraft/thirdparty-private/<yourCompany>/stagecraft-
platforms

Substitute your company name for <yourCompany>. For example, create the following subdirectory for your platform

development:

<installation directory>/products/stagecraft/thirdparty-private/CompanyA/stagecraft-
platforms/yourPlatform

Put your header and source files in the yourPlatform directory or subdirectories of the yourPlatform directory.

152OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

Building platform-specific drivers

Setting build-related environment variables

The build process for AIR for TV uses two environment variables.

SC_PLATFORM This environment variable indicates which platform to build. The platform corresponds to a

subdirectory of <installation directory>/products/stagecraft/thirdparty-private. However, Adobe recommends that

you use a subdirectory under <installation directory>/products/stagecraft/thirdparty-

private/<yourCompany>/stagecraft-platforms. Set this environment variable to the full path of your platform

subdirectory. You can also set SC_PLATFORM to the relative path of your thirdparty-private platform subdirectory. The

path is relative to the build directory <installation directory>/products/stagecraft/build/linux.

Note: Providing the full path or relative path is different from when building the platforms provided with the source

distribution. For the platforms provided with the source distribution, set SC_PLATFORM to the name of the appropriate

platform directory under <installation directory>/products/stagecraft/build/linux/platforms. For example, set

SC_PLATFORM to x86Desktop.

SC_BUILD_MODE This environment variable indicates whether to build a release or debug version of AIR for TV. The

two values are debug and release.

Set these environment variables before running the make utility. If you do not, the make utility prompts you for them.

When prompting you for the SC_PLATFORM value, the make utility lists the full path names of the subdirectories under

<installation directory>/products/stagecraft/thirdparty-private that contain a Makefile.config file. In addition, the

make utility lists the platforms that the source distribution provides. These platforms are in subdirectories under

<installation directory>/products/stagecraft/build/linux/platforms. For the provided platforms, the make utility

prompt includes only the name of the subdirectory, not the full path name.

Creating your platform Makefile.config file

The Makefile.config file specifies variables that the make utility uses. To create your platform’s Makefile.config, do the

following:

1 Copy the Makefile.config from the directory:

<installation directory>/products/stagecraft/build/linux/platforms/generic

to the subdirectory for your platform:

<installation directory>/products/stagecraft/thirdparty-private/<yourCompany>/stagecraft-
platforms

For example:

cd <installation directory>/products/stagecraft/thirdparty-private/yourCompany/stagecraft-
platforms/yourPlatform
cp ../../../../build/linux/platforms/generic/Makefile.config .

2 Edit the Makefile.config in your platform directory. Modify the required variables as appropriate for your platform.

You can also provide values for the optional variables, and you can add variables.

These variables apply to every file that you build, regardless whether the file is part of your thirdparty-private

directory or part of the AIR for TV source. However, you can override these variables in your module .mk file as

described in “Creating your .mk file” on page 154.

Note: Take care when editing Makefile.config (or any makefile) to use an editor that does not replace the tabs with

spaces.

153OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

The following table describes the variables you set in Makefile.config. Provide values for the required variables. The

Makefile in <installation directory>/products/stagecraft/linux/platforms provides the default values for the optional

variables.

Variable Required

or

optional

Description

SC_CC Required The C compiler that the make utility uses.

SC_CXX Required The C++ compiler that the make utility uses.

SC_LD Required The linker that the make utility uses.

SC_AR Required The program that the make utility uses to create static libraries.

SC_STRIP Required The strip program that the make utility uses to strip symbols from object files.

SC_AUTOCONF_CROSSBUIL
D

Optional The options used by GNU autotools when cross-compiling.

SC_ZIP Required The program that the make utility uses for zipping files. The make utility requires this

variable when building native extensions.

SC_UNZIP Required The program that the make utility uses for unzipping files.

SC_COMPC Required The Flex® SDK compiler. The make utility requires this tool when building native

extensions. If you include compc in your PATH environment variable, you don’t have to

set this variable.

SC_ADT Required The AIR Developer Tool (ADT). The make utility requires this tool when building native

extensions. If you include adt in your PATH environment variable, you don’t have to set

this variable.

