

Digital Signatures

in the PDF Language

Introduction

Dig

ital signatures can be used for many types of documents where
traditional pen-and-ink signatures have been used in the past. However,
the mere existence of a digital signature is not adequate assurance that a
document is what it appears to be. For a recipient to fully trust an
electronic document, they must be able to verify that:

•

the document has not been altered

•

the document came from someone they trust
Digital signatures in PDF documents address these needs by providing a
way to authenticate digital data based on

public k

ey

cryptography

.
This document describes how digital signatures are represented in a PDF
document. It explains the digital signature security features supported by
PDF, and how they solve the need for trusted documents and signatures.
This document does not attempt to explain how the documents are
created, interpreted, or dynamically validated.
The discussion is based on the security features defined in the public
Adobe PDF Language specification,

PDF Reference – Fifth Edition,
version 1.6

, the format used by Adobe Acrobat 7.

Background

W

hile many people are familiar with Public/Private Key (PPK) or Public Key
Infrastructure (PKI)-based digital signatures, there are other ways to
implement digital signatures. PDF does not limit the type of digital
signatures that can be used; third-party developers can define their own
signature mechanisms in the form of an Acrobat plug-in signature
handler.
The PDF language specifies that each signature in a PDF file is associated
with a signature handler that is to be used to process that signature. The
signature is placed in the PDF file in a

signature dictionary

 (See Table 8.98
in the PDF Reference, version 1.6) which contains the name of the
signature handler in the value associated with the

/Filter

 key.
Although Acrobat supports third-party signature handlers, Acrobat comes
with built-in support for only PPK/PKI-based digital signatures. Because
PPK/PKI-based digital signatures are the most common, this document
focuses on how such signatures work in the context of the PDF language
specification. Many of the facilities described are available using other
digital signature technologies, but which facilities and how they are used
is dependent on the third-party signature handler.

C O N T E N T S

Introduction 1

Background 1

PDF Digital Signature Basics 3

The Need for Certified Documents 8

How Field Locking is Done 9

Resources 10

Terms Used in This Document 10

D

ev

eloper

T

echnical

Not

e

2

Dig

ital Sig

na

tur

es

in the PDF Language

Digital

 Signatures Based on Public Key Cryptography

T

he signature handler built into Adobe Acrobat is based on

public key cryptography

, or

Public/Private Key (PPK) cryptography

. PPK is based on the idea that a value encrypted
with a private key can only be decrypted using the public key.

N

O T E

:

T

he reverse may also be true and is useful in encrypting documents for
specific recipients, but that concept is outside the scope of this
document.

The usual way in which PPK is used in digital signature applications is as follows:

1. A document to be signed is turned into a stream of bytes.

2. A one-way

hash

 of the bytes is generated using a well known algorithm, such
as SHA-1.

3. The hash value is encrypted by the signer using their private key, usually using
a signature algorithm like RSA.

4. The encrypted hash value (the mathematical “signature” of the document) is
attached to the document.

A recipient of the document must then validate the signature to confirm the sender
signed it, and that the document has not been modified since it was signed. That
requires the following steps:

1. The recipient’s application generates a one-way hash of the document using
the same algorithm the signer used, excluding the

signatur

e value

.

2.

The encrypted hash value in the document is decrypted using the signer’s
public key.

3. The decrypted hash value is compared to the locally generated hash value.

4. If they are the same, the signature is valid. If not, the signature is not valid.

An invalid signature indicates either that the document has been modified between
signing and verification (see “Documents Modified After Being Signed” on page 7), or
that the public key used by the recipient does not correspond to the private key used
by the signer.

