Al

Adobe

U3D Supported Elements

Adobe° Acrobate SDK

April 2007

Version 8.1

© 2007 Adobe Systems Incorporated. All rights reserved.
Adobe® Acrobat® SDK 8.1 U3D Supported Elements for Microsoft® Windows® and Mac OS®
Edition 2.0, April 2007

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording,
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected
under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to
obtain any permission required from the copyright owner.

Any references to company names, company logos and user names in sample material or sample forms included in this documentation
and/or software are for demonstration purposes only and are not intended to refer to any actual organization or persons.

Adobe, the Adobe logo, Acrobat, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the United
States and/or other countries.

JavaScript is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Mac OS is a trademark of Apple Computer, Inc., registered in the United States and other countries.

Microsoft and Windows are either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.

All other trademarks are the property of their respective owners.
Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101,
consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R.
§12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable,
the Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users
(a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein.
Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA
95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if
appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60,
60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.

Contents

Preface cessessssnsessssnesssnnnsses cesseessssnessnnnesssssnesssnsnsssnnanese 5
What's in this guide.............. 5
Who should read this QUIdeenennensinrnsserseisssssns 5
Related dOCUMENTATION ..ottt tiasssasesissssesssessssssssesssessssssasesssssaass . 5

1 U3D Elements Supported by Acrobat............ . w7
Conventions used in this guide........ccccoeeererernnen. w7
U3D @lEMENTS .ouveeereeerrerenrneresseessaeessessssessssesssssessssssssssssssssssssessas OSSPSR 7

9.2.6 Meta Datacovceoveeerevecmrerserseenennnes sttt n s sesens 7
9.4.1 File Header (blocktype: OX00443355).....uinrnmisnsesessssssssesssess 9
9.4.3 Modifier Chain (blocktype: OXFFFFFF14).......... . . . 10
9.4.5 New Object Type (blocktype: OxFFFFFF16) 10
9.4.6 New Object Block (blocktype: 0x00000100 to OXOOFFFFFF)......cccovvvseunrennees 12
9.5.X.2 Parent Node Dataccoceeeemmeemsmersseessneceanee 12
9.5.1 Group Node (blocktype: OXFFFFFF21) . . . 12
9.5.2 Model Node (blocktype: OXFFFFFF22) 12
9.5.3 Light Node (blocktype: OXFFFFFF23)..... . . 12
9.5.4 View Node (blocktype: OxFFFFFF24) 12
9.6.1.1 CLOD Mesh Declaration (blocktype: OxFFFFFF31) 13
9.6.1.2 CLOD Base Mesh Continuation (blocktype: OxFFFFFF3B) 13
9.6.1.3 CLOD Progressive Mesh Continuation (blocktype: OXFFFFFF3C) . . .13
9.6.2.1 Point Set Declaration (blocktype: OXFFFFFF3B)ccccvereverenrereennns . 13
9.6.2.2 Point Set Continuation (blocktype: OXFFFFFF3E)....... 14
9.6.3.1 Line Set Declaration (blocktype: OxFFFFFF37) . 15
9.6.3.2 Line Set Continuation (blocktype: OxFFFFFF3F) . 15
9.7.2 Subdivision Modifier (blocktype: OxFFFFFF42) 15
9.7.3 Animation Modifier (blocktype: OxFFFFFF43) . . 16
9.7.5 Shading Modifier (blocktype: OXFFFFFFA5).......rrenrrrererereenseeerenne . . 16
9.8.1 Light Resource (blocktype: OXFFFFFF51) 17
9.8.3 Lit Texture Shader (blocktype: OXFFFFFF53)....... 17
9.8.4 Material Resource (blocktype: OXFFFFFF54)vneenreerneereeeneann. 18
9.8.6 Motion Resource (blocktype: OXFFFFFF56)vvveeeeneeeneesseeaseeenne 19

2 Right Hemisphere Adobe 3D Mesh Compression.......... . cessessssssssssssssccsss 20
RHAdobeMeshResource type declaration ... 20
Compressed chunk format for the RHAdobeMeshResource type 21

Chunk header ceet bbbt b et 22
MaiN MESH CAUNK....ceererirrcreiseisseisssisssssssesssssesssessssssssessssssssssssssssssanns ceetuse sttt s s beens 23
Data encoding tYPEeSvreereenerssesseessssnsens PO T TP OP OO TP P PR PROPRRTROPI 28
Floating point data ENCOAING TYPES....nininriseisssisssssessssissasssssssssssssns 28
Integer data eNCOdING...rrensinssssssssssssesssssssssnes ceerserassrssasraens 30
Other data encoding types ettt a et rans 31
Future Expansion SubChunkscceeeuen. w37
EXQIMPIES c.vorveeeererereresseeseessssssssesssasssessssssseses ceeerenaseressassens 38

Adobe Acrobat SDK

U3D Supported Elements 4
3 U3D Meta Data ..40
CONVENTIONS c.ererreireerenreasesesessesssssesssessssessessessesssssesssssssssesssssessesstssesssssssssssssssesssssessessesssesssssessesssssssssssssasssssasesseasessessesssss 40

U3D meta data OO PO OO PP ST OPEOPRSPROPROPROPROTN 40
Namespace meta data ceeseessseasanassaseans 40

Storage of strings from the orlgmal data source.....vereverns 42

Example.... ceetueets s s R e R e bR AR bR Rt A e ee 42

4 New Features and Changes cesssssesssssnsssssssssnnnns cesssssssssssnssssssssnnns 43
ACTODAT 8.7 cecereeeeeeeeureeeneessecsstesseesseesss s essessssesssesssesssesssesssessasesssessssssss st s as s bR R E bbbt b bt sans 43

BIOCK @XTENSIONS ..coveeuvenreuncrreneeseeraseeasessasesasesssessasesssessssssassessesssssssssesssssssssasesssessssssssesssessssesssesssssassesssesssssasssssssssessesssass 43

New expression using existing blocks.......c..cceuuen. et e e e s ee 43

ACTODAT 8.0..ceueveeeeiereineeasetiseisse it sssesasssbssssssesssesbssesssas s bss b sttt st ese et bbb sttt bbbt snss 43

A Decoding Procedures for Right Hemisphere Adobe 3D Mesh Compression......cccceecenseeccees 44
U32 data deCoder ... reeeeeceseesneesssesessenens cereesesssreenseanens 44

UICT dATA HECOUE et css s sssssessssssssssssssassssssassssassssasassssassssssasssssssssssassssassssssasssassssssasssssssssossssssssssssases

Preface

Adobe® Acrobat® 7.0 and later provide support for U3D content that can be contained in PDF 3D
annotations. This guide describes the elements in the specification Universal 3D File Format that are fully or
partially supported by Acrobat.

This guide describes the subset of the Universal 3D File Format that is supported by Acrobat 7.0 and later. It
describes the subset that Acrobat reads.

The basis for this guide is the Universal 3D File Format 1st Edition (December 2004), updated for the
Universal 3D File Format 3rd Edition (June 2006).

This guide provides the following information:

e Components of the Universal 3D File Format that are supported by Acrobat. For the purpose of this
guide, a component is the content of a distinct U3D block.

e Subsets of supported components that are unsupported or have limited support.

e Best practices in the Acrobat implementation, and guidance for situations where an aspect of the
specification Universal 3D File Format is ambiguous.

This guide reflects the section numbers and headings from the Universal 3D File Format guide. Ordering
may diverge where more general descriptive notes applying to multiple components are present. Because
of the changing nature of the Universal 3D File Format, this guide provides only an overview of Acrobat
support for the format. The nature of this support and the number of supported components is subject to
change. The structure of the guide is in terms of the file blocks encountered and sub parts that are
supported.

This guide is for developers who want to create U3D content for use in PDF 3D annotations.

The resources in this table can help you learn about the Acrobat SDK and technologies related to the
development of 3D annotations.

For information about See

A guide to the documentation in the Acrobat SDK Documentation Roadmap
Acrobat SDK.

Developing plug-ins for Acrobat and Developing Plug-ins and Applications
Adobe Reader®, as well as for PDF Library

applications.

Adobe Acrobat SDK
U3D Supported Elements

Preface
Related documentation 6

For information about

See

Detailed descriptions of the APIs for Acrobat
and Adobe Reader plug-ins, as well as for
PDF Library applications.

Detailed descriptions of JavaScript™ APIs for
adding interactivity to 3D annotations within
PDF documents.

A detailed description of the U3D file format
standard.

Acrobat and PDF Library APl Reference

JavaScript for Acrobat 3D Annotations APl Reference

ECMA-363: Universal 3D File Format, Edition 1
(December 2004) and ECMA 363: Universal 3D File
Format, Edition 3 (June 2006). These specifications
are available at the ECMA web site
www.ecma-international.org/.

http://www.ecma-international.org/

U3D Elements Supported by Acrobat

This guide describes the elements in the specification Universal 3D File Format that are fully or partially
supported by Acrobat. It focuses on what Acrobat can consume. This guide omits U3D elements that
Acrobat does not support.

The section numbers and headings used in this guide correspond to the section numbers and headings in
the Universal 3D File Format, 3rd Edition. These section numbers and headings are italicized to distinguish
them from section headings of this guide.

The main headings in this section specify the element numbers corresponding to each block type that is
supported by Acrobat 7.0 and later. (By inference, elements of the specification not mentioned may be
unsupported.) This guide addresses supported U3D elements as follows:

e Block types with no subparts are supported in their entirety. Omitted block types are not supported.

e Subparts are listed, information is given about the nature of Acrobat support for them.

The following terms appear in the description of some elements:

e “Parsed and unused”: Acrobat requires the particular element to be present in the U3D data, even
though Acrobat does not use the element. If the element is not present, an error occurs.

e “Not parsed”: The element is not required and Acrobat ignores it if present.

U3D section numbers and headings that appear in the body of this guide are identified with italics.

Meta data is parsed and stored.

Meta data for the file header can contain an entry with a meaning specific to Acrobat, such as the data
described in “U3D Meta Data” on page 40.

Acrobat 7.0.7 and later support units scaling-factor meta data specified in the Universal 3D File Format, 1st
Edition. Acrobat 8.1 adds support for units scaling-factor meta data for a new convention made possible
by the Universal 3D File Format, 3rd Edition. If neither convention appears, the objects are unitless.