SC_PLATFORM_NAME Required The identifier that matches the first part of the name attribute of the platform element in

an extension.xml descriptor file. For more information, see “GetPlatformName()” on

page 99. The make utility requires this variable when building native extensions.

SC_PLATFORM_ARCH Required The identifier that matches the second part of the name attribute of the platform element

in an extension.xml descriptor file. For more information, see “GetPlatformArchitecture()”

on page 99. The make utility requires this variable when building native extensions.

SC_CFLAGS_GENERIC Optional The flags to pass to the C compiler for both release and debug builds.

SC_CFLAGS_DEBUG Optional The flags to pass to the C compiler for debug builds only.

SC_CFLAGS_RELEASE Optional The flags to pass to the C compiler for release builds only.

SC_CXXFLAGS_GENERIC Optional The flags to pass to the C++ compiler for both release and debug builds.

SC_CXXFLAGS_DEBUG Optional The flags to pass to the C++ compiler for debug builds only.

SC_CXXFLAGS_RELEASE Optional The flags to pass to the C++ compiler for release builds only.

SC_LDFLAGS_SHAREDLIB Optional The flags to pass to the linker when creating shared libraries.

SC_LDFLAGS_EXECUTABLE Optional The flags to pass to the linker when creating executables.

SC_ARFLAGS_STATICLIB Optional The flags to pass to the program that creates static libraries.

SC_LIBCURL_PREFERENCE Optional Set to stagecraft-built for static linking the cURL library. Set to rootfs-linked for

dynamic linking. Static linking is the default. See “Linking the cURL library” on page 129.

SC_LIBOPENSSL_PREFERE
NCE

Optional Set to stagecraft-built for static linking the openssl library. Set to rootfs-linked

for dynamic linking. Set to skipped only if you do not require HTTPS and secure socket

support. Static linking is the default. See “Linking the openssl library” on page 130.

154OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

Creating your .mk file

Each driver has a .mk file. The primary purpose of the.mk file is to specify the source files to build.

Create a .mk file for your platform-specific driver. To create the .mk file, copy the appropriate .mk file from the

<installation directory>/products/stagecraft/build/linux/modules directory to the subdirectory for your platform

under <installation directory>/products/stagecraft/thirdparty-private/<yourCompany>/stagecraft-platforms. This

directory is the same one in which you put the Makefile.config file for your platform. Use the name of the copied file

for the file you create.

The following table shows the .mk file to copy for each driver:

SC_LIBFREETYPE_LIBFON
TCONFIG_PREFERENCEE

Optional Set to stagecraft-built for static linking the FreeType and FontConfig libraries. Set

to rootfs-linked for dynamic linking. Set to skipped if your device text renderer

does not require these libraries. Static linking is the default. See “Building your platform-

specific device text renderer” on page 57.

SC_DISABLE_JIT Optional Set to yes to disable the internal ActionScript 3.0 JIT compiler for testing.

SC_GSLIB_ICU Optional Set to yes to choose an ICU-based GSLIB. See “ICU library support for flash.globalization”

on page 102.

SC_KERNEL_MODULES Optional The kernel modules of AIR for TV to build.

SC_CORE_MODULES Optional The core modules of AIR for TV to build.

SC_OSPK_MODULES Optional The operating system modules of AIR for TV to build.

SC_STAGECRAFT_MODULES Optional The stagecraft modules of AIR for TV to build.

SC_TEST_MODULES Optional The test modules of AIR for TV to build.

SC_BUILD_TOOL_MODULES Optional The build tool modules of AIR for TV to build.

Driver The .mk file to copy

Graphics driver,

including the

device text

Renderer

<installation
directory>/products/stagecraft/build/linux/modules/IGraphicsDri

ver.mk

Audio and video

driver

<installation
directory>/products/stagecraft/build/linux/modules/IStreamPlay

er.mk

Audio mixer <installation
directory>/products/stagecraft/build/linux/modules/IAudioMixer.

mk

Image decoder <installation
directory>/products/stagecraft/build/linux/modules/IImageDeco

der.mk

Locale driver <installation
directory>/products/stagecraft/build/linux/modules/ILocaleUtils.

mk

Variable Required

or

optional

Description

155OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

After you copy the .mk file to your platform subdirectory, edit it as follows:

1 Specify the kinds of target to build. You specify any combination of these three kinds of targets: shared libraries,

static libraries, or executables. For example:

SC_MODULE_BUILD_SHARED_LIB:= yes
SC_MODULE_BUILD_STATIC_LIB:= yes
SC_MODULE_BUILD_EXECUTABLE:= no

These variables are already specified from copying the .mk file from the <installation

directory>/products/stagecraft/build/linux directory. Edit the values as required by your platform. Typically, you

do not need to edit these variables.