V

erifying Who Signed the Document

T

he use of public key cryptography solves the problem of whether the document has
been altered, but additional steps are required to determine who actually signed the
document. The easiest solution is for the signer to include their public key along with
the document, which ensures that the recipient will have it for verification.
However, the private key and the public key are merely numbers, and anyone can
generate a public and private key pair using any number of tools. Thus, there is a need
for an independent authority that issues, records and tracks the numerous requests for
public/private key pairs.
To associate a particular person with a particular public key, a certificate is used,
formatted using the rules specified in the ITU-T X.509 v3 standard. A certificate
combines a public key and an identity, as shown in Figure 1. To prevent someone from
tampering with the certificate (for example, removing their name and putting yours in
its place), the certificate is itself signed using the same process described above.
Typically, a user obtains a

digital

 ID

 which contains their certificate and private key. The
digital ID may be stored on a user’s system, or on a hardware device such as a smart

3

Dig

ital Sig

na

tur

es

in the PDF Language

car

d or a token. When they sign a document, the certificate portion of their digital ID is
embedded in the signature data stored in the document.
However, certificates alone cannot provide complete trust as to who signed the
document. For example, Acrobat provides a mechanism to generate a

self-signed

certificate which binds a simple user-provided identity to a public key generated by the
application; it is then signed using the corresponding private key. Obviously, there is
nothing to prevent someone from generating a self-signed certificate with someone
else’s name on it. Hence, an unknown self-signed certificate does not have a very high
level of assurance. To solve this type of trust problem, a public key infrastructure (PKI)
can be used.

P

ublic Key Infrastructure

W

hen signing an important paper document, a person usually signs it in front of a
notary public or other trusted authority after providing them satisfactory evidence of
their identity. Because the notary is considered to be trustworthy, you can trust the
signature the notary witnesses. Using a PKI is a method of providing a similar kind of
trust.
The main component of PKI services is a Certificate Authority (CA) company or
organization that has its own private and public key. The CA signs the certificates of
users, handles the process by which the user’s identity is authenticated, and may
manage other services such as checking for revoked certificates, secure time-stamping,
and support for nonrepudiation (so the signer cannot later deny having signed a
document). Some of the well known PKI providers who issue X509v3 certificates to
consumers are Verisign, Geotrust and Cybertrust.

P

DF Digital Signature Basics

PDF is unique in tha

t it includes support for signatures to be embedded in the
document itself, rather than managed as separate data or added on to an existing
document format. This means that the viewing application can perform certain types
of modification without invalidating the signature. With other digital signature formats,
the user may need either two applications to handle both the document and the
signature, or would need to manage two separate files for each document.

PDF Signa

ture Data

I

n PDF, the user’s certificate (see “Verifying Who Signed the Document” on page 2) is
part of the data included in the PDF file when a document is signed.
Figure 1 shows the relationship between the digital ID, the user’s certificate (both are
stored on the user’s hardware device), and the signature value that is embedded in the
PDF document.

4

Dig

ital Sig

na

tur

es

in the PDF Language

F

IGURE

 1 Digital ID and a Signed PDF Document

T

he signature value may also include additional information such as a signature
graphic, a

time stamp

 from a trusted server, and other data that may be specific to the
user, system, or application.

L

ocating the Signature in PDF: the /Contents and /ByteRange

T

he signature value generated by signing a PDF file is included in the body of the PDF
file. Applications can locate the signature value by using an array of four numbers
called the

B

yteRange,

which is stored alongside the signature value.
The four numbers are actually two pairs of numbers. The first number in each pair is the
offset in the file (from the beginning, starting from 0) of the beginning of a stream of
bytes to be included in the hash. The second number is the length of that stream. The
two pairs define two sequences of bytes that define what is to be hashed. In between
the end of the first sequence and the beginning of the second one is the location for
the value of the

/Contents

 key, which contains a hex-encoded PKCS#7 object that is
the actual signature value. Figure 2 shows an example of a ByteRange value that
defines the bytes to be used in the hash calculation.

Signature
value

PDF Document

%PDF

/ByteRange { . . . }

• Certificate

• Signed hash value

• Time stamp

/Contents

(PDF content)

%%EOF

Digital ID

(stored on desktop
 or security device)

Private key

Certificate:

 • Public key
 • Identity
 information

.
 .

