
®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Optimizing Adobe AIR
for Code Execution,
Memory and
Rendering

Sean Christmann

EffectiveUI

11/16/08

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What we’ll be covering

 Understanding AIR performance is about understanding the Flash Player
 Dissecting the Flash ‘Frame’

 Main topics
 Execution speed of user code (Flash | AIR)

 Managing memory (AIR only)

 Rendering Performance (Flash | AIR)

 Q & A

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Flash event loop

 Flash player is delegated event loops to run on.

 Event loops range from 5 ms to 20 ms intervals minimum, and expand to a
maximum depending on code or rendering time.

 Event loops are processed in the following order:

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Flash frame generator

 A frame is generated by stitching one or more event loops together and
marking the final loop to process a render.

 Event.ENTER_FRAME will mark the beginning of a frame and
Event.RENDER will mark the end or a frame.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Flash frame optimization

 Understanding the process of frame assembly will go a long way in
helping perceived performance.

 Separating heavy tasks to run across multiple frames will keep your UI
responsive. Users will respond more favorably to a loading icon then a
locked interface.

 Same goes for splitting up heavy rendering jobs.

 Flash doesn’t support creating arbitrary threads to offload processing off
the main event loop.
 Although Flash 10 provides access to a separate processing thread by way of the

ShaderJob. If you can abstract your logic into a PixelBender workflow, you have your own
thread to send work to.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code Execution - Universal AS3 Optimizations

 Typing will bring you the most significant performance impact.

 Typing prevents runtime evaluation of method signatures which can slow
down the VM.

 This applies to web service data too, if you can cast generic JSON or XML
results in to static typed objects, this can have a major influence on
application execution.

var p:Point = new Point();
p.x = Number(1);
p.y = Number(2);

[
{"_type_":"RecordClass", "name":"Joe"},
{"_type_":"RecordClass", "name":"Bob"}

]

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code Execution - Universal AS3 Optimizations

 Code with ‘JIT awareness’

 JIT = Just In Time compiler
 VM will compile AS3 bytecode to native machine code for the target platform

 JIT won’t compile code within constructors, keep these lightweight

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code Execution - Pick your objects

 Primitives offer the best bang for your buck
 Flash supports the int and uint primitive.

 Primitives are unboxed values meaning they aren’t hidden behind an object, which makes
them fast to access.

 Bytearrays allow for faster access of primitives over Array
 Bypasses the need to box values for storage.

 Stores floating point numbers and strings without their boxes.

 Flash 10 <Vector> class uses this same theory.

 Regex is an order of magnitude slower then String functions for searching
text.
 Use regex for validation, use string methods for searching.

 Call out to webkit if you absolutely must use regex for matching large text.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code Execution - Pick your data model

 AMF processes on the main event thread, not on the URLLoaders thread.
 AMF deserialization can’t be spread over multiple frames.

 Consider handling the AMF data by hand and reading out just the objects you need

 Change to JSON or XML and process in chunks.

 Avoiding using data binding on data transfer objects or AMF objects
 Binding is your friend for UI reflection, and your enemy everywhere else.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code Execution - Pick your UI

 Avoid unnecessary parenting in Flex

 Follow the Flex component model
 createChildren()

 commitProperties()

 updateDisplayList()

 Only use Datagrids as a last resort, make sure you can’t implement in a
regular List first.
 Also avoid Repeaters for scrollable data

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Memory - What’s your size?

 AIR requires ~17MB of private memory to launch with 1 window.

 Every window adds 4 bytes per pixel to initialize the stage.
 1024x768 window = 3MB

 Assume ~4KB per display object added to memory footprint

 AIR lazy loads extra modules (SQLite and WebKit) and keeps them in
memory until the app quits.

 Data models and class memory typically have a much smaller impact on
overall memory compared to DisplayObjects.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Memory - Where’s your size?

 Profiler only shows memory used by the Flash VM
 This means you’ll only see Class data, and Object allocation, and additional packages like

skins.

 Profiler won’t show the Rendering memory, AIR utils like SQLite, system memory like
windowing, as well as Socket data.

 Profiling with system tools
 Activity Monitor on Mac, Process Explorer on PC (requires extra download)

 Private memory column, or private bytes column will show the actual real memory used
by your application

 Shared memory column represents system libraries shared across all apps like windowing
or file access libraries. Don’t worry about Shared memory.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Memory - Managing growth

 Use disk space and SQLite to avoid unnecessarily high app memory.