2 Specify the module directory and the module source files to build in the variables SC_MODULE_SOURCE_DIR and

SC_MODULE_SOURCE_FILES. These variables are already specified from copying the .mk file from the <installation

directory>/products/stagecraft/build/linux directory. Typically, you do not add to the list of module source files.

However, sometimes you delete some filenames. For example, the following lines show these variables in the

IStreamPlayer.mk in <installation directory>/products/stagecraft/build/linux/modules:

SC_MODULE_SOURCE_DIR:= $(SC_SOURCE_DIR_DDK)/streamplayer
SC_MODULE_SOURCE_FILES := \

IStreamPlayerBase.cpp \
StreamPlayerBase.cpp \
audiosink/DecodedSamplesAudioSink.cpp \
audiosink/ResamplingAudioSink.cpp \
videosink/DecodedFrameVideoSink.cpp \
ShellCommands.cpp \
filewriter/IStreamPlayerImpl.cpp \
filewriter/FileWriterStreamPlayer.cpp

Because you provide your own StreamPlayer implementation, you do not want to build the FileWriterStreamPlayer

implementation provided with the source distribution. Therefore, modify the IStreamPlayer.mk for your platform

as follows:

SC_MODULE_SOURCE_DIR:= $(SC_SOURCE_DIR_DDK)/streamplayer
SC_MODULE_SOURCE_FILES := \

IStreamPlayerBase.cpp \
StreamPlayerBase.cpp \
audiosink/DecodedSamplesAudioSink.cpp \
audiosink/ResamplingAudioSink.cpp \
videosink/DecodedFrameVideoSink.cpp
ShellCommands.cpp

3 Add these variables to the .mk file: SC_PLATFORM_SOURCE_DIR and SC_PLATFORM_SOURCE_FILES. These variables

specify the platform directory and the platform source files to build. For example:

SC_PLATFORM_SOURCE_DIR:= $(SC_PLATFORM_MAKEFILE_DIR)/streamplayer
SC_PLATFORM_SOURCE_FILES := \

YourPlatformIStreamPlayerImpl.cpp \
YourPlatformStreamPlayer.cpp \

Note: The Makefile in <installation directory>/products/stagecraft/build/linux automatically creates the variable

SC_PLATFORM_MAKEFILE_DIR. The Makefile sets this variable to the value of the SC_PLATFORM environment

variable.

In SC_PLATFORM_SOURCE_FILES, list all the source files for your platform-specific driver. Provide the path relative

to the SC_PLATFORM_SOURCE_DIR directory. For example, consider a file named helperClass.cpp in a subdirectory

called helpers in <installation directory>/products/stagecraft/thirdparty-private/yourCompany/stagecraft-

platforms/yourPlatform/streamplayer. Set SC_PLATFORM_SOURCE_FILES as follows:

156OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

SC_PLATFORM_SOURCE_FILES := \
YourPlatformIStreamPlayerImpl.cpp \
YourPlatformStreamPlayer.cpp \
helpers/helperClass.cpp

4 Specify the value for SC_ADDITIONAL_MODULE_OBJ_SUBDIRS. This variable specifies any subdirectories of

SC_MODULE_SOURCE_DIR that contain module source files. This variable is already specified from copying the .mk

file from the n <installation directory>/products/stagecraft/build/linux directory. Typically, it specifies

subdirectories containing software implementations of drivers which you are replacing. In that case, comment it

out. However, if you are using a software implementation, make sure that it has the correct value. For example, if

you are using the I2D software implementation during initial graphics driver testing, your IGraphicsDriver.mk file

contains the following:

SC_MODULE_SOURCE_DIR:= $(SC_SOURCE_DIR_DDK)/graphicsdriver
SC_MODULE_SOURCE_FILES:= \