Units scaling factor specified using 9.4.1.6 “F64: Units Scaling Factor”

Beginning with Acrobat 8.1, if U3D units scaling factor (units) data described by section 9.4.1.2, U32: Profile
Identifier sets the Defined Units bit (0x00000008), Acrobat obtains units data from U3D data described by

Adobe Acrobat SDK U3D Elements Supported by Acrobat
U3D Supported Elements 9.2.6 MetaData 8

section 9.4.1.6 F64 Units Scaling Factor and ignores any units data provided in the RHAdobeUnitsMeters
key. The Defined Units bit indicates the objects are defined with a units scaling factor.

Units scaling factor in the RHAdobeUnitsMeters key

Beginning with Acrobat 7.0.7, valid units scaling factor (units) data requires that the first meta data node
entry of the 9.4.1 File Header (blocktype: 0x00443355) contain the following fields, in sequence:

1. 9.2.6.2 U32: Key/Value Pair Attributes, with a value indicating string content.

2. 9.2.6.3 String: Key String, containing the string:
RHAdobeUnitsMeters=

3. 9.2.6.4 String: Value String, containing an alphanumeric representation of a floating point number. This
representation consists of a sequence of ASCIl numeric characters (0 through 9) representing the whole
number portion, optionally followed by a period character (.) and an additional sequence of ASCII
numeric characters representing the fractional portion of the floating point value.

Assuming these conditions are met, the string content is interpreted as a single-precision floating point
value called the Units Scaling Factor. Multiplying the Units Scaling Factor by the values of positions and
lengths in the file converts the units for those values to meters. For example, if the units in the file are
intended to represent centimeters, the Units Scaling Factor would be 0.01. A value of 5 in the file would
mean 5 ¢cm (0.05m).

If the U3D file contains data that corresponds to the 9.4.1.6 F64: Units Scaling Factor (“Units scaling factor
specified using 9.4.1.6 “"F64: Units Scaling Factor”” on page 7), Acrobat 8.1 ignores any units scaling data
provided in the sequence of data that includes the string RHAdobeUnitsMeters-=.

Adobe Acrobat SDK U3D Elements Supported by Acrobat
U3D Supported Elements 9.4.1 File Header (blocktype: 0x00443355) 9

9.4.1.1 132: Version

This section appears only in Universal 3D File Format, 1st Edition.

Version 0 is supported. All other version numbers result in a 3D parsing error.

9.4.1.1.1 116: Major Version

Acrobat 7 and later support major version 0. When Acrobat reads U3D content that specifies major version
numbers greater than 0, it presents a dialog box stating that this version is unsupported, and that the user
needs to update their version of Acrobat. All negative major version numbers result in a 3D parsing error.

This change relates to the Universal 3D File Format, 3rd Edition support. This field supersedes the definition
9.4.1.1 132: Version present in the Universal 3D File Format, 1st Edition.

9.4.1.1.2 116: Minor Version
Beginning with Acrobat 8.1, all minor versions are supported.

This change relates to the Universal 3D File Format, 3rd Edition support. This field supersedes the definition
9.4.1.1 132: Version present in the Universal 3D File Format, 1st Edition.

9.4.1.2 U32: Profile Identifier

(Acrobat 8.0 and later) Parsed.

Bit position Description

0x00000002 Extensible profile, which is a feature introduced in Universal 3D File Format, 3rd
Edition. Acrobat 8.1 supports this feature.

0x00000004 Specifies “No compression mode” It is recommended that files be compressed with
compression mode enabled (0x00000004 bit is 0x00000000).

Acrobat responds to this bit being set depending on the version:
e Acrobat versions 7.0.0 to 7.0.7 may crash.
e Acrobat 7.0.9 terminates parsing.
e Acrobat 8.0 and later, parse noncompressed data.
0x00000008 Specifies “Defined units’, which is a feature introduced in Universal 3D File Format,

3rd Edition. Acrobat 8.1 supports this feature, as described “Units scaling factor
specified using 9.4.1.6 “F64: Units Scaling Factor”” on page 7.

9.4.1.5 U32: Character Encoding

Character encoding is UTF-8, as specified in the Universal 3D File Format.

9.4.1.6 F64: Units Scaling Factor

Parsed and used only by Acrobat 8.1 and later. This change relates to the Universal 3D File Format, 3rd
Edition support.

Adobe Acrobat SDK U3D Elements Supported by Acrobat
U3D Supported Elements 9.4.3 Modifier Chain (blocktype: OXFFFFFF14) 10

9.4.3.2 U32: Modifier Chain Type

Parsed and unused.

9.4.3.4 Modifier Chain Bounding Sphere

Parsed and unused.

9.4.3.5 Modifier Chain Axis-Aligned Bounding Box

Parsed and unused.

Certain blocks may only be read if presented as declarations for object modifiers. As a result, such blocks
must reside within a modifier chain. The following sections specify such object modifiers:

e 9.5.1Group Node (blocktype: OXFFFFFF21)

e 9.5.2 Model Node (blocktype: OxFFFFFF22)

e 9.5.3Light Node (blocktype: OxFFFFFF23)

o 9.5.4View Node (blocktype: OxFFFFFF24)

o 9.6.1.1 CLOD Mesh Declaration (blocktype: OxFFFFFF31)
o 9.6.2.1 Point Set Declaration (blocktype: OxFFFFFF36)
o 9.6.2.2 Point Set Continuation (blocktype: OxFFFFFF3E)
o 9.6.3.1Line Set Declaration (blocktype: OxFFFFFF37)

o 9.6.3.2 Line Set Continuation (blocktype: OxFFFFFF3F)
o 9.7.2 Subdivision Modifier (blocktype: OXFFFFFF42)

o 9.7.3 Animation Modifier (blocktype: OxFFFFFF43)

e 9.7.5 Shading Modifier (blocktype: OXFFFFFF45)

e 9.8.5.1 Texture Declaration (blocktype: OXFFFFFF55)

Acrobat 8.1 supports this feature, which is supported by Universal 3D File Format, 3rd Edition.

Acrobat 8.1 supports only one extension block type, RHAdobeMeshResource. See “Right Hemisphere
Adobe 3D Mesh Compression” on page 20.

9.4.5.1 String: New Object Type Name

Parsed.

9.4.5.2 U32: Modifier Type

Parsed and unused.

Adobe Acrobat SDK U3D Elements Supported by Acrobat
U3D Supported Elements 9.4.5 New Object Type (blocktype: OXFFFFFF16) 11

9.4.5.3 Extension ID

Parsed.

9.4.5.4 U32: New Declaration Block Type

Parsed. For information on how Acrobat interprets this feature, see “9.4.6 New Object Block (blocktype:
0x00000100 to OXOOFFFFFF)” on page 12.

9.4.5.5 U32: Continuation Block Type Count

Parsed.

9.4.5.6 U32: New Continuation Block Type

Parsed and unused.

9.4.5.7 String: Extension Vendor Name

Parsed.

9.4.5.8 U32: Extension URL Count

Parsed.

9.4.5.9 String: Extension Information URL

Parsed and unused.

9.4.5.10 String: Extension Information String

Parsed.

Adobe Acrobat SDK U3D Elements Supported by Acrobat
U3D Supported Elements 9.4.6 New Object Block (blocktype: 0x00000100 to OxOOFFFFFF) 12

This change relates to Universal 3D File Format, 3rd Edition support. This set of blocks is supported as of
Acrobat 8.1.

Acrobat supports only the extension block type RHAdobeMeshResource, as described in “Right
Hemisphere Adobe 3D Mesh Compression” on page 20.

9.2.1 U32: Block Type

Parsed. To declare a block of type RHAdobeMeshResource, the value should match that of the field 9.4.5.4
U32: New Declaration Block Type within a valid 9.4.5 New Object Type declaration of the new block type
described in “9.4.5 New Object Type (blocktype: OXFFFFFF16)” on page 10.

All other block types will be ignored.

Note: The presence of “X" in an element number indicates a numeric sequence. For example, 9.5.X refers
to numbers of the form 9.5.1, 9.5.2, and so forth.

9.5.X.2.1 U32: Parent Node Count

In Acrobat versions 7.0 through 8.1, a value greater than 1 results in data duplication, so heavy usage of
this feature may result in reduced application performance.

Acrobat versions 7.0 through 7.0.7 do not support multi-level multi-parenting (that is, nodes having
multiple parents, who in turn have multiple parents). Acrobat 8.0 and later support multi-level
multi-parenting.

9.5.2.4 U32: Model Visibility

Acrobat 7.0 through 7.0.9 may have performance problems with models that specify value front and back
face (3). Acrobat 8.0 and later do not have such problems.

9.5.2.3 String: Model Resource Name

Each model node must reference a unique resource. If model nodes share the same resource, the first
model node will receive it, and subsequent model nodes will be empty.

Supported.

Supported with the exceptions noted.

Adobe Acrobat SDK U3D Elements Supported by Acrobat
U3D Supported Elements 9.6.1.1 CLOD Mesh Declaration (blocktype: OXFFFFFF31) 13

9.5.4.3 String: View Resource Name

Parsed and unused.

9.5.4.6.2 F32: View Orthographic Height

Parsed and unused.

9.5.4.6.3.1 F32: View Projection Vector X

Parsed and unused.

9.5.4.6.3.2 F32: View Projection Vector Y

Parsed and unused.

9.5.4.6.3.3 F32: View Projection Vector Z

Used to scale field of view.

9.5.4.8 U32: Backdrop Count

Not parsed.

9.5.4.9 Backdrop Properties

Not parsed.

9.5.4.10 U32: Overlay Count

Not parsed.

9.5.4.11 Overlay Properties

Not parsed.

Should be part of an object; that is, be preceded by a 9.5.2 Model Node (blocktype: OXFFFFFF22).

9.6.1.1.6 Skeleton Description

Parsed and unused (that is, no skeletal animation, skinning, or bones).

Support in Acrobat 7.0.7 and later. Acrobat 7.0.7 through 8.0 display the point set only when the selected
render mode is ‘Vertices’ and fail to display the point set in other render modes. Acrobat 8.1, displays the
point set in all render modes.

Adobe Acrobat SDK U3D Elements Supported by Acrobat
U3D Supported Elements 9.6.2.2 Point Set Continuation (blocktype: OXFFFFFF3E) 14

The data should be part of an object; that is, the data should be preceded by a block as described in 9.5.2
Model Node (blocktype: OXFFFFFF22).