 .

signature dictionary

5

Dig

ital Sig

na

tur

es

in the PDF Language

F

IGURE

 2 The ByteRange and Signature Value

I

n this example, the hash is calculated for bytes 0 through 839, and 960 through 1200.

T

he Save/Hash/Update Process

A

crobat always computes the hash for a document signature over the entire PDF file,
starting from byte 0 and ending with the last byte in the physical file, but excluding the
signature value bytes.
The signature is placed in a PDF file as follows:

1. The entire PDF file is written to disk, with a suitably-sized space left for the
signature value, and with worst-case values in the ByteRange array.

2. Once the location of the signature value is known in terms of offsets in the file,
the ByteRange array is overwritten using the correct values. Because the byte
offsets must not change, extra bytes following the new array statement are
overwritten with spaces.

3. The hash of the entire file is computed, using the bytes specified by the real
ByteRange value using a hash algorithm such as SHA-1.

4. The hash value is encrypted with the signer’s private key and a PKCS#7
signature object is generated.

5. The signature object is placed in the file on disk, overwriting the placeholder

/Contents

 value. Any space not used for the signature object is overwritten
with spaces.

6. The PDF file is then re-loaded in Acrobat to ensure that the in-memory version
matches the on-disk version.

Multiple Signa

tures

S

ome documents may require more than one signature. It is easy to handle that with a
paper document by just drawing another line on the paper. With PDF, it is almost as
easy; just add another signature field on the document.
In the paper world, a person signing a document would be wise to save a copy of the
document as it was signed. Then if someone else comes along and changes the
document, the signer can argue that the document had been altered.

0

BytePDF document

1200

960

840

84
0

b
yt

es
24

0
b

yt
es

/ByteRange
[0, 840, 960, 240]

Signature
hash value

computed for
these bytes

signature
value

%PDF

/Contents <

>

%%EOF

Example:

6

Dig

ital Sig

na

tur

es

in the PDF Language

W

ith PDF documents, any attempt to alter the document by modifying the bytes of the
file will cause the digital signature to be invalid. That is because the hash value
calculated at verification time will not match the encrypted hash created at signing
time. So how does one add another signature to an existing document without
breaking an earlier signature? PDF supports the ability to do incremental updates,
which provides support for multiple signatures as well as roll-back (see “Roll-back” on
page 7), which is the ability to view the document exactly as it existed when each
approval signature was applied.

T

he PDF Incremental Update Facility

T

he PDF file format defines an incremental update capability. Incremental updates are
transparent to the person viewing the document, but allow for the detection and audit
of modifications to the file. This feature of the PDF language allows any PDF file (but
most importantly for our discussion, PDF files with signatures) to be modified by
adding the modification information to the end of the file in an incremental update
section. No changes whatsoever are required to the bytes representing the earlier
version of the file. This allows additional signatures to be added to a PDF file without
modifying any data covered by an earlier signature.

N

O T E

:

T

he effect of additional signatures on document validity is discussed in
“How Field Locking is Done” on page 9.

Each additional signature will cover the entire PDF file, from byte 0 to the last byte,
excluding only the signature value for the current signature value. Figure 3 shows how
signatures are created for a file with three signatures.

F

IGURE

 3 Multiple Signatures and Incremental Updates

T

he PDF incremental update facility allows anyone, signer or not, to change just about
anything in the document, including adding pages or modifying text. (See “The Need
for Certified Documents” on page 8 for one way in which the PDF language addresses
this problem.)