GraphicsDriver.cpp \
host/I2DImpl.cpp\

SC_ADDITIONAL_MODULE_OBJ_SUBDIRS := host

5 Specify the value for the following variables if you want to override the values specified in Makefile.config:

• SC_CFLAGS_GENERIC

• SC_CFLAGS_DEBUG

• SC_CFLAGS_RELEASE

• SC_CXXFLAGS_GENERIC

• SC_CXXFLAGS_DEBUG

• SC_CXXFLAGS_RELEASE

• SC_LDFLAGS_SHAREDLIB

• SC_LDFLAGS_EXECUTABLE

• SC_ARFLAGS_STATICLIB

6 Create and set the following SC_PLATFORM_* variables if you have additional flags for building the files you listed

in SC_PLATFORM_SOURCE_FILES:

• SC_PLATFORM_CFLAGS_GENERIC

• SC_PLATFORM_CFLAGS_DEBUG

• SC_PLATFORM_CFLAGS_RELEASE

• SC_PLATFORM_CXXFLAGS_GENERIC

• SC_PLATFORM_CXXFLAGS_DEBUG

• SC_PLATFORM_CXXFLAGS_RELEASE

• SC_PLATFORM_LDFLAGS_SHAREDLIB

• SC_PLATFORM_LDFLAGS_EXECUTABLE

• SC_PLATFORM_ARFLAGS_STATICLIB

The Makefile applies these flags only to building the files specified in SC_PLATFORM_SOURCE_FILES. The Makefile

does not apply these flags to the files listed in SC_MODULE_SOURCE_FILES.

Note: You can also add SC_PLATFORM_* variables to your platform’s Makefile.config if a variable applies to all your

platform-dependent modules.

157OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

Running the make utility

Before building AIR for TV, install any third-party libraries that your platform depends on. See Third-party libraries

in Getting Started with Adobe AIR for TV (PDF). To build AIR for TV, including your platform-specific drivers, do the

following:

1 Make sure the environment variables SC_BUILD_MODE and SC_PLATFORM are set.

2 Change to the directory <installation directory>/products/stagecraft/build/linux.

3 Enter the following command:

make

The make utility creates the object files, executable files, and libraries. It puts them in the following directory:

<installation directory>/build/stagecraft/linux/<your platform name>/[debug | release]/

To build a specific driver, do the following:

1 Make sure the environment variables SC_BUILD_MODE and SC_PLATFORM are set.

2 Change to the directory <installation directory>/products/stagecraft/build/linux.

3 Enter the following command:

make <driver name>

For <driver name> use one of the following:

• IGraphicsDriver

• IStreamPlayer

• IAudioMixer

• IImageDecoder

• ILocaleUtils

If you want to force a rebuild of a target, rather than build according dependency rules, use the following commands:

Rebuild all modules
make rebuild

Rebuild individual modules. For example:
make rebuild-IGraphicsDriver
make rebuild-IStreamPlayer
make rebuild-IAudioMixer
make rebuild-IImageDecoder
make rebuild-ILocaleUtils

To remove all output files resulting from running the make utility, use the following commands:

Clean all modules
make clean

Clean individual modules. For example:
make clean-IGraphicsDriver
make clean-IStreamPlayer
make clean-IAudioMixer
make clean-IImageDecoder
make clean-ILocaleUtils

http://www.adobe.com/go/GettingStartedWithAdobeAIRForTV

158OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

Other parameters available in the make utility include:

quiet Use this parameter to reduce diagnostic output from the make utility. For example, the following command

builds all modules with reduced diagnostic output:

make quiet

Building platform software development kits

You can build platform-specific software development kits for distribution. For example, if you are a silicon vendor,

you can distribute these development kits to the OEMs that use your chip.

After you have built AIR for TV for your platform, you can build the following software development kits (SDKs) for

your platform:

• The Driver Development Kit (DDK)

• The Extension Development Kit (EDK)

Each development kit is a .tgz file that includes the following:

• The AIR for TV binaries (libraries and executables) for the SC_PLATFORM and SC_BUILD_MODE values.

• Header files for the development kit.

• Source files for implementations that AIR for TV provides with the development kit.

