
®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Optimizing Adobe AIR
for Code Execution,
Memory and
Rendering

Sean Christmann

EffectiveUI

11/16/08

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What we’ll be covering

 Understanding AIR performance is about understanding the Flash Player
 Dissecting the Flash ‘Frame’

 Main topics
 Execution speed of user code (Flash | AIR)

 Managing memory (AIR only)

 Rendering Performance (Flash | AIR)

 Q & A

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Flash event loop

 Flash player is delegated event loops to run on.

 Event loops range from 5 ms to 20 ms intervals minimum, and expand to a
maximum depending on code or rendering time.

 Event loops are processed in the following order:

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Flash frame generator

 A frame is generated by stitching one or more event loops together and
marking the final loop to process a render.

 Event.ENTER_FRAME will mark the beginning of a frame and
Event.RENDER will mark the end or a frame.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Flash frame optimization

 Understanding the process of frame assembly will go a long way in
helping perceived performance.

 Separating heavy tasks to run across multiple frames will keep your UI
responsive. Users will respond more favorably to a loading icon then a
locked interface.

 Same goes for splitting up heavy rendering jobs.

 Flash doesn’t support creating arbitrary threads to offload processing off
the main event loop.
 Although Flash 10 provides access to a separate processing thread by way of the

ShaderJob. If you can abstract your logic into a PixelBender workflow, you have your own
thread to send work to.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code Execution - Universal AS3 Optimizations

 Typing will bring you the most significant performance impact.

 Typing prevents runtime evaluation of method signatures which can slow
down the VM.

 This applies to web service data too, if you can cast generic JSON or XML
results in to static typed objects, this can have a major influence on
application execution.

var p:Point = new Point();
p.x = Number(1);
p.y = Number(2);

[
{"_type_":"RecordClass", "name":"Joe"},
{"_type_":"RecordClass", "name":"Bob"}

]

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code Execution - Universal AS3 Optimizations

 Code with ‘JIT awareness’

 JIT = Just In Time compiler
 VM will compile AS3 bytecode to native machine code for the target platform

 JIT won’t compile code within constructors, keep these lightweight

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code Execution - Pick your objects

 Primitives offer the best bang for your buck
 Flash supports the int and uint primitive.

 Primitives are unboxed values meaning they aren’t hidden behind an object, which makes
them fast to access.

 Bytearrays allow for faster access of primitives over Array
 Bypasses the need to box values for storage.

 Stores floating point numbers and strings without their boxes.

 Flash 10 <Vector> class uses this same theory.

 Regex is an order of magnitude slower then String functions for searching
text.
 Use regex for validation, use string methods for searching.

 Call out to webkit if you absolutely must use regex for matching large text.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code Execution - Pick your data model

 AMF processes on the main event thread, not on the URLLoaders thread.
 AMF deserialization can’t be spread over multiple frames.

 Consider handling the AMF data by hand and reading out just the objects you need

 Change to JSON or XML and process in chunks.

 Avoiding using data binding on data transfer objects or AMF objects
 Binding is your friend for UI reflection, and your enemy everywhere else.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code Execution - Pick your UI

 Avoid unnecessary parenting in Flex

 Follow the Flex component model
 createChildren()

 commitProperties()

 updateDisplayList()

 Only use Datagrids as a last resort, make sure you can’t implement in a
regular List first.
 Also avoid Repeaters for scrollable data

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Memory - What’s your size?

 AIR requires ~17MB of private memory to launch with 1 window.

 Every window adds 4 bytes per pixel to initialize the stage.
 1024x768 window = 3MB

 Assume ~4KB per display object added to memory footprint

 AIR lazy loads extra modules (SQLite and WebKit) and keeps them in
memory until the app quits.

 Data models and class memory typically have a much smaller impact on
overall memory compared to DisplayObjects.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Memory - Where’s your size?

 Profiler only shows memory used by the Flash VM
 This means you’ll only see Class data, and Object allocation, and additional packages like

skins.

 Profiler won’t show the Rendering memory, AIR utils like SQLite, system memory like
windowing, as well as Socket data.

 Profiling with system tools
 Activity Monitor on Mac, Process Explorer on PC (requires extra download)

 Private memory column, or private bytes column will show the actual real memory used
by your application

 Shared memory column represents system libraries shared across all apps like windowing
or file access libraries. Don’t worry about Shared memory.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Memory - Managing growth

 Use disk space and SQLite to avoid unnecessarily high app memory.