9.6.2.1.3.2 U32: Point Count

Parsed and unused.

9.6.2.1.3.9 Shading Description

Parsed and unused. Material attributes cannot be applied to lines. Use per vertex attributes within
9.6.3.2.4.6.

9.6.2.1.4.1 Quality Factors

Parsed and unused.

9.6.2.1.5 Skeleton Description

Parsed and unused (that is, no skeletal animation, skinning, bones).

Supportin Acrobat 7.0.7 and later. Acrobat 7.0.7 through 8.0 display the point set only when the selected
render mode is ‘Vertices’ and fail to display the point set in other render modes. Acrobat 8.1 displays the
point set in all render modes.

The data should be part of an object; that is, the data should be preceded by a block as described in 9.5.2
Model Node (blocktype: OxFFFFFF22).

9.6.2.2.2 U32: Chain Index

Parsed and unused; specified to always be 0.

9.6.2.2.4.4 New Normal Info

Parsed and unused.

9.6.2.2.4.6.3 U32 [cNormlldx]: Normal Local Index

Parsed and unused.

9.6.2.2.4.6.4 New Line Diffuse Color Coords

Parsed but it is possible that only the first color encountered will be rendered correctly.

9.6.2.2.4.6.5 New Line Specular Color Coords

Parsed and unused.

9.6.2.2.4.6.6 New Line Texture Coords

Parsed and unused.

Adobe Acrobat SDK U3D Elements Supported by Acrobat
U3D Supported Elements 9.6.3.1 Line Set Declaration (blocktype: OXFFFFFF37) 15

Should be part of an object; that is, be preceded by a 9.5.2 Model Node (blocktype: OXFFFFFF22).

9.6.3.1.3.9 Shading Description

Parsed and unused. Material attributes cannot be applied to lines. Use per vertex attributes within
9.6.3.2.4.6.

9.6.3.1.5 Skeleton Description

Parsed and unused (that is, no skeletal animation, skinning, bones).

9.6.3.2.2 U32: Chain Index

Parsed and unused; specified to always be 0.

9.6.3.2.4.4 New Normal Info

Parsed and unused.

9.6.3.2.4.6.3 U32 [cNormlldx]: Normal Local Index

Parsed and unused.

9.6.3.2.4.6.5 New Line Specular Color Coords

Parsed and unused.

9.6.3.2.4.6.6 New Line Texture Coords

Parsed and unused.

9.7.2.2 U32: Chain Index

Parsed and unused.

9.7.2.3 U32: Subdivision Attributes

Parsed and unused.

9.7.2.5 F32: Subdivision Tension

Parsed and unused.

9.7.2.6 F32: Subdivision Error

Parsed and unused.

Adobe Acrobat SDK U3D Elements Supported by Acrobat
U3D Supported Elements 9.7.3 Animation Modifier (blocktype: OxFFFFFF43) 16

9.7.3.2 U32: Chain Index

Parsed and unused.

9.7.3.3 U32: Animation Modifier Attributes

Parsed and unused.

9.7.3.4 F32: Time Scale

Parsed and unused.

9.7.3.6 Motion Information

Only the first Motion Information entry is supported.

9.7.3.6.2 U32: Motion Attributes

Parsed and unused.

9.7.3.6.3 F32: Time Offset

Parsed and unused.

9.7.3.6.4F32: Time Scale

Parsed and unused.

9.7.3.7 F32:Blend Time

Parsed and unused.

Requires a mesh declared within a 9.5.2 Model Node (blocktype: OxFFFFFF22) prior to this chunk in file order.

9.7.5.2 U32: Chain Index

Parsed and unused.

9.7.5.3 U32: Shading Attributes

Parsed and unused.

Adobe Acrobat SDK U3D Elements Supported by Acrobat
U3D Supported Elements 9.8.1 Light Resource (blocktype: OxFFFFFF51) 17

9.8.1.2 U32: Light Attributes

Parsed and unused.

9.8.1.5.1 F32: Light Attenuation Constant Factor

Acrobat 7.0.7 and later parse but do not support this factor. As a result, point and spotlights make no
illumination contribution to the scene.

9.8.1.5.2 F32: Light Attenuation Linear Factor

Acrobat 7.0.7 and later parse but do not support this factor. As a result, point and spotlights make no
illumination contribution to the scene.

9.8.1.5.3 F32: Light Attenuation Quadratic Factor

Acrobat 7.0.7 and later parse but do not support this factor. As a result, point and spotlights make no
illumination contribution to the scene.

9.8.1.6 F32: Light Spot Angle

Parsed. Angle treated as being in degrees, and for a full angle, cone edge to cone edge. This is not specified
in the Universal 3D File Format.

9.8.3.2 U32: Lit Texture Shader Attributes

Parsed and unused.

9.8.3.3 F32: Alpha Test Reference

Parsed and unused.

9.8.3.4 U32: Alpha Test Function

Parsed and unused.

9.8.3.5 U32: Color Blend Function

Parsed and unused.

9.8.3.6 U32: Render Pass Enabled Flags

Parsed and unused.

9.8.3.8 U32: Alpha Texture Channels

Parsed and unused.

Adobe Acrobat SDK U3D Elements Supported by Acrobat
U3D Supported Elements 9.8.4 Material Resource (blocktype: OxFFFFFF54) 18

Only high-end cards may support more than one Texture Information layer. Examples of high-end cards
include NVIDIA GeForce3 and GeForce4, but not NVIDIA GeForce4 MX. Software supports one Texture
Information layer. Other layers are parsed but not rendered.

9.8.3.10.4 U8: Blend Source

Parsed and unused.

9.8.3.10.6 U8: Texture Mode
TM_NONE and TM_REFLECTION are supported.

TM_NONE is utilized by diffuse rendered textures.

TM_REFLECTION is not supported by the software renderer, and may not be supported by older or built -in
graphics cards, such as older versions of the Intel Graphics Media Accelerator (GMA) and NVIDIA GeForce2.

The renderer supports one layer of each type. Rendering of multiple layers of the same type is undefined.

9.8.3.10.7 F32: Texture Transform Matrix Element

Texture scaling and rotation is not fully supported.

9.8.3.10.8 F32: Texture Wrap Transform Matrix Element

Not parsed.

9.8.4.2 U32: Material Attributes

Parsed and unused.

9.8.4.4 Diffuse Color Parsed.

The value may modulate the per-vertex values of a mesh.

9.8.4.5 Specular Color

Parsed, but not supported by software renderer, and may not be supported by older or built-in graphics
cards, such as older versions of the Intel Graphics Media Accelerator (GMA) and NVIDIA GeForce2.

9.8.4.6 Emissive Color

Parsed, but not supported by software renderer, and may not be supported by older or built-in graphics
cards, such as older versions of the Intel Graphics Media Accelerator (GMA) and NVIDIA GeForce2. Emissive
color currently does not modulate textures; it is added to the final surface color.

Adobe Acrobat SDK U3D Elements Supported by Acrobat
U3D Supported Elements 9.8.6 Motion Resource (blocktype: OXxFFFFFF56) 19

9.8.5.1.2.3 U8: Texture Image Type

Parsed and unused.

9.8.5.1.4.1 U8: Compression Type
JPEG-24, PNG, and JPEG-8 are supported. TIFF is unsupported.

9.8.5.1.4.2 U8: Texture Image Channels

Parsed and unused.

9.8.5.1.4.4 U32: Image Data Byte Count

Parsed and unused.

9.8.5.1.4.6 String: Image URL

Parsed and unused.

Uses information gleaned from 9.8.5.1.

One continuation block is supported per texture.

Right Hemisphere Adobe 3D Mesh Compression

This chapter specifies the 3D mesh compression format developed by Right Hemisphere and supported
by Acrobat 8.1. Right Hemisphere Adobe 3D mesh compression introduces a new block within the
framework of the extension mechanism of the ECMA-363, Universal 3D File Format, 3rd Edition (U3D). This
block significantly improves the mesh compression performance of the format.

Beginning with Acrobat 8.1, Acrobat supports this format. Acrobat continues to support original mesh and
other block types, as described in “U3D Elements Supported by Acrobat” on page 7. The Right Hemisphere
Adobe 3D mesh compression format is an alternative choice for creating smaller file size representations of
meshes, being able to store equivalent sets of data to that of the existing U3D uncompressed mesh blocks.
The extension mechanism is specified in Universal 3D File Format, 3rd Edition, which is available at
www.ecma-international.org.

The compressed mesh chunk is written to a U3D file using the chunk extension mechanism of the U3D
format (BlockType_FileNewObjectTypeU3D = OxFFFFFF16). See Universal 3D File Format, 3rd Edition,
section 9.4.5 New Object Type (blocktype: OxFFFFFF16).

The following table specifies (in sequential order) the contents of the 9.4.5 New Object Type
(blocktype: OXFFFFFF16) that declares a type of RHAdobeMeshResource.

ECMA-363
Section # ECMA-363 Section title Whether parsed and required value
9.4.5.1 String: New Object Type Name Parsed. Must have this value:
RHAdobeMeshResource
9.4.5.2 U32: Modifier Type Parsed and ignored.
9453 Extension ID Parsed. Must have these values:
0x96a804a6, 0x3fb9, 0x43c5
0xb2, 0xdf, 0x2a, 0x31, 0xb5, 0x56,
0x93, 0x40
9454 U32: New Declaration Block Type | Parsed and required. A unique identifier assigned by
the originator of the RHAdobeMeshResource data.
The value must appear in all RHAdobeMeshResource
chunks and must not match any predefined unique
identifiers, such as 0x5a4f173e or 0x11223344 or
Oxaabbccdd.
9.4.5.5 U32: Continuation Block Type Parsed and ignored
count
9.4.5.6 U32: New Continuation Block Parsed and ignored
Type This data is an array of values, whose size is defined

by 9.4.5.5 ContinuationBlockType count.

20

http://www.ecma-international.org

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression

U3D Supported Elements Compressed chunk format for the RHAdobeMeshResource type 21
ECMA-363
Section # ECMA-363 Section title Whether parsed and required value
9.4.5.7 String: Extension Vendor Name | Parsed. Must have this value:

Right Hemisphere Adobe Systems

9458 U32: Extension URL Count Parsed and ignored
9.4.5.9 String: Extension Information Parsed and ignored
URL

This data is an array of values, whose size is defined
by 9.4.5.8 U32: Extension URL Count.