To create the software development kits, do the following:

1 Set SC_PLATFORM and SC_BUILD_MODE.

2 Change to the directory <installation directory>/products/stagecraft/build/linux.

3 Execute the following command:

make sdk-distros

This command creates a .tgz file for each of the software development kits, plus another .tgz file that contains both

development kits. The .tgz files are at the top level of your platform target directory. For example, for the

x86Desktop platform in release mode, the .tgz files are in the following directory:

<installation directory>/build/stagecraft/linux/<your platform name>/[debug | release]/sdk-
distribution-tarballs/

Executing unit tests

The source distribution provides a suite of unit tests for testing your platform implementation of AIR for TV. The suite

uses the CppUnit library, which is a C++ framework for test driven development. You can run these tests to validate

your platform implementation. However, because the test set is not extensive, passing all the tests does not guarantee

your platform implementation is bug free.

You can also use the tests to regression test the functionality of your platform implementation. You can also add your

own unit tests.

To build the executable that runs the unit tests, do the following:

1 Change to the directory <installation directory>/products/stagecraft/build/linux.

159OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

2 Execute the following command:

make test

The test target builds the CppUnit library and the cppunittest executable.

To run the cppunittest executable, do the following:

1 Change to the directory <installation directory>/build/stagecraft/linux/x86Desktop/debug/bin. (This example

assumes that you built for the x86Desktop platform in debug mode.)

2 Execute the following command:

./cppunittest

The test target builds the CppUnit library and the cppunittest executable.

Running the cppunittest executable with no arguments runs all the unit tests. Always run the cppunittest executable

from the bin directory because cppunittest depends on the subdirectory testfiles. The testfiles subdirectory

contains files that some of the tests use.

To see the possible arguments for cppunittest, do the following:

./cppunittest -?

This command outputs the following:

cppunittest [options] [tests]:
-l List the names of all the registered Suites, and exit.
-r[n] Repeat all the tests in a continuous loop.

Optional [n] parameter indicates number of loops.
(Loop can be terminated by sending a TERM signal to the thread.)

-s Shuffle. Tests will run in a randomized order (per loop).
-v Verbose output. Prints the name of every test as they run.
-x Log XML formatted output to log file, cppunittest_results.xml, at location where you
executed cppunittest
The remainder of the line lists the tests to be run. By default,
all the tests are run. Tests can be specified by either the name of
the test suite or the full name of the test.

eg:
cppunittest KernelTest -- runs all the KernelTest tests.
cppunittest KernelTest::testMutex -- runs just this test.
cppunittest -vsr2 KernelTest -- runs all KernelTest tests in a loop,

repeating the loop 2 times, shuffling
all tests in each loop, with verbose output.

By default, cppunittest outputs only bread crumbs (“...”) to show progress, followed by a final error report.

The cppunittest output is difficult to see when mixed on the console with the output from the AIR for TV modules.

You can redirect the modules’ output (from stderr) with the following command line:

./cppunittest -v 2>/dev/null

When you run this command, the output from the cppunittest on the console looks like the following sample run:

./cppunittest -v 2>/dev/null
AEErrorTests::OKisOK : OK
AEErrorTests::strings : OK
AEErrorTests::equality : OK
AEErrorTests::values : OK
...

160OPTIMIZING AND INTEGRATING AIR FOR TV

Coding, building, and testing

Last updated 9/29/2011

Measuring performance

One way to measure the performance of your platform is to determine the speed at which it renders SWF content. A

SWF movie is structured as one or more frames. Each frame typically contains content that is displayed visibly or

auditorily to the end user. Each frame can also contain Adobe® ActionScript® content to execute.

You can pass the host application a command-line parameter to trace the performance of the AIR runtime with regard

to frame updates. The host application interacts with an IStagecraft interface, and passes parameters from its

command line to the StageWindow instance.