N

O T E

:

I

n earlier versions of Acrobat, the Save As command would eliminate
objects in the PDF file that were no longer needed, and would result in
the saving of the entire file as a simple PDF file with no incremental

signature 1

signature 1

%PDF

%%EOF

Original
version

signature 1
applies to
these bytes

Changes for
version 2

Changes for
version 3

signature 2
applies to
these bytes

signature 3
applies to
these bytes

%%EOF

%%EOF

signature 3

signature 2

7

Dig

ital Sig

na

tur

es

in the PDF Language

upda

te sections. This would break any existing signatures. Therefore,
more recent versions of Acrobat do not optimize away the incremental
update sections if a signature is present in the file. There are two
solutions: 1) if using Acrobat 5, use only the Save command, not the Save
As command; or 2) make sure recipients are using Acrobat 6 or higher.

Roll-back

T

he incremental update facility of the PDF file format allows PDF viewers like Acrobat to
effectively retain all signed revisions of any PDF file. This makes it possible for users to
actually see the version of the PDF file that was signed. In Acrobat, you can right-click
on a signature and select the View Signed Version command. This will display the
document as it existed at the time that signature was applied. This is referred to as the

roll-back

 facility of Acrobat. It can be mimicked manually by removing any bytes in the
PDF file after the EOF corresponding to the signature.
You can also compare the current version of any document to the signed version using
the Compare Signed Version to Current Version command, also available by right
clicking on a signed signature field.
Both the Compare Signed Version to Current Version command and the View Signed
Version command are also available using the Signatures tab and by choosing the
Document > Digital Signatures menu item.

Do

cuments Modified After Being Signed

A documen

t with one signature on it that covers the entire document is relatively
simple to validate. Either the hash matches or it does not match. (We will cover PKI-
related validation issues later.) If the hash does not match, Acrobat will mark the
signature with a red X. If the hash does match, Acrobat will show a green check mark
with the signature.
But what if the document was modified using PDF’s Incremental Update facility after it
was signed? What should Acrobat display? Is the signature valid or invalid?
The signed portion of the PDF has not been modified, and by using the roll-back
feature, it is possible to see what the signature covers. But the document may not
appear on screen as the signer saw it. So Acrobat displays a green checkmark with a
yellow triangle icon. That does not mean that the signature is invalid – it is still valid for
the part of the range of bytes to which that signature applies.
The purpose of the warning is to alert the recipient that the document was modified
after the signature was applied, but that modification may well be only a second
signature that was intended by the originator, and which is fully valid. Adobe
recommends that the recipient use the View Signed Version command or the Compare
Signed Version to Current Version command to see what was signed or what has
changed since signing.
Naturally, a second signature on a document is done using the incremental update
facility. So a first signature will be flagged with the yellow triangle once a second
signature has been applied. The minimum difference between the signed version and
the current version is, of course, the application of the second signature.

N

O T E

:

T

his problem of the Yellow Triangle alert can be avoided if the author
certifies the document, as explained below in “The Need for Certified
Documents” on page 8.

8

Dig

ital Sig

na

tur

es

in the PDF Language

T

he Need for Certified Documents

Unsig

ned PDF documents can be changed in ways that would make it difficult for even
a skilled user to detact. How can the signer of a PDF document be sure that the
document is what the originator intended to be signed? In a workflow where a
document originates with one individual or organization and is sent to another for a
signature, and is then returned to the originator, how can the originator know whether
the document was modified before the recipient signed it?

C

ertified documents

 solve both of these problems and allow document recipients to
know if any changes have been made contrary to the author’s intent.
Another issue that certified documents address is the question of document
trustworthiness. As Acrobat and other PDF applications have become more powerful, it
has become necessary to limit access to some functions based on the notion of

privilege

. By having the author sign a document, it is possible for a recipient to know
who the author is and assign a trust level to that author.