9.4.5.10 String: Extension Information Parsed. Must have this value:
String

version 1.0

Note: If any other value is provided for this entry,
processing is terminated.

This section specifies the chunks that comprise the new declaration block that contains the compressed
mesh data for the RHAdobeMeshResource type.

Each chunk consists of the following parts, which must appear in the order listed:

e Character Encoding

e U8 ChunkFlags
e Array of Materials declarations

e Vertex positions
e Normals (only when bExcludeNormals flag is Off)

e Diffuse colors

e Specular colors
e Texture coordinates

e Face Material IDs

e Position face indices

e Normal face indices (only when the bExcludeNormals flag is Off)

e Diffuse color face indices

e Specular color face indices

e Texture coordinates face indices

e Skeleton description (optional)

For definitions of type information terms used in this document, refer to section 5.2 of the Universal 3D File
Format, 3rd Edition.

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements Chunk header 22

The chunk header provides information about the mesh data contained in the RHAdobeMeshResource
type.

Character Encoding

Two bytes for string length, followed by a character string that specifies character encoding. For
information on character encoding, see Universal 3D File Format section 9.4.1.5 U32: Character Encoding.
Acrobat 8.1 supports UTF-8.

Bit position Meaning

0,1,23 Chunk version (0-15). Must be 0.

4 Specifies if there is subchunk extension data present (see “SubChunk
extension data (optional)” on page 22). In Acrobat 8.1, this flag must
be 0.

5 Indicates the presence of a skeleton description

6,7 MaterialsCount encoding type (0,1,2 or 3).

e Type 0, means that MaterialsCount s 1.

e Type 1, means that MaterialsCount is the next U8 value in the
stream.

e Type 2, means that MaterialsCount is the next U16 value in the
stream.

e Type 3, means that MaterialsCount is the next U32 value in the
stream.

For information on Types 1, 2 or 3, see “U8|U16|U32 MaterialsCount
(optional)” on page 23

SubChunk extension data (optional)

Present only if bit 4 is ON in ChunkFlags described in “U8 ChunkFlags” on page 22. Provides reference
information for additional subchunks that exist within Future Expansion SubChunks, described in “Future
Expansion SubChunks” on page 37.

U32 SizeOfTheMeshDescriptionBlock

This value indicates the number of bytes to skip to reach the start of Future Expansion SubChunks,
described in “Future Expansion SubChunks” on page 37. This number is relative to the start of the main
mesh chunk as the starting point (“Main mesh chunk” on page 23).

If present, this value must be 0.

U16 NumberOfSubChunks

Number of subchunks following the main mesh definition block. It should currently be set to a value of 0 if
present in the stream.

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements Main mesh chunk 23

SubChunkinfo

Data pairs consisting of a chunk size and additional information. Each data pair refers to sub-chunk
information. The data pairs are written the number of times described in “U16 NumberOfSubChunks” on

page 22.

U32 SubChunkSize

Size of the sub-chunk. Any of the sub-chunks can be independently located and read, by doing these
tasks:

1. Moving to the location in the file indicated by “U32 SizeOfTheMeshDescriptionBlock” on page 22.

2. Moving further in the file by successive amounts of SubChunkSize entries. It should be set to a value of
0 if present in the stream.

U16 SubChunkTypeinfo

Chunk type information. It should be set to a value of 0 if present in the stream.

The main mesh chunk contains the 3D mesh data.

U8|U16|U32 MaterialsCount (optional)

The MaterialsCount value is written as U8, U16 or U32 value depending on the MaterialsCount encoding
type described in “U8 ChunkFlags” on page 22 (1, 2 and 3 respectively). If the encoding type is 0, the
MaterialsCount must be 1 and the Array of Materials declarations is not read from the stream.

Array size is MaterialsCount. Each material declaration consists of the following items:

U8 MaterialFlag

Bit position Description

0,1 Texture coordinates dimensions for the first texture layer (or 0 in case the mesh
doesn’t have texture layers).

23 Number of bytes required to encode OriginalShadinglID, as follows:
0 indicates 1 byte
1 indicates 2 bytes
2 indicates 3 bytes
3indicates 4 bytes

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression

U3D Supported Elements Main mesh chunk 24
Bit position Description
4,5 Number of bytes required to encode the NumberOfTextureLayers, as follows:

0 indicates 1 byte

1 indicates 2 bytes
2 indicates 3 bytes
3indicates 4 bytes

6 HasDiffuseColors flag
7 HasSpecularColors flag

U8|U16|U24|U32 NumberOfTextureLayers

Can be encoded as 1, 2, 3 or 4 bytes (depending on bits 4,5 described in “U8 MaterialFlag” on page 23).

U8|U16|U24|U32 OriginalShadingID

Can be encoded as 1, 2, 3 or 4 bytes (depending on bits 2,3 described in “U8 MaterialFlag” on page 23).

Array of Texture Coordinate Dimension for layers 1 ... NumberOfAdditionalTextureLayers

NumberOfAdditionalTextureLayers = NumberOfTextureLayers — 1, as the first layer data is written as Bits
0,1 of “U8 MaterialFlag” on page 23 above.

Each byte stores texture coordinate dimensions for four layers (two bits per layer).

The total number of bytes in an array is described by the following pseudo-code:

If (NumTextureLayer-1) mod 4 is more than 0 then

size = (NumTexturelayers-1)/4 + 1
else
size = (NumTexturelLayers-1) /4

Note: Texture coordinate dimension for layer 0 is already written as described in “U8 MaterialFlag” on
page 23.

U8 ValuesFlags

Bit position Description

0,1,234,5 If a bit is set, it means that the corresponding value is not 0 and should be
read from the stream.

0 NumFaces should be read from the stream (“U8|U16|U24|U32 NumFaces”
on page 25)

1 NumPositions should be read from the stream (“U8|U16|U24|U32

NumPositions” on page 25)

2 NumNormals should be read from the stream (“U8|U16|U24|U32
NumNormals” on page 25)

3 NumbDiffuseColors should be read from the stream (“U8|U16/U24|U32
NumDiffuseColors” on page 25)

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression

U3D Supported Elements Main mesh chunk 25
Bit position Description
4 NumSpecularColors should be read from the stream (“U8|U16|U24|U32

NumDiffuseColors” on page 25)

5 NumTexCoords should be read from the stream (“U8|U16|U24|U32
NumTexCoords” on page 25)

6,7 Value size in bytes for items U8|U16/U24|U32 NumFaces through
U8|U16|U24|U32 NumTexCoords. The bit values have these meanings:

0 indicates 1 byte

1 indicates 2 bytes
2 indicates 3 bytes
3indicates 4 bytes

Using bits to represent discrete data is more efficient than using bytes, especially because the data can be
repeated thousands of times if the content is a large list of small mesh objects.

U8|U16|U24|U32 NumFaces

Optional, should only be read if Bit 0 is set as described in “U8 ValuesFlags” on page 24.

Value size in bytes depends on bits 6,7 as described in “U8 ValuesFlags” on page 24.

U8|U16|U24|U32 NumPositions

Optional, should only be read if bit 1 is set as described in “U8 ValuesFlags” on page 24.

Value size in bytes depends on bits 6,7 as described in “U8 ValuesFlags” on page 24.

U8|U16|U24|U32 NumNormals

Optional, should only be read if bit 2 is set as described in “U8 ValuesFlags” on page 24. Value size in bytes
depends on bits 6,7 as described in “U8 ValuesFlags” on page 24

U8|U16|U24|U32 NumDiffuseColors

Optional, should only be read if bit 3 is set in “U8 ValuesFlags” on page 24.

Value size in bytes depends on bits 6,7 as described in “U8 ValuesFlags” on page 24.

U8|U16|U24|U32 NumSpecularColors

Optional, should only be read if bit 4 is set as described in “U8 ValuesFlags” on page 24.

Value size in bytes depends on bits 6,7 as described in “U8 ValuesFlags” on page 24.

U8|U16|U24|U32 NumTexCoords

Optional, should only be read if bit 5 is set as described in “U8 ValuesFlags” on page 24.

Value size in bytes depends on bits 6,7 as described in “U8 ValuesFlags” on page 24.

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements Main mesh chunk 26

U8 DataType

The following types of floating point data are defined:
e Type 0-Uncompressed F32 data
e Type 2 - Quantized U32 values

e Type 3 - Quantized alpha-theta encoded normals

Encoded data block for NumPositions * 3 floating point values

Encoding format and block size depend on DataType, described in “Floating point data encoding types”
on page 28.

U8 DataType

The following types of floating point data are defined:
e Type 0-Uncompressed F32 data
e Type 2 - Quantized U32 values

e Type 3 - Quantized alpha-theta encoded normals

Encoded data block for NumNormals * 3 floating point values

Encoding format and block size depend on DataType (see “Floating point data encoding types” on
page 28).

Diffuse colors are RGBA colors.

The ordinary range for the color components is 0.0 to +1.0. The value 0.0 corresponds to black and the
value +1.0 corresponds to full intensity. Values outside the ordinary range are allowed.

The ordinary range for the alpha component is 0.0 to +1.0. The value 0.0 corresponds to fully transparent
and the value +1.0 corresponds to fully opaque. Values outside the ordinary range are allowed.

U8 DataType

The following types of floating point data are defined:
e Type 0-Uncompressed F32 data
e Type 2 - Quantized U32 values

Encoded data block for NumDiffuseColors * 4 floating point values

Encoding format and block size depend on DataType (see “Floating point data encoding types” on
page 28).

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements Main mesh chunk 27

Specular colors are RGBA colors.

The ordinary range for the color components is 0.0 to +1.0. The value 0.0 corresponds to black and the
value +1.0 corresponds to full intensity. Values outside the ordinary range are allowed.

The ordinary range for the alpha component is 0.0 to +1.0. The value 0.0 corresponds to fully transparent
and the value +1.0 corresponds to fully opaque. Values outside the ordinary range are allowed.