 Reuse objects to maintain a memory plateau
 DisplayObjects

 URLLoader objects

 Large single objects fragment less across memroy pages then multiple
small objects.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Memory - Cleaning up

 Flash and AIR use a mark and sweep garbage collector

 Garbage collector can be invoked directly in AIR

 Make sure you clean up Asynchronous objects directly, nulling these
objects doesn’t unhook them from the Flash player.
 Timer

 Loader

 URLLoader

 File/SQLite

flash.system.System.gc();

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Memory - Cleaning up

 Where things start falling apart

 Garbage Collector may need some help getting started

 Memory fragmentation is pretty severe in AIR
 Objects may garbage collect, but memory page won’t be released back to system

 You can’t rely on ever getting back to slim memory profile after extended application use.

 AIR can be unreliable at releasing webkit successfully

private var gcCount:uint;
private function startGC():void{
	 gcCount = 0;
	 addEventListener(Event.ENTER_FRAME, doGarbageCollect);
}
private function doGarbageCollect(evt:Event):void{
	 flash.system.System.gc();
	 if(++gcCount > 3){
	 	 removeEventListener(Event.ENTER_FRAME, doGarbageCollect);
	 }
}

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Managing your frame

 Keep your framerate set at 60 fps or lower.
 Current LCDs locked at 60 hz refresh rate, doubtful to change anytime soon

 Avoid multiple display manipulations per frame, code against
ENTER_FRAME events instead of Timer events

 Use <mx:Container creationPolicy=”queued”/> to defer object creation
over multiple frames.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Stages

 Rendering composed of 3 stages
 Layout

 Rasterization

 Compositing

 Rendering bottlenecks will occur in any of these 3 stages, you may have to
make educated guesses to determine which stage to optimize.

 Flash has arguably the best renderer in the industry

 http://www.craftymind.com/guimark/

http://www.craftymind.com/guimark/
http://www.craftymind.com/guimark/

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Layout

 Calculate text positioning and measurements.

 Parent child coordinates for all DisplayObjects.

 Determine object size of graphics layer

 Elements that are offscreen are determined for culling.

 Pass objects in view off to rasterizer.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Rasterization

 Rasterizer passes over vector positions and generates bitmap for output.

 Rasterizes only objects and rects that layout manager has passed it.

 Renders fonts to view.

 Applies antialiasing to edge and stroke lines.
 Fill edges are single edge antialiased, strokes are double edge antialiased.

 Objects marked invisible are passed over. Remember that alpha = 0 is not
the same as visible = false

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Compositing

 Compositing brings is all together to render to blit to final Stage context

 Compositing aggregates date from Layout pass and Rasterization pass to
formulate final image.

 CacheAsBitmap() will store composite chain for reuse later.
 Use only when you know if will help, don’t assume ahead of time, you can get burned

from overusing cacheAsBitmap.

 DrawBitmap() is a great way to composite offscreen elements for later use.

 Drawing to a single graphics context allows you to bypass compositing.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Bitmap or Vector

 Bitmaps are constant draw time for a given size, vector is variable.
 Bitmaps skip the rasterization stage of the renderer.

 Bitmaps require more memory up front, but can be reused over time for
better memory consumption.

 Bitmaps allow for baking in post processing effects, skip the need for run
time filters.

 Vectors scale and rotate better and will generally be a better aesthetic fit.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Additional Tips

 Create DisplayObjects ahead of time to increase perceived speed of
transitions.

 Use ScrollRects instead of Masks
 Masks have to render everything to identify view, scrollRects clip render to bounding box.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

AIR on PC and OS X

 Window Transparency
 PC takes a ~10% performance hit when rendering windows with transparency

 Mac get transparency for free with Apples window compositing technology

 Event Loops
 Observations show PC processes more event loops per second then mac, this may lead to

faster event dispatching, but probably wont effect rendering time.

 Windowing architecture
 PC apps are geared toward a ‘windowed instance’ architecture. Apps live and die by the

presence of a window so memory usage remains lower per app.

 Mac apps promote ‘server instance’ architect. Apps remain alive in dock regardless of
whether windows are open. This requires more testing around memory lifetime.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Q & A

 Presentation files and PDF available at

http://www.craftymind.com

http://www.craftymind.com
http://www.craftymind.com

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