The command-line parameter to print frames-per-second statistics to the command shell is --tracefps:

./stagecraft --tracefps samplePeriod[MS|S]<AIR application installation path>

For example:

./stagecraft --tracefps 5000MS myApp

./stagecraft --tracefps 5S myApp

Output from the --tracefps option looks like the following example:

Adobe (R) AIR (R) 3.0 for TV
(C) 2008-2011. Adobe Systems Incorporated. All rights reserved.
Patent and legal notices: http://www.adobe.com/go/digitalhome_thirdpartynotice
Using: AIR_3.0
3000 ms: FlashFrames = 0 (0.0/1000.0 FPS), DoPlays = 2538 (846.0/1000.0 PS), FrameBufUpdates
= 359 (119.7 FPS)
3001 ms: FlashFrames = 0 (0.0/1000.0 FPS), DoPlays = 2499 (832.7/1000.0 PS), FrameBufUpdates
= 352 (117.3 FPS)
3004 ms: FlashFrames = 0 (0.0/1000.0 FPS), DoPlays = 2559 (851.9/1000.0 PS), FrameBufUpdates
= 352 (117.2 FPS)

The output contains the following information:

• The first number on each line indicates the milliseconds that elapsed while the --tracefps option collected the

statistical data indicated on the rest of the line. Each sample in the preceding example output is approximately 3

seconds long.

• The FlashFrames value is always 0. It is a legacy tuning parameter that the runtime no longer uses.

• The DoPlays value indicates the internal frequency of the runtime’s main update cycle. This cycle is typically ten

times the authored Flash frame rate, but can vary programmatically.

• The FrameBufUpdates value specifies the number of times the AIR runtime updated the render plane with an

update to SWF content rendered into the plane. The FrameBufUpdates rate is a good indicator of the frame rate

of embedded video playback in a SWF movie; the playback rate of video in the SWF movie usually limits the rate

at which the frame buffer updates.

The --tracefps option is available in both release mode and debug mode. For peak performance tuning, use release

mode. The runtime runs more slowly in debug mode.

	Contents
	Chapter 1: Introducing Adobe AIR 3 for TV
	Getting started
	Architecture of AIR for TV
	Running AIR for TV
	Modules in AIR for TV
	Developing platform-specific drivers
	Integrating with your product
	Binary and source distributions
	Header files
	API reference documentation
	Certification testing

	Chapter 2: The graphics driver
	Class overview
	Plane, RenderPlane, and OutputPlane classes
	I2D class
	IEGL class
	IKeyboardUtils class
	IGraphicsDriver class
	Class interaction

	User input handling
	Window manipulation
	3D rendering
	Implementations included with source distribution
	Summary of distributed graphics drivers
	Production environment suitability
	Class hierarchy of graphics driver implementations
	DirectFB

	Implementation tasks overview
	Plane, RenderPlane, and OutputPlane class details
	Plane, RenderPlane, and OutputPlane class definitions
	Planes and double buffering
	Planes and bitmap caching
	Plane dimensions and scaling
	Pre-multiplied alpha
	User input handling

	Plane class methods
	GetClassName() method
	GetColorFormat() method
	GetDims() method
	GetIGLES2() method
	GetPalette() method
	GetPixelAt() method
	GetRowBytes() method
	Get2DInterface() method
	LockBits() method
	LockPlanarYUVBits()
	OnRectUpdated() method
	SetPalette() method
	Resize() method
	UnlockBits() method

	OutputPlane class methods
	Activate() method
	GetIEGL() method
	GetRect() method
	IsVisible() method
	MoveTo() method
	SetAbove() method
	SetAlpha() method
	SetBelow() method
	SetBottomMost() method
	SetTopMost() method
	SetVisible() method

	I2D class details
	I2D class definition
	I2D class capabilities
	How AIR for TV uses I2D capabilities
	I2D capabilities performance impact
	Comparison of blit feature handling across I2D capabilities

	I2D class methods
	Blit() method
	FillRect() method
	FixedPointBlit() method
	Flush() method
	GetCapabilities() method

	IKeyboardUtils class details
	IKeyboardUtils class methods
	GetKeyboardType() method
	IsKeyboardActive() method
	SetVirtualKeyboardActive() method
	GetVirtualKeyboardRect() method

	IGraphicsDriver class details
	IGraphicsDriver class methods
	CreatePlane() method
	CreateOutputPlane() method
	DestroyPlane() method
	GetGraphicsMemoryInfo()
	GetIFontInterface() method
	GetIKeyboardUtils() method
	GetScreenDims() method
	ResizeOutputPlane()
	ResizePlane()

	GraphicsDriverBase methods
	GetGraphicsDriverBase()
	GetRenderMutex()