U8 DataType

The following types of floating point data are defined:
e Type 0-Uncompressed F32 data
e Type 2 - Quantized U32 values

Encoded data block for NumSpecularColors * 4 floating point values

Encoding format and block size depend on DataType (see “Floating point data encoding types” on
page 28).

This section specifies the format of texture coordinates data.

U8 DataType

The following types of floating point data are defined:
e Type 0-Uncompressed F32 data
e Type 2 - Quantized U32 values

Encoded data block for NumTexCoords * 4 floating point values

Encoding format and block size depend on DataType (see “Floating point data encoding types” on
page 28).

Encoded array of U32 Face Material ID values [NumFaces] .

Encoded array of position face indices [NumFaces*3] .

Encoded array of normal face indices [NumFaces*3] .

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements Data encoding types 28

Encoded array of diffuse color face indices. Only for faces which are assigned a material which has
m_uDiffuseColors flag set.

Encoded array of specular color face indices. Only for faces which are assigned a material which has
m_uSpecularColors flag set.

Encoded array of texture coordinates face indices. The number of texture coordinate index triplets per face
is determined by m_uNumTextureLayers member variable.

Skeleton description is only present if bit 5 is set in ChunkFlags, as described in “U8 ChunkFlags” on
page 22.

The encoding format conforms to U3D skeleton description, see section 9.6.1.1.6 Skeleton Description of
the Universal 3D File Format, Edition.

This section specifies encoding for different data types.

Right Hemisphere Adobe compressed 3D mesh defines multiple encodings for floating point data.

F32 x[size];
F32 yl[size]l;
F32 z[size];

Note: Itis written in XXX:YYY:ZZZ: format, not in XYZXYZXYZ. Storing data in this manner gives better
compression with ZIP.

Source data is not altered in any way (lossless).

Example: Vertices (0.0, 1.0, 2.0), (3.0, 4.0, 5.0), (6.0, 7.0, 8.0) will be encoded as 0.0, 3.0, 6.0, 1.0, 4.0, 7.0, 2.0,
5.0, 8.0.

F32 min;
F32 max;
U32 NumQuants;

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements Floating point data encoding types 29

U32 g[NumQuants-1] //Encoded array of quantized U32 values (optional, only
if min != max) .

For details on encoding U32 values, see “Integer data encoding” on page 30.

Each value is converted into F32 value with this formula:
F32Val = min + U32Val * (max-min) / NumQuants;

Note: If min equals to max, then no data array is written, because it means that all values are equal (for
example, this happens if a mesh object is a plane and all Z values are equal).

In this example, consider the set of vertices (10.0, 20.0, 0.0), (50.0, 20.0, 0.0), (60.0, 28.0, 0.0), (80.0, 30.0, 0.0),
(25,21.5, 0.0). These vertices are encoded as shown below.
For the X values: 10.0, 50.0, 60.0, 80.0, 25.0:

10.0 (F32 min)

80.0 (F32 max)

1000 (U32 NumQuants)

0,571,714,1000, 214 (A set of quantized U32 values, which is later going to be UINT-encoded)

Each source F32 value is reconstructed from U32 quantized data like this:
10.0 + 0*(80.0 - 10.0)/1000 = 10.0
10.0 + 571*(80.0 — 10.0)/1000 = 49.97
10.0 + 714*(80.0 — 10.0)/1000 = 59.98
10.0 + 1000%*(80.0 — 10.0)/1000 = 80.0
10.0 + 214*(80.0 — 10.0)/1000 = 24.98

For the Y values: 20.0, 20.0, 28.0, 30.0, 21.5, encoding is this:
20.0 (F32 min)
30.0 (F32 max)
10 (U32 NumQuants)
0,0, 8,10, 2 (A set of quantized U32 values, which is later going to be UINT-encoded)

Each source F32 value can be reconstructed from U32 quantized data like this:
20.0 + 0*(30.0 - 20.0)/10=20.0
20.0 + 0%(30.0 — 20.0)/10 = 20.0
20.0 + 8*(30.0 - 20.0)/10 = 28.0
20.0 + 10*(30.0 - 20.0)/10 = 30.0
20.0 + 2*(30.0 - 20.0)/10 = 22.0

For the Z values: 0.0, 0.0, 0.0, 0.0, 0.0, encoding is this:
0.0 (F32 min)
0.0 (F32 max)

Notice that NumQuants and quantized U32 array are omitted because min==max. Which means that all
values in the array are equal ['min"].

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements Integer data encoding 30

This section addresses only normals data.

U32 NumQuants;
U32 gAlphas [NumQuants-1]; // Encoded array of quantized U32 Alpha values.
U32 gThetas [NumQuants-1]; //Encoded array of quantized U32 Theta values.

For details on U32 values encoding, see “Integer data encoding” on page 30.

Alpha/theta is converted into an F32 value with this formula:

F32Val = U32vVal * (2 * Pi) / NumQuants;

Decoded normal is evaluated using these formulas:

nx = sin(theta) * cos(alpha)
ny = sin(theta) * sin(alpha)
nz cos (theta)

UINT data can be encoded in a few ways. The first byte of the encoded UINT data block stores the encoding
type. The encoder automatically determines the best way to encode data: by evaluating sizes of encoded
data for some encoding methods (without doing the encoding) and by actually encoding the data and

checking the size of the encoded block for others (RH39, arithmetic static, arithmetic dynamic, and UIC1).

Integer data is encoded as described in the following table.

Bit position Description

0,1,2,34,5 Encoding type (maximum 64 types, currently 11 types defined,
described in “Encoding types” on page 31)

6,7 Number of bytes required for encoding buffer size, as follows:
0 indicates 1 byte (U8)
1 indicates 2 bytes (U16)
2 indicates 3 bytes (U24)
3indicates 4 bytes (U32)

Adobe Acrobat SDK
U3D Supported Elements

Right Hemisphere Adobe 3D Mesh Compression
Other data encoding types 31

This section describes the other data encoding types used in the RHAdobeMeshResource type.

The following table describes the encoding types. It is possible to remove encoding methods 0 - 6 with
minimal increase in file size. An arithmetic encoder with static context is able to efficiently encode this

data.

EncodingType

Description

0

All values are zero. This happens rather often when encoding Material IDs. The total
size of the chunk in this case is one byte (only the "U8 EncodingType").

All values are equal to a specified value. The U32 value is specified after the
EncodingType. The size of the chunk is five bytes:

1) U8 EncodingType=1
2) U32 value_to_be_replicated

Values are stored in four bits. This chunk type may be useful for encoding Material IDs
in case where there are more than one and fewer than 17 materials per mesh. Chunk
size:

1 + (NumberOfUINTs / 2) + (NumberOfUINTSs % 2)
Chunk format:
1) U8 EncodingType=2

2) UB[(NumberOfUINTs / 2) + (NumberOfUINTs % 2)]. Each byte stores 2 values -
higher 4 bits are used for values with odd index, lower - for even.

Values are stored in one byte. Encoder uses this method if the maximum value in the
input array is 255 or less. Chunk size:

1+ NumberOfUINTs
Chunk format:

1) U8 EncodingType=3

2) U8[NumberOfUINTSs]

Values are stored in two bytes. Encoder uses this method if the maximum value in the
input array is 65535 or less. Chunk size:

1 4+ NumberOfUINTs*2
Chunk format:

1) U8 EncodingType=4

2) U16[NumberOfUINTSs]

Adobe Acrobat SDK
U3D Supported Elements

Right Hemisphere Adobe 3D Mesh Compression
Other data encoding types 32

EncodingType

Description

5

Values are stored in three bytes. Encoder uses this method if the maximum value in
the input array is 16777215 or less. Chunk size:

1 4+ NumberOfUINTs*3
Chunk format:

1) U8 EncodingType=5

2) U24[NumberOfUINTSs]

Values are stored in four bytes. This is the worst case scenario. Chunk size:
1 4+ NumberOfUINTs*4

Chunk format:
1) U8 EncodingType=6
2) U32[NumberOfUINTSs]

RH39 encoding. The encoder has to perform the actual compression in order to know
the size of the compressed data.

Chunk format:
U8 EncodingType=7
RH39-encoded data, as described “RH39 data encoding” on page 33.

Arithmetic encoding (Static context) as in U3D format specification. The encoder has
to perform the actual compression in order to know the size of the compressed data.

Chunk format:
1) U8 EncodingType=8

2) U32 size of arithmetic-coded data - it is possible avoid writing this U32, but
probably minor changes in IBXBitStreamCompressedX class are required.

3) Data encoded with arithmetic encoder

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements Other data encoding types 33

EncodingType | Description

9 Arithmetic encoding (Dynamic context) as in U3D format specification. The encoder
has to perform the actual compression in order to know the size of the compressed
data.

Chunk format:
1) U8 EncodingType=9

2) U32 size of arithmetic-coded data - it is possible to avoid writing this U32, but
probably minor changes in IBXBitStreamCompressedX class are required.

3) Data encoded with arithmetic encoder

For static context the probabilities are pre-evaluated, for dynamic - they are
populated at run-time. See section 10.4 of the Universal 3D File Format.

10 UIC1 compression. The encoder has to perform the actual compression in order to
know the size of the compressed data.

Chunk format:
U8 EncodingType=10

UIC1-encoded data. See UIC1 format description in paragraph “UIC1 data encoding”
on page 34.

Data consists of eight different operators/commands followed by data. An operator also stores the length
of optional data or in some cases an offset used to determine position within data. Operators can be single
byte or double byte (depending on the length of the optional data). Bit 7 specifies whether an operator is
single or double byte.

For single-byte operators, bit 7 is not set, bits 4,5,6 store operator type, bits 0,1,2,3 store data length. Data
length can be from 1 to 16 (0 means 1 byte, ..., 15 means 16 bytes).

For a double-byte operator, bit 7 of the first byte is set, bits 4,5,6 of the first byte store operator type, bits
0,1,2,3 of the first byte and bits 0..7 of the second stored data length. The length value assembled from the
first and second bytes is 17 less than the actual data length, reflecting the fact that a data length less than
17 is represented with a single-byte operator. More specifically, you must add 17 to the length value
assembled from the first and second bytes.

Data length can be from 17 to 4112.