H

ow Certified Documents Work

T

he signatures being discussed to this point are known as

appr

oval signatures

, where
someone signs a document to show consent, approval, or acceptance. A certified
document is one that has a certification signature applied by the originator when the
document is ready for use. The originator specifies what changes are allowed; choosing
one of three levels of modification permitted:

•

no changes

•

form fill-in only

•

form fill-in and commenting
Certification signatures are almost identical to approval signatures; for example, a hash
value is computed for the entire file, and they are inserted into the file as described
above. The differences include:

• a certification signature is always the first signature applied to a document
• Rules are added to the document that indicate what changes are allowed to be

made before the author's signature becomes invald.
• An entry is made into a root dictionary that indicates that the signature is a

certification signature.
When a certified document is opened, three operations are performed:

• The certification signature is validated against the bytes of the file. This
operation includes testing the validity of the certification certificate.

• The document as it existed at the time it was certified is is opened and compared
to the document in memory which is currently being viewed, including all
incremental changes. A modification analysis is done and the recipient is notified
if there have been modifications that were prohibited by the author.

• The certification certificate is compared to the user’s list of trusted identities to
establish the level of privilege the document will have.

N O T E : If the certification signature specified that no changes are allowed (that
is, no approval signatures or comments), the modification analysis does
not need to be performed. It is only necessary to check if any incremental
changes have occurred since the document signature was applied or if
any changes have been made in memory. If any changes were made, the
document was modified and the certification signature is invalid.

9
Digital Signatures

in the PDF Language

Modification Ana lysis

To detect if any impermissible changes were made, Acrobat analyzes the differences
between the author-signed version of the document and the current version of the
document that is in memory. Any impermissible changes will cause the associated
signature to become "invalid".

N O T E : Acrobat 6 (PDF 1.5) created object hashes and verified them by
comparing the embedded value with the value computed when the
document was opened. Acrobat 7 still creates the object hashes for
backward compatibility purposes, but does not use them for verification.

Document Trust

With any PKI-based document signature, some sort of identity information about the
signer is provided by the signer’s certificate, included as part of the signature. This
allows recipients to trust documents differently, based on who signed it. Users (or, more
likely, administrators) can establish trust settings for particular end user certificates, or
all certificates issued by a particular intermediate or root certificate authority.
Documents without a certification signature, or signed with unknown or untrusted
certificates, should be treated with great caution.

Locking Input Fields with Signatures

Many documents that require signatures are forms. Some forms may have multiple
signatures fields, with different signers providing data in certain other form fields. In
such cases, it is useful to lock the form fields associated with a particular signature field
once the signature has been applied. This saves having to look at the version of the
document to which the signature applies, to see if the value of a field was changed
between that signature and the current version.

How Field Locking is Done

When a signature field is created, the form author can designate which form fields
should be locked when the field is signed.
When a signature field with field locking specified is signed, a normal document
signature is produced.
When validating the signature, in addition to the normal signature validation over the
bytes of the PDF file, the viewing application will compare the values of the fields
locked by the signature with the current values of those same fields. This allows the
application to detect attempted, but prohibited, changes.

N O T E : In Acrobat 6, the comparison used object hashes computed at signing
time and at validation time to determine if a locked field had changed.
Acrobat 7 produces these objects hashes for backward compatibility, but
does not use them when doing the comparison.

Signature Seed Values

Sometimes the author of a form wishes to limit the choices a user can make when
signing a particular signature field. This can be done using a signature field seed value.
A seed value specifies an attribute and a value for that attribute. The author can make
the seed value a preference or a requirement. Attributes that can be specified with
signature field seed values include:

• a filter (the internal name of a signature handler)

10

Digital Signatures
in the PDF Language

• a minimum filter version
• a sub-filter (the internal name of a type of signature, such as

adbe.pkcs7.detached, intended to be verifiable by signature handlers other than
the one that created it)

• reasons (a string indicating why the signer is signing the document)
• certificate attributes

Certificate seed values are the most common kind of seed values. They allow the author
of a form to restrict signing to particular certificates, or certificates issued by particular
certificate authorities, or certificates that have particular certificate policy OIDs. Again,
these can be preferences or requirements. If a certificate cannot be found that matches
a required certificate seed value, a URL can be provided by the form author to allow the
signer to get more information, such as how to obtain an appropriate certificate.