	Sample implementation walkthrough
	Fake graphics library class
	Sample IGraphicsDriver subclass declaration
	Sample RenderPlane and OutputPlane subclass declarations
	Sample IGraphicsDriver subclass method definitions

	Implementation considerations
	Providing intermediary classes for public method accessibility
	Starting with the I2D software implementation
	Initializing the Graphics Driver module

	Creating files for your platform-specific graphics driver
	Building your platform-specific graphics driver
	Detailed tasks checklist

	Chapter 3: The device text renderer
	Font sources
	Device fonts that are distributed with AIR for TV
	Classic text versus the Text Layout Framework text
	Device text renderer role
	Class overview
	IFont interaction with the AIR runtime
	Checking for the IFont interface
	Preparing to draw device classic text
	Drawing classic text
	Handling TLF text that uses device fonts

	Searching for font files
	Implementations included with source distribution
	IFont and IFontImpl classes details
	IFont and IFontImpl classes definitions
	Drawing modes
	IFontImpl additions

	IFont methods
	CreateFont() method
	DestroyFont() method
	DrawText() method
	EnumerateDeviceFonts() method
	FindFontFile() method
	GetDrawMode() method
	GetFontMetrics() method
	GetTextExtents() method
	SetFontSearchDirs() method

	Creating files for your platform-specific device text renderer
	Building your platform-specific device text renderer

	Chapter 4: The audio and video driver
	Audio and video driver overview
	Overlay video
	Multichannel Audio
	Software decoded audio and video

	The StreamPlayer
	Overlay video characteristics
	Class overview
	File locations
	StreamPlayer and StreamPlayerBase classes
	IStreamPlayer and IStreamPlayerBase classes
	Class interaction

	Audio and video codecs
	Implementations included with source distribution
	StreamPlayer class details
	StreamPlayer class definition
	Threading
	Payload format of elementary streams
	Buffer management
	Events
	Control sequences

	StreamPlayer methods
	AddNotifier() method
	AttachAudioSink() method
	AttachVideoSink() method
	Flush() method
	GetAudioVideoType() method
	GetBuffer() method
	GetBufferLevels() method
	GetCurrentPTS() method
	GetModes() method
	GetOutputPlane() method
	GetQOSData() method
	GetStreamPlayerModule() method
	GetVideoRegion() method
	NotifyEOF() method
	NotifyOutputPlaneUpdate()
	Pause() method
	Play() method
	ReleaseBuffer() method
	RemoveNotifier() method
	SendNotification() method
	SendAudioES() method
	SendVideoES() method
	SetBufferLevels() method
	SetOutputPlane() method
	SetPrerollSize() method
	SetScreenRect() method
	SetVideoRegion() method
	SetVolume()
	Stop() method

	IStreamPlayer class details
	IStreamPlayer class definition

	IStreamPlayer class methods
	CreateAudioSink() method
	CreateStreamPlayer() method
	CreateVideoSink() method
	DestroyAudioSink() method
	DestroyStreamPlayer() method
	DestroyVideoSink() method
	IsPrintingBufferLevels() method
	IsShowingBufferLevels() method
	MaxStreamPlayers() method
	PrintBufferLevels() method
	ShowBufferLevels() method

	Creating files for your platform-specific audio or video driver
	Building your platform-specific audio or video driver
	Buffer level tracking tools

	Chapter 5: The audio mixer
	Class overview
	AudioOutput class overview
	IAudioMixer class overview

	Class interaction
	Acquiring the audio mixer module
	Creating and destroying an AudioOutput instance
	The AIR runtime and AudioOutput instance interaction
	PCM sample format and rate
	Sample rate conversion
	Audio output from overlay video
	Audio output from audio decoders
	Thread usage
	Buffer underflow notification

	Implementations included with source distribution
	Implementation tasks overview
	AudioOutput class methods
	BytesToSamples()
	GetBuffer()
	GetBufferingInfo()
	GetLatencyInSamples()
	Pause()
	QueueBuffer()
	Reset()
	Resume()
	SamplesToBytes()
	SetVolume()
	WaitForAvailableBuffer()

	IAudioMixer class methods
	CreateAudioOutput()
	DestroyAudioOutput()
	IsAudioTypeSupported()

	Creating files for your platform-specific audio mixer
	Building your platform-specific audio mixer
	Testing your audio mixer
	Building and running the audiotest executable