U8 opcodeandlen=processor.ReadByte () ;
U8 opcode= (opcodeandlen>>4) & 7;
U32 len=opcodeandlen & 0x0f;
if (opcodeandlen&0x80) //2 bytes
len=17 + (len<<8) + processor.ReadByte() ;
else//1 byte
len++;

For an implementation that decodes U32 data, see the appendix, “Decoding Procedures for Right
Hemisphere Adobe 3D Mesh Compression” on page 44.

Adobe Acrobat SDK
U3D Supported Elements

Right Hemisphere Adobe 3D Mesh Compression
Other data encoding types 34

The following table shows the relationship between operators, data types, and data length calculations. In
this table, the term length is synonyms with data length. Usually, an operator is followed by data. Data type
depends on the operator type. It also affects the data length.

Operator

Data type of the
subsequent data

Decoding data length and using data length to read
subsequent data

0

Raw U32 values

U4 positive difference
relative to current "offset"
value

U8 positive difference
relative to current "offset"
value

U16 positive difference
relative to current "offset”

value

Raw U16 values

None

Raw U8 values

Various types, depending
on lower 4 bits of the
operator byte

Size of data is 4*length bytes (four times the data-length
value).

for (U332 i=0;i<length;i++)
value[i] =ReadU32;
Size of data is (Length/2 + length%?2) bytes

if (odd)
val=offset + (b4>>4); else//even {
b4=processor.ReadByte () ;
val=offset + (b4&0x0f); }

Size of data is 1*length bytes.
for (U332 i=0;i<length;i++)
value[i] =offset + ReadUs8 () ;
Size of data is 2*length bytes.
for (U332 i=0;i<length;i++)
value[i] =offset + ReadUlé6 () ;
Size of data is 2*length bytes.
for (U332 i=0;i<length;i++)
value[i] =ReadU1l6 () ;
Values identical to current "offset”. No optional data
follows this operator.
for (U332 i=0;i<length;i++)
value[i] =offset;
Size of data is 1*length bytes.
for (U332 i=0;i<length;i++)
value [i1] =ReadUS8 () ;

Specifies the current "offset" value. The number of bytes in
the offset value can be 1, 2, 3 or 4. This is controlled by the
lower 4 bits of the operator byte.

if (length==0) offset=ReadUs8() ;

else if (length==1) offset=ReadUlé () ;
else if (length==2) offset=ReadU24 () ;
else if (length==3) offset=ReadU32() ;

This algorithm is very good at encoding unsigned integer values, when the values are somewhat similar. In
other words, it would effectively compress: 10, 14, 18, 10, 11, 40, 6413, 6420, 19, 3, 6410... But will give

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements Other data encoding types 35

poor results on this data: 7831, 5, 98234, 4612, 112, 3312... This means that it is good at encoding face
indices, material indices and even quantized floating points.

The stream is encoded with different commands. Commands are 4-bit (total of 16 commands). The
command is stored in the high four bits of a byte. The low four bits are occupied by the operand. The
command with id=2 is not defined and cannot be encountered.

Implementation uses two small arrays of size 32: one for storing previous decoded values and one for
deltas. Some commands refer to these arrays.

The last decoded value is always appended to the array of decoded values.

The delta between previous decoded value and the current decoded value is added to the delta array only
if the values are different (delta!=0) and abs(delta)<0x7FFFFFFF.
Note: Previous vertical values are used only in face index encoding. Consider the following sample:
101214
133462
601155

The following table shows the previous application of vertical values.

Provides vertical

Value value for
10 13
12 34
14 62
13 60
34 11
62 55

All pseudocode below uses the following variables:
UINT8 cmd=ReadUs () ; //Together with the operand
UINT32 cmdshift4=cmd>>4; //Operand

For an implementation that decodes UIC1 data, see the appendix, “Decoding Procedures for Right
Hemisphere Adobe 3D Mesh Compression” on page 44.

Adobe Acrobat SDK
U3D Supported Elements

Right Hemisphere Adobe 3D Mesh Compression

Other data encoding types

36

Single byte commands in which decoded UINT values are represented as single bytes

Operator

Operator name

Description and example implementation

0

10

11

12

BackPtrValueU4_1

BackPtrValueU4_2

Deltal4

BackPtrDeltaU4

DeltaU4Positive_V

DeltaU4Negative_V

DeltaU4Positive_V2

DeltaU4Negative_V2

DeltaU12Positive

DeltaU12Negative

ValueU12

ValueU20

The decoded UINT should be taken from the array of previous
values. The index into the array is stored in the 4 bits of the
command. If the previous value is equal to the current value, then
the current value MUST be encoded as BackPtrValueU4_1(0).

rvalue=GetBackValue (cmdshift4) ;

Similar to BackPtrValueU4_1, but the index into the array of
previous values is 16+operand.

rvalue=GetBackValue (16+cmdshift4) ;

Signed increment for the value (+1..48) or (-1..-8). Mapping is:
0->+1,1->+42,...,7->48,8->-1,9->-2,...,15->-8.

if (cmd&le)
rvalue+=(cmd>>5) + 1;

else

rvalue-=(cmd>>5) + 1;

Value is increased by a delta from the previous deltas array.

rvalue+=GetBackDelta (cmdshift4); double byte

Value is set to previous vertical value + operand + 1

rvalue=prevVertical + (cmdshift4 + 1);

Value is set to previous vertical value — operand - 1

rvalue=prevVertical - (cmdshift4 + 1);

Value is set to previous vertical value + 17 + operand

rvalue=prevVertical + (cmdshift4 + 17);

Value is set to previous vertical value - 17 - operand

rvalue=prevVertical - (cmdshift4 + 17);

Value += (3..4099)

rvalue+=cmdshift4 + (((UINT32)ReadU8())<<4) + 3;
Value -= (3..4099)
value-=cmdshift4 + (((UINT32)ReadU8())<<4) + 3;

A 12 bit value
rvalue=cmdshift4 + (((UINT32)ReadU8())<<4) ;

3 byte command (20 bits for operand)

20 bit value
rvalue=cmdshift4 + (((UINT32)ReadU16())<<4);

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements Future Expansion SubChunks 37

Multiple-byte commands (1/3/4/5 byte(s))

Operator Constant name Description and example implementation

15 Extended Consists of 14 subcommands (subcommand is stored in operand):

0=Eg_00000000, rvalue=0;

1=Eg 00000001, rvalue=1l;

2=Eg 00000002, rvalue=2;

3=Eg 00000003, rvalue=3;

4=Eq_ 00000004, rvalue=4;

5=Eg 000000FF, rvalue=0xFF;

6=Eg _0000FF00, rvalue=0xFF00;
7=Eg_O00FF0000, rvalue=0xFF0000;
8=Eg FF000000, rvalue=0xFF000000;
9=Eq_OOFFFFFF, rvalue=0x00FFFFFF;
10=Eg_FFFFFFFF, rvalue=0xFFFFFFFF;

11 ValueU24 A 24 bit value

UINT32 bl=ReadUs8 () ;
rvalue=((UINT32)ReadU1l6 () <<8) +bl;

12 ValueU32 A 32 bit value (worst case 4 bytes -> 5 bytes)
rvalue=ReadU32() ;

13 LongReplicate16 Followed by a U16 repeat count. The last value will be replicated
36+ReadU16() times (36..65571).

14 Not defined.

15 Not defined.

Batch commands (less than one byte per UINT)

Operator Constant name Description and example implementation

13 BackPtrValueU22 Two values in one byte. First value should be taken from the array
of previous values with index [0..3], second value should also be
taken from the array of previous values [0..3].

rvalue=GetBackValue (cmdshift4>>2) ;
Next Value would be GetBackValue (cmdshift4&3) ;

14 Replicate Short replicate command. The last value will be repeated 3..18
times (depending on the operand). Very short replicate (2 equal
values in a row) would be BackPtrValueU22(0,0). Also see
LongReplicate16 command in “Multiple-byte commands (1/3/4/5
byte(s))” on page 37.

This point in the chunk format, after all the above defined data, is reserved for future expansion
subchunks. These consist of areas of data that are not obliged to be read under the current version of this
specification. Each subchunk shall be referenced by an entry within data described by “SubChunk
extension data (optional)” on page 22.

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements Examples 38

Source vertex coordinates array:

#

N oLt~ WwW N

X Y YA
-05 -05 05
05 -05 05
-05 05 05
05 05 05
05 05 -05
05 05 -05
-05 -05 -05
05 -05 -05

Encoding (63 bytes total):

02 00 00 00 bf 00 00 00 3f 84 eb 0f 00 0a 07 00 4c b8 fe 5d 5d 5d 00 00 00 bf 00 00 00 3f 84 eb 0f 00 0a 07 0d
4c b8 fe 0e 40 00 00 00 00 bf 00 00 00 3f 84 eb 0Of 00 0a 06 4c b8 fe Oe 40 Oe

Bytes for encoding X values are marked red, bytes for encoding Y values are marked green, and bytes for
encoding Z values are marked blue).

Detailed description of encoded bytes

02 - encoding type “2" see “Type 2 (FPDATATYPE_QUANTIZEDCOMPRESSED_FLOATS)” on page 28
00 00 00 bf - minimum X value (float -0.5)

00 00 00 3f — maximum X value (float 0.5)

84 eb 0f 00 - quant (unsigned int 1043332)

The source array of X values (-0.5, 0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5) is quantized into unsigned int array (0,
1043332,0, 1043332, 0, 1043332, 0, 1043332). The quantized array is encoded as (0a 07 00 4c b8 fe 5d
5d 5d).

0a — encoding type “10” (UIC1 compression), see “10” on page 33

07 - encoded buffer size (7 bytes)

The following 7 bytes (00 4c b8 fe 5d 5d 5d) are a UIC1-encoded array of unsigned int values (0, 1043332,
0, 1043332, 0, 1043332, 0, 1043332), see “UIC1 decoding of array” on page 38.

Y and Z coordinates are encoded in the similar manner (min, max, quant, UIC1-encoded array).