 Reuse objects to maintain a memory plateau
 DisplayObjects

 URLLoader objects

 Large single objects fragment less across memroy pages then multiple
small objects.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Memory - Cleaning up

 Flash and AIR use a mark and sweep garbage collector

 Garbage collector can be invoked directly in AIR

 Make sure you clean up Asynchronous objects directly, nulling these
objects doesn’t unhook them from the Flash player.
 Timer

 Loader

 URLLoader

 File/SQLite

flash.system.System.gc();

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Memory - Cleaning up

 Where things start falling apart

 Garbage Collector may need some help getting started

 Memory fragmentation is pretty severe in AIR
 Objects may garbage collect, but memory page won’t be released back to system

 You can’t rely on ever getting back to slim memory profile after extended application use.

 AIR can be unreliable at releasing webkit successfully

private var gcCount:uint;
private function startGC():void{
	 gcCount = 0;
	 addEventListener(Event.ENTER_FRAME, doGarbageCollect);
}
private function doGarbageCollect(evt:Event):void{
	 flash.system.System.gc();
	 if(++gcCount > 3){
	 	 removeEventListener(Event.ENTER_FRAME, doGarbageCollect);
	 }
}

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Managing your frame

 Keep your framerate set at 60 fps or lower.
 Current LCDs locked at 60 hz refresh rate, doubtful to change anytime soon

 Avoid multiple display manipulations per frame, code against
ENTER_FRAME events instead of Timer events

 Use <mx:Container creationPolicy=”queued”/> to defer object creation
over multiple frames.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Stages

 Rendering composed of 3 stages
 Layout

 Rasterization

 Compositing

 Rendering bottlenecks will occur in any of these 3 stages, you may have to
make educated guesses to determine which stage to optimize.

 Flash has arguably the best renderer in the industry

 http://www.craftymind.com/guimark/

http://www.craftymind.com/guimark/
http://www.craftymind.com/guimark/

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Layout

 Calculate text positioning and measurements.

 Parent child coordinates for all DisplayObjects.

 Determine object size of graphics layer

 Elements that are offscreen are determined for culling.

 Pass objects in view off to rasterizer.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Rasterization

 Rasterizer passes over vector positions and generates bitmap for output.

 Rasterizes only objects and rects that layout manager has passed it.

 Renders fonts to view.

 Applies antialiasing to edge and stroke lines.
 Fill edges are single edge antialiased, strokes are double edge antialiased.

 Objects marked invisible are passed over. Remember that alpha = 0 is not
the same as visible = false

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Compositing

 Compositing brings is all together to render to blit to final Stage context

 Compositing aggregates date from Layout pass and Rasterization pass to
formulate final image.

 CacheAsBitmap() will store composite chain for reuse later.
 Use only when you know if will help, don’t assume ahead of time, you can get burned

from overusing cacheAsBitmap.

 DrawBitmap() is a great way to composite offscreen elements for later use.

 Drawing to a single graphics context allows you to bypass compositing.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Bitmap or Vector

 Bitmaps are constant draw time for a given size, vector is variable.
 Bitmaps skip the rasterization stage of the renderer.

 Bitmaps require more memory up front, but can be reused over time for
better memory consumption.

 Bitmaps allow for baking in post processing effects, skip the need for run
time filters.

 Vectors scale and rotate better and will generally be a better aesthetic fit.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Rendering - Additional Tips

 Create DisplayObjects ahead of time to increase perceived speed of
transitions.

 Use ScrollRects instead of Masks
 Masks have to render everything to identify view, scrollRects clip render to bounding box.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

AIR on PC and OS X

 Window Transparency
 PC takes a ~10% performance hit when rendering windows with transparency

 Mac get transparency for free with Apples window compositing technology

 Event Loops
 Observations show PC processes more event loops per second then mac, this may lead to

faster event dispatching, but probably wont effect rendering time.

 Windowing architecture
 PC apps are geared toward a ‘windowed instance’ architecture. Apps live and die by the

presence of a window so memory usage remains lower per app.

 Mac apps promote ‘server instance’ architect. Apps remain alive in dock regardless of
whether windows are open. This requires more testing around memory lifetime.

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Q & A

 Presentation files and PDF available at

http://www.craftymind.com

http://www.craftymind.com
http://www.craftymind.com

®

Copyright 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