	Chapter 6: The image decoder
	Class overview
	Class interaction and logic flow
	Acquiring the image decoder module
	Setting up the decode request
	Creating the image decoder
	Decoding the image header
	Preparing to decode the image data
	Decoding the image data
	Interleaved calls to DecodeImageHeader() and DecodeImageData()
	Aborting an image decode request

	Synchronous or asynchronous implementation
	Implementations included with source distribution
	Creating files for your platform-specific image decoder
	Building your platform-specific image decoder

	Chapter 7: The system driver
	Implementations included with source distribution
	ISystemDriver methods
	GetFSCompatibleCurrentUsername()
	GetNumberOfCPUs()
	GetOSVersionString()
	GetPlatformArchitecture()
	GetPlatformName()
	HasAC3()
	HasEAC3()
	HasDTS()
	HasDTSExpress()
	HasDTSHD_HR()
	HasDTSHD_MA()

	Chapter 8: Locale support
	ICU library support for flash.globalization
	glibc or uclibc library support for flash.globalization
	Implementation included with source distribution
	Command-line locale option

	Chapter 9: Integrating with your platform
	Class overview
	Stagecraft library initialization and shutdown
	StageWindow instance creation and deletion
	StageWindow instance configuration
	Command-line parameters
	Create, then configure, the StageWindow instance
	Configure the StageWindow instance when you create it
	Default StageWindow instance parameter values

	Loading and running an AIR application
	Invoking all tasks to run an AIR application
	Controlling individual tasks for running an AIR application
	Pausing and resuming AIR application playback
	Terminating AIR application playback
	Getting authored Stage dimensions
	Getting the screen location

	Client contexts
	StageWindow event handling
	Status values
	Getting the status
	Getting event notifications
	Events about loading AIR applications
	State transition table

	Window manipulation
	Moving a window
	Resizing a window
	Changing the visibility
	Setting the alpha

	User input events
	Remote control key input modes
	AIR application event expectations
	Modes

	Tracking memory usage
	Allocating memory
	Tracking memory

	Looking up directories that AIR for TV uses
	HTTP proxy server parameter updates

	Chapter 10: Network asset cache
	Configuration file
	Caching algorithm
	Persistence across sessions

	Chapter 11: Networking
	Linking the cURL library
	HTTPS support
	Linking the openssl library
	Certificate authority (CA) certificates
	HTTPS verification
	HTTPS mutual authentication
	Handling certificate errors

	Certificate encryption
	HTTP cookie support
	RTMPE support
	HTTP requests through a proxy server
	HTTP authentication

	Chapter 12: Filesystem usage
	Subdirectories of the AIR for TV base directory
	Configuration files directory
	SSL certificate directory
	Network asset cache directory

	Cookie storage
	Debugging files
	DCTS log files
	Font files
	User-specific data files
	Temporary files
	Mounted volumes
	AIR application filesystem access
	File.applicationDirectory
	File.applicationStorageDirectory
	File.userDirectory, File.desktopDirectory, and File.documentsDirectory
	File.CreateTempDirectory() and File.CreateTempFile()
	File.getRootDirectories()
	StorageVolumeInfo.storageVolumeInfo.getStorageVolumes()

	Exceptions to filesystem access restrictions
	Development environment directories

	Chapter 13: Coding, building, and testing
	Directory structure
	Common types and macros
	Kernel functionality
	Fixed-point numbers
	Time
	Threads
	Locks
	Events
	Messages and message queues
	Memory and string manipulation

	Templates
	Unicode strings
	Operating system functionality
	File manipulation
	Interprocess locks and shared memory
	Sockets and HTTP connections

	Placing code in the directory structure
	Building platform-specific drivers
	Setting build-related environment variables
	Creating your platform Makefile.config file
	Creating your .mk file
	Running the make utility

	Building platform software development kits
	Executing unit tests
	Measuring performance

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000630072006500610074006500200049006e0073007400720075006300740069006f006e0061006c00200043006f006d006d0075006e00690063006100740069006f006e002700730020005000720069006e0074002d006f006e002d00440065006d0061006e0064002000500044004600200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e000d005b007500700064006100740065006400200033002d007300650070002d0032003000300034005d>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