This section describes the result of decoding this UIC1-encoded array:

00 4c b8 fe 5d 5d 5d

Adobe Acrobat SDK Right Hemisphere Adobe 3D Mesh Compression

U3D Supported Elements Examples 39
Data Command and length Decoded result
00 BackPtrValueU4 1 (0) Value is “0".
Array: (0)
4c b8 fe ValueU20 (1043332) Value is “1043332"

Array: (0, 1043332)

5d BackPtrValueU22 (1, 1) | Valuesare”“0” and “1043332"
Array: (0, 1043332, 0, 1043332)

5d BackPtrvValueU22 (1, 1) Valuesare “0” and “1043332"
Array: (0, 1043332, 0, 1043332, 0, 1043332)

5d BackPtrValueU22 (1, 1) | Valuesare”“0” and “1043332"
Array: (0, 1043332, 0, 1043332, 0, 1043332, 0, 1043332)

Decoded values: (0, 1043332, 0, 1043332, 0, 1043332, 0, 1043332)

See also “UIC1 data encoding” on page 34.

U3D Meta Data

This chapter specifies extensions to the U3D format to specify the storage of meta data derived from other
3D files reformatted and represented within U3D. This format enables viewer applications to distinguish
between meta data gleaned from a CAD file and meta data added by a third party.

Acrobat 8.1 and later supports the U3D meta data format described by this chapter.

The section numbers and headings used in this section correspond to the section numbers and headings
in the Universal 3D File Format, 3rd Edition. These section numbers and headings are italicized to
distinguish them from section headings of this guide.

For definitions of type information terms used in this document, refer to section 5.2 Data types of the
Universal 3D File Format, 3rd Edition.

U3D meta data uses a single Key/Value pair within the U3D meta data structure 9.2.6 Meta data of each
block header where file meta data is desired. Meta data strings are stored using a character storage format
as defined within the U3D field 9.4.1.5 U32: Character Encoding. For the editions of U3D supported, the sole
valid encoding is UTF-8. At most one U3D meta data entry can be provided within a U3D Block structure
(defined in 9.2 Block structure).

U3D meta data requires that the first meta data node entry of the 9.4.1 File Header (blocktype: 0x00443355)
contain the following fields, in sequence:

1. 9.2.6.2 U32: Key/Value Pair Attributes, with a value indicating string content (0x00000000)

2. 9.2.6.3 String: Key String, containing the string:
RHAdobeMeta

3. 9.2.6.4 String: Value String, containing one or more namespaces (“Namespace meta data” on page 40).
Where possible, structures have been designed to approximate a simplified XML. Within this value
string, discrete words within the XML-like structure are delineated by the space character (single byte
decimal 32 for UTF-8).

Note: Each appearance of U3D meta data supports a flat list of meta data properties. That is, it does not
support nesting of meta data.

Namespace meta data consists of a Namespace identifier, followed by one or more Item name and value
pair entries in succession, followed by Namespace terminator. For example:

<namespace name="24578"/>

40

Adobe Acrobat SDK U3D Meta Data
U3D Supported Elements Namespace meta data 41

A namespace identifier consists of a Namespace name identifier, followed by a Namespace name string,
and then a Namespace identifier terminator.

Namespace name identifier

This consists of the string’<namespace name=, containing the ‘<’ character - (single byte decimal 60 for
UTF-8), followed by the nine characters ‘'namespace; the space character (single byte decimal 32), the four
characters ‘'name’ and the '=' character (single byte decimal 61).

Namespace name string

The name of the namespace, stored in a format as specified in “Storage of strings from the original data
source” on page 42.

Namespace identifier terminator

This consists of the ‘>’ character - (single byte decimal 62).

This contains a single name and value pair. It is represented by one each of the following fields in the
following order (Item identifier to Namespace identifier terminator) . For example:

<item name=anItemName value="theItemsValue"/>

Item identifier

This consists of the string ‘<item, or more specifically the ‘<’ character - (single byte decimal 60) followed
by the four characters ‘item’,

Item name identifier

This consists of the string ‘name=/, or more specifically the characters ‘name’ followed by the ‘=" character
(single byte decimal 61) .

Item name string

The name associated with an item, stored in a format as specified by “Storage of strings from the original
data source” on page 42.

Item name terminator and value identifier

This consists of the string ‘value=, or more specifically a sequence of five characters ‘value’ followed by
the ‘=" character (single byte decimal 61).

Item value string

The value associated with an item, stored in a format as specified by “Storage of strings from the original
data source” on page 42.

Adobe Acrobat SDK U3D Meta Data
U3D Supported Elements Storage of strings from the original data source 42

Item identifier terminator

This consists of the string '/ >, or more specifically the '/’ character - (single byte decimal 47), followed by
the >’ character - (single byte decimal 62).

This consists of the string ‘< /namespace >, or more specifically the ‘<’ character - (single byte decimal 60),
followed by the '/’ character - (single byte decimal 47), the eight characters ‘namespace; and the ‘>’
character - (single byte decimal 62).

Strings from the original data source are represented by an internal sequence of characters surrounded by
a starting and ending double quote character (single byte decimal 34). The character sequence is stored in
a format as described in 9.4.1.5 U32: Character Encoding.

In conformance with storage of XML strings, the single-byte characters detailed in the table
“Representation of characters” on page 429 are not legal within the internal sequence of characters. To
represent them, use the character entity reference (CER) corresponding to each one as detailed in the
table.

In addition, the following characters should not be included within a valid internal sequence of characters:
1-8 decimal (0x01 - 0x08 hex), 11-12 decimal (0x0B-0x0C hex), and 14-31 decimal (OxOE-Ox1F hex).

Representation of characters

Character Decimal byte value CER

" 34 "
& 38 &
< 60 <

> 62 >

! 39 '
Tab 9 &i#x9;
LF 10

CR 13 &i#xD;

The following example shows a single namespace containing two items.

<namespace name="24578">

<item name="Area:" value="377.092 inch®2"/>

<item name="Density:" value="0.036 lbmass/inch”3"/>
</namespace>

New Features and Changes

This chapter summarizes the new features and changes introduced in Acrobat 8.1 and earlier.

Acrobat 8.1 adds support for a more current version of ECMA-363, called Universal 3D File Format, 3rd
Edition. This edition enables extensions of the pre-defined block types defined in the specification.
Acrobat 8.1 takes advantage of these extensions by adding support for the following features:

e Right Hemisphere Adobe 3D Compressed Mesh, which is a more compressed form of mesh blocks. For
information on this format, see “Right Hemisphere Adobe 3D Mesh Compression” on page 20.

e U3D meta data, which specify the storage of meta data derived from other3D files reformatted and
represented within U3D. For more information on this format, see “U3D Meta Data” on page 40.

Acrobat 8.1 adds support for a standardized expression of units scaling factor data. For more information
on this format, see “Units scaling-factor meta data” on page 7.

Adds support for the 9.4.1.2 U32: Profile Identifier data.

Adds support for multi-level multi-parenting in 9.5.X.2.1 U32: Parent Node Count.

43

Decoding Procedures for Right Hemisphere Adobe
3D Mesh Compression

This appendix presents examples of data decoding procedures used with Right Hemisphere Adobe 3D

Mesh compression. These examples are for a U32 data decoder (below) and a UIC1 data decoder (page 46).

The following example shows an implementation of a U32 data decoder. For more information on U32
data encoding, see “UICT data encoding” on page 34.

Example A.1 U32data decoder

#define COMPRESSION TYPE ALL ZERO 0
#define COMPRESSION TYPE REPLICATE 1
#define COMPRESSION TYPE U4 2

#define COMPRESSION TYPE U8 3

#define COMPRESSION TYPE Ulé6 4

#define COMPRESSION TYPE U24 5

#define COMPRESSION TYPE U32 6

#define COMPRESSION TYPE RH397

// .RH39 coding commands

#define RH390PCODE RAWU8 6//raw U8 values
#define RH390PCODE_RAWUl6 4//raw Ulé6 values
#define RH390PCODE_RAWU32 0//raw U32 values

#define RH390PCODE OFFSET 7//'offset' value, operand is the number of bytes in

offset (can be 1|2|3|4)
#define RH390PCODE REPLICATE 5//identical values
#define RH390PCODE DIFFERENCE4 1//U4 positive delta values (relative to
'offset!)
#define RH390PCODE DIFFERENCES8 2//U8 positive delta values (relative to
'offset!)
#define RH390PCODE DIFFERENCEl6 3//Ul6 positive delta values (relative to
'offset!)
bool DecompressArray (U8 *pEncoded, U32 *pDecoded, U32 count, U32 EndodedSize)
{
U332 offset=0;
cRH39BufferProcessor processor (pEncoded, EndodedSize) ;
U8 EncodingType=processor.ReadByte () ;
if ((EncodingType==COMPRESSION TYPE ALL ZERO) ||
(EncodingType==COMPRESSION TYPE REPLICATE))
{//all equal
U32 val=(EncodingType==
COMPRESSION TYPE ALL ZERO)? 0 : processor.Read(4) ;
for (U332 i=0;i<count;i++) pDecoded[i]=val;
return true;
}
else if (EncodingType==COMPRESSION TYPE U4)
{//half bytes
U8 b4;
for (U332 1i=0;i<count;i++)

44

Adobe Acrobat SDK Decoding Procedures for Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements U32 data decoder 45

if (i&1)
pDecoded [i] =b4>>4;
else
{
b4=processor.ReadByte() ;
pDecoded [i] = (b4&0x0f) ;
}
}
return true;
}
else if ((EncodingType>=COMPRESSION TYPE U8) &&
(EncodingType<=COMPRESSION TYPE U32))
{//1|2|3|4 bytes per value
for (U332 1i=0;i<count;i++)
pDecoded [i] =processor.Read (1+EncodingType-COMPRESSION TYPE US8) ;
return true;

}
else if (EncodingType==COMPRESSION TYPE RH39)
{//RH compression based on .rh35 format by Alexander Chelemekhov,
improvements by Dmitriy Kivilev
while (count)
{
if (processor.Overflow())
break;//input buffer error
U8 opcodeandlen=processor.ReadByte () ;
U8 opcode= (opcodeandlen>>4) & 7;
U32 len=opcodeandlen & 0x0f;
if (opcodeandlen&0x80) //2 bytes
len=17 + (len<<8) + processor.ReadByte() ;
else//1 byte
len++;
//just read the offset value [1|2]3]|4 bytes]
if (opcode==RH390PCODE_OFFSET)
offset=processor.Read(len) ;
else

{//all 7 other opcodes
if (count<len)
break;//wrong input buffer
count-=1en;
U8 b4;
for (U332 i=0;i<len;i++)
{
U32 val;
if (opcode==RH390PCODE_RAWU8)
val=processor.Read (1) ;
else if (opcode==RH390PCODE_RAWU16) val=processor.Read(2) ;
else if (opcode==RH390PCODE_RAWU32) val=processor.Read(4) ;
else if (opcode==RH390PCODE_ DIFFERENCES8) val=
offset + processor.Read (1) ;
else if (opcode==RH390PCODE_ DIFFERENCE1l6) val=
offset + processor.Read(2) ;
else if (opcode==RH390PCODE_REPLICATE)
val=offset;

Adobe Acrobat SDK Decoding Procedures for Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements UIC1 data decoder 46

else//RH39OPCODE_DIFFERENCE4
{
if (i&1)
val=offset + (b4>>4);
else {
b4=processor.ReadByte() ;
val=offset + (b4&0x0f) ;

}

*pDecoded++=val;

}

return !count;

}

return false;//unknown encoding type

The following example shows an implementation of a UIC1 data decoder. For more information on UICT
data encoding, see “RH39 data encoding” on page 33.