Resources

For more information on digital signatures in PDF, see:
http://partners.adobe.com/public/developer/acrobat/devcenter.html

Terms Used in This Document

approva l signature A signature used to indicate approval of the document terms.

ByteRange An array of pairs of integers (starting byte offset, length in bytes)
describing the exact byte range for the digital signature hash
calculation (also called digest calculation).

certificate Consists of a public key and its associated user identity. Typically
stored on a user’s system or on a security hardware device. When
a document is signed, the certificate is embedded in the
signature dictionary as part of the signature value associated
with the /Contents key.

certification

signature

A Digital Signature applied using an Individual Digital ID or
Organization Digital ID for the purpose of establishing the
authenticity of a document and the integrity of a document's
content, including its appearance and business logic.

certified document A document to which a certification signature has been applied.

digital ID An electronic representation of certain information, based on
the ITU-T X.509 v3 standard, associated with a person or entity
that is often stored in a password-protected file on a computer,
USB token, smart card, or other security hardware device and is
used to apply a Digital Signature. A Digital ID is sometimes
referred to as a signing certificate, an identity certificate, an e-
mail certificate, a credential or a private key.

http://partners.adobe.com/public/developer/acrobat/devcenter.html

11
Digital Signatures

in the PDF Language

digital signature An electronic signature that can be used to ensure the integrity
of a document and to authenticate the identity of the signor
through the use of Public Key Infrastructure (PKI) technology. A
digital signature is created through the use of a Digital ID.

hash A mathematical operation performed on a sequence of bytes
that results in a virtually unique numeric value (or fingerprint).
The hash is also often called a digest.

private key In Public/Private Key (PPK) cryptography, documents or
signatures are generally encrypted using the private key, while
the public key is distributed to allow a recipient to decrypt.

public key The part of the public/private key pair that is generally
distributed, and which can be used to decrypt an item encrypted
using the private key.

signature va lue The data inserted into the location pointed to by the
/ByteRange value. It contains the encrypted hash value, the
author’s certificate (Identity information and pubic key); and
potentially other items such as a time stamp object from a
trusted time stamp server.

time stamp A hash of the signed contents in the signature dictionary that is
signed by a trusted third party. The unencrypted hash is sent to a
time stamp server via http, it is encrypted (signed) with the time
stamp server’s private key (digital ID) and then the signed hash
along with the time stamp server’s public-key is returned to
Acrobat via http where it is added to the unsigned portion of the
signature dictionary.

Copyright 2006 Adobe Systems, Incorporated. All rights reserved.

Adobe Systems Incorporated

345 Park Avenue, San Jose, CA 95110-2704 USA

http://www.adobe.com

Adobe, the Adobe logo, Acrobat, Adobe LiveCycle, and Reader are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States and/or other countries. Mac OS is a
trademark of Apple Computer, Inc., registered in the United States and other countries. Linux is a
registered trademark of Linus Torvalds. Microsoft, Windows, and Word are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. All
other trademarks are the property of their respective owners.

28 March 2006

http://www.adobe.com

	Digital Signatures in the PDF Language
	Introduction
	Background
	Digital Signatures Based on Public Key Cryptography
	Verifying Who Signed the Document
	Public Key Infrastructure

	PDF Digital Signature Basics
	PDF Signature Data
	Locating the Signature in PDF: the /Contents and /ByteRange
	The Save/Hash/Update Process
	Multiple Signatures
	The PDF Incremental Update Facility
	Roll-back
	Documents Modified After Being Signed

	The Need for Certified Documents
	How Certified Documents Work
	Modification Analysis
	Document Trust

	Locking Input Fields with Signatures
	How Field Locking is Done

	Signature Seed Values
	Resources
	Terms Used in This Document

		developer_tech@adobe.com
	2006-04-04T13:02:52-0700
	San Jose, CA
	Adobe Developer Technologies
	Attestation to the accuracy and integrity of this document