Example A.2 UIC1 decoder

UINT32 PreVValS[MAX_PREV_VALS];
INT32 PreVDeltaS[MAX_PREV_DELTAS];
UINT32 CurValPos, CurDltPos;
UINT32 GetBackValue (UINT32 which)
{
return PrevVals[(CurValPos>=which)? (CurValPos-which)
(MAX PREV_VALS+CurValPos-which)];

}

INT32 GetBackDelta (UINT32 which)

{
return PrevDeltas [(CurDltPos>=which)? (CurDltPos-which)
(MAX_PREV_DELTAS+CurDltPOS—which)];

}

void AddBackValue (UINT32 value)
{
CurValPos++;
if (CurValPos==MAX_ PREV_VALS)
CurValPos=0;
PrevVals [CurValPos] =value;

}

void AddBackDelta (INT32 value)

{

urDl1tPos++;

if (CurDltPos==MAX PREV_ DELTAS)
CurDltPos=0;

PrevDeltas [CurDltPos] =value;

Adobe Acrobat SDK Decoding Procedures for Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements UIC1 data decoder 47

UINT32 InValueQueue=0;
UINT8 queueval;

void ReadCommand (UINT32 &rvalue, UINT32 prevVertical)
{
UINT32 prevval=rvalue;
if (InValueQueue)
{
InValueQueue--;
rvalue=GetBackValue (queueval) ;
}
else
{//command

UINT8 cmd=ReadU8 () ;//together with the operand
UINT32 cmdshift4=cmd>>4;
switch (cmd&0xF)
{
case COMMAND BackPtrValueU4 1:
rvalue=GetBackValue (cmdshift4) ;
break;

case COMMAND BackPtrValueU4 2:
rvalue=GetBackValue (16+cmdshift4) ;
break;

case COMMAND BackPtrValueU22:
rvalue=GetBackValue (cmdshift4>>2) ;
queueval=cmdshift4&3;
InValueQueue=1;
break;

case COMMAND Replicate:
rvalue=GetBackValue (0) ;
queueval=0;
InValueQueue=cmdshift4+2;
break;

case COMMAND BackPtrDeltaU4:
rvalue+=GetBackDelta (cmdshift4) ;

break;

case COMMAND DeltaI4:

if (cmd&le)
rvalue+=(cmd>>5) + 1;
else
rvalue-=(cmd>>5) + 1;
break;

case COMMAND DeltaU4Positive V:
rvalue=prevVertical + (cmdshift4 + 1);
break;

Adobe Acrobat SDK
U3D Supported Elements

Decoding Procedures for Right Hemisphere Adobe 3D Mesh Compression

UIC1 data decoder 48

case COMMAND DeltaU4Negative V:
rvalue=prevVertical - (cmdshift4 + 1);
break;

case COMMAND DeltaU4Positive V2:
rvalue=prevVertical + (cmdshift4 + 17);
break;

case COMMAND DeltaU4Negative V2:
rvalue=prevVertical - (cmdshift4 + 17);
break;

case COMMAND DeltaUl2Positive:
rvalue+=cmdshift4 + (((UINT32)ReadU8())<<4) + 3;
break;

case COMMAND DeltaUl2Negative:
rvalue-=cmdshift4 + (((UINT32)ReadU8())<<4) + 3;
break;

case COMMAND ValueUl2:
rvalue=cmdshift4 + (((UINT32)ReadUs8())<<4) ;
break;

case COMMAND ValueU20:
rvalue=cmdshift4 + (((UINT32)ReadUl6())<<4) ;
break;

case COMMAND Extended:

switch (cmd>>4)

{
case EXTENDED COMMAND Eq 00000000:
case EXTENDED COMMAND Eq 00000001:
case EXTENDED COMMAND Eq 00000002:
case EXTENDED COMMAND Eq 00000003:
case EXTENDED COMMAND Eq 00000004:

value=cmd>>4;

break;
case EXTENDED COMMAND Eqg 000000FF: rvalue=0x000000FF; break;
case EXTENDED COMMAND Eqg O0O0OOFFO0O: rvalue=0x0000FF00; break;
case EXTENDED COMMAND Eqg OOFF0000: rvalue=0x00FF0000; break;
case EXTENDED COMMAND Eqg FF000000: rvalue=0xFF000000; break;
case EXTENDED COMMAND Eqg OOFFFFFF: rvalue=0x00FFFFFF; break;
case EXTENDED COMMAND Eg FFFFFFFF: rvalue=0xFFFFFFFF; break;

case EXTENDED COMMAND LongReplicatel6:
queueval=0;
InValueQueue=ReadUlé6 () + 36;
break;

case EXTENDED COMMAND ValueU24:

{UINT32 bl=ReadUs8 () ;rvalue=((UINT32)ReadUl6 ()<<8)+bl;}

break;

case EXTENDED COMMAND ValueU32:

Adobe Acrobat SDK Decoding Procedures for Right Hemisphere Adobe 3D Mesh Compression
U3D Supported Elements UIC1 data decoder 49

rvalue=ReadU32() ;
break;

}

break;

}
}
AddBackValue (rvalue) ;
if (rvalue!=prevval)

{

if (rvaluesprevval)
{
UINT32 d=rvalue-prevval;
1f (d<0x7FFFFFFF) //no overflow
AddBackDelta ((INT32)d) ;
}

else
{//rvalue<prevval

UINT32 d=prevval-rvalue;
1f (d<0x7FFFFFFF) //no overflow
AddBackDelta (- (INT32)d) ;

	Contents
	Preface
	What’s in this guide
	Who should read this guide
	Related documentation

	U3D Elements Supported by Acrobat
	Conventions used in this guide
	U3D elements
	9.2.6 Meta Data
	Units scaling-factor meta data

	9.4.1 File Header (blocktype: 0x00443355)
	9.4.3 Modifier Chain (blocktype: 0xFFFFFF14)
	Important note regarding U3D modifier declarations

	9.4.5 New Object Type (blocktype: 0xFFFFFF16)
	9.4.6 New Object Block (blocktype: 0x00000100 to 0x00FFFFFF)
	9.5.X.2 Parent Node Data
	9.5.1 Group Node (blocktype: 0xFFFFFF21)
	9.5.2 Model Node (blocktype: 0xFFFFFF22)
	9.5.3 Light Node (blocktype: 0xFFFFFF23)
	9.5.4 View Node (blocktype: 0xFFFFFF24)
	9.6.1.1 CLOD Mesh Declaration (blocktype: 0xFFFFFF31)
	9.6.1.2 CLOD Base Mesh Continuation (blocktype: 0xFFFFFF3B)
	9.6.1.3 CLOD Progressive Mesh Continuation (blocktype: 0xFFFFFF3C)
	9.6.2.1 Point Set Declaration (blocktype: 0xFFFFFF3B)
	9.6.2.2 Point Set Continuation (blocktype: 0xFFFFFF3E)
	9.6.3.1 Line Set Declaration (blocktype: 0xFFFFFF37)
	9.6.3.2 Line Set Continuation (blocktype: 0xFFFFFF3F)
	9.7.2 Subdivision Modifier (blocktype: 0xFFFFFF42)
	9.7.3 Animation Modifier (blocktype: 0xFFFFFF43)
	9.7.5 Shading Modifier (blocktype: 0xFFFFFF45)
	9.8.1 Light Resource (blocktype: 0xFFFFFF51)
	9.8.3 Lit Texture Shader (blocktype: 0xFFFFFF53)
	9.8.3.10 Texture Information

	9.8.4 Material Resource (blocktype: 0xFFFFFF54)
	9.8.5.1 Texture Declaration (blocktype: 0xFFFFFF55)
	9.8.5.2 Texture Continuation (blocktype: 0xFFFFFF5C)

	9.8.6 Motion Resource (blocktype: 0xFFFFFF56)

	Right Hemisphere Adobe 3D Mesh Compression
	RHAdobeMeshResource type declaration
	Compressed chunk format for the RHAdobeMeshResource type
	Chunk header
	U8 ChunkFlags

	Main mesh chunk
	Array of Materials declarations
	Vertex positions
	Normals (only when bExcludeNormals flag is Off)
	Diffuse colors
	Specular colors
	Texture coordinates
	Face Material IDs
	Position face indices
	Normal face indices (only when the bExcludeNormals flag is Off)
	Diffuse color face indices
	Specular color face indices
	Texture coordinates face indices
	Skeleton description (optional)

	Data encoding types
	Floating point data encoding types
	Type 0 (FPDATATYPE_F32)
	Type 2 (FPDATATYPE_QUANTIZEDCOMPRESSED_FLOATS)
	Type 3 (FPDATATYPE_QUANTIZEDCOMPRESSED_NORMALS)

	Integer data encoding
	Other data encoding types
	Encoding types
	RH39 data encoding
	UIC1 data encoding

	Future Expansion SubChunks
	Examples
	Encoding of a 1x1x1 cube.
	UIC1 decoding of array

	U3D Meta Data
	Conventions
	U3D meta data
	Namespace meta data
	Namespace identifier
	Item name and value pair
	Namespace terminator

	Storage of strings from the original data source
	Example

	New Features and Changes
	Acrobat 8.1
	Block extensions
	New expression using existing blocks

	Acrobat 8.0

	Decoding Procedures for Right Hemisphere Adobe 3D Mesh Compression
	U32 data decoder
	UIC1 data decoder

