
bbc

pdfmark Reference

Adobe® Acrobat® SDK
November 2006 Version 8.0

© 2006 Adobe Systems Incorporated. All rights reserved.

Adobe® Acrobat® SDK 8.0 pdfmark Reference for Microsoft® Windows®, Mac OS®, Linux®, and UNIX®

Edition 1.0, November 2006

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording,
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected
under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to
obtain any permission required from the copyright owner.

Any references to company names and company logos in sample material are for demonstration purposes only and are not intended to refer
to any actual organization.

Adobe, the Adobe logo, Acrobat, Distiller and PostScript are either registered trademarks or trademarks of Adobe Systems Incorporated in
the United States and/or other countries.

JavaScript is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Mac OS is a trademark of Apple Computer, Inc., registered in the United States and other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

All other trademarks are the property of their respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101,
consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R.
§12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable,
the Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users
(a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein.
Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA
95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if
appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60,
60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.

 3

Contents

List of Examples ... 6

Preface .. 8
What’s in this guide?... 8
Who should read this guide? ... 8
Related documentation... 8

1 Introduction ... 9
Syntax of pdfmark operators ... 9
Usage with standard PostScript interpreters ...10
Syntax for private keys ...12
Named objects ..12

Built-in named objects ...12
User-defined named objects ...13
Namespaces...14
Adding content to named objects ..14

Arrays ...14
Dictionaries ..15
Streams..16

2 Basic Features .. 17
Annotations (ANN)...17

Text annotations (notes) ...20
Links ..22
Other annotations ...24

Articles (ARTICLE) ...24
Bookmarks (OUT)..26
Document Info dictionary (DOCINFO)..28
Document open options (DOCVIEW)..29
Embedded file content (EMBED) ..30
Graphics encapsulation (BP, EP, SP)...31
Marked content (MP, DP, BMC, BDC, EMC)..34

Marked-content points ..35
Marked-content sequences..35

Metadata (Metadata) ..35
Named images (NI) ..36
Page crops (PAGE, PAGES) ..36
Page label and plate color (PAGELABEL) ...37
Transparency (SetTransparency) ..38

Transparency group XObject and soft mask..41
Transparency group XObject ..41
Soft mask dictionaries..41
Soft mask images...42

Adobe Acrobat SDK Contents
pdfmark Reference 4

3 Actions and Destinations .. 44
Actions..44

GoTo actions ..45
GoToR actions ...45
Launch actions ..46
Article actions..47

Destinations ...47
View destinations...47
Defining named destinations..49
Referencing named destinations ...50

4 Logical Structure.. 51
Elements and parents ...51
Structure operators..51
Structure Tree Root..52

StRoleMap...52
StClassMap ...52

Elements ..53
StPNE ..53
StBookmarkRoot ..54
StPush...55
StPop ..55
StPopAll ...55
StUpdate ...55

Element content ...55
StBMC ...56
StBDC..56
EMC ...56
StOBJ...56

Attribute objects...57
StAttr...57

Storage and retrieval of the implicit parent stack ..57
StStore..58
StRetrieve..58

EPS considerations...58
Tagged PDF ..58

5 Examples .. 67
Building an Output Intents array ..67
Named object examples ..68
Forms examples..70
Structure examples..75

A JDF Features... 81
Syntax ...81
Examples ...82

Adobe Acrobat SDK Contents
pdfmark Reference 5

B Distilling Optional Content... 84
Initialization and termination code ...84
Procedure definitions ...85

AddASEvent ...85
BeginOC...86
EndOC ..86
GetOCGPdfmarkTag..87
OCEndPage ..87
SetOCGInitState..88
SetOCGIntent...88
SetOCGUsage ..88
SimpleOC ..89

Index ... 90

 6

List of Examples

Example 1.1 Ignoring pdfmark constructs...10
Example 1.2 Ignoring pdfmark if not defined in the PostScript interpreter..10
Example 1.3 Handling individual pdfmark features ...11
Example 2.1 Custom annotation...19
Example 2.2 Text annotation..21
Example 2.3 Simple note..21
Example 2.4 Fancy note..21
Example 2.5 Private data in note...22
Example 2.6 Link annotation ..22
Example 2.7 Simple link (old style, compatible with all Distiller application versions) ...22
Example 2.8 Simple link..23
Example 2.9 Fancy link..23
Example 2.10 Link that launches another file ...23
Example 2.11 Custom link action (URI link for the Acrobat WebLink plug-in) ..23
Example 2.12 Custom link action (named action) ...24
Example 2.13 Movie annotation ..24
Example 2.14 Custom annotation type...24
Example 2.15 Article action ...25
Example 2.16 Create text for the article “Now is the Time”..25
Example 2.17 Article containing two beads ..26
Example 2.18 Bookmark examples ...27
Example 2.19 Info dictionary...29
Example 2.20 File Open action ...30
Example 2.21 Creating a picture ..32
Example 2.22 Using BP and EP pdfmarks to define button faces for forms...33
Example 2.23 Metadata example ..35
Example 2.24 Crop this page...37
Example 2.25 Crop all pages ...37
Example 2.26 Page Label ..38
Example 2.27 Transparencies..39
Example 2.28 Soft mask dictionaries..42
Example 2.29 Soft mask images...43
Example 3.1 Definition of named destination..49
Example 3.2 Link to a named destination..49
Example 4.1 Tagged PDF..59
Example 5.1 Output Intents array in Windows...67
Example 5.2 Output Intents array in Mac OS ..67

Adobe Acrobat SDK List of Examples
pdfmark Reference 7

Example 5.3 Creating user-defined named objects ...68
Example 5.4 Adding values to named objects ...68
Example 5.5 Creating an annotation as a named object and adding content to it..68
Example 5.6 Using a named object as a value..69
Example 5.7 Putting a file’s contents into a text annotation ..69
Example 5.8 Using OBJ to add an open action to a PDF File...69
Example 5.9 Using OBJ to create a base URI ...69
Example 5.10 Using OBJ and PUT pdfmarks to create an alternate image ..69
Example 5.11 Define the AcroForm dictionary at the document Catalog..70
Example 5.12 Define the Widget annotations, which are also field dictionaries for this form72
Example 5.13 A simple structure ...75
Example 5.14 PDF output resulting from code in previous example...76
Example 5.15 A bookmark for a structural element..77
Example 5.16 Interrupted structure..77
Example 5.17 Independence of logical and physical structure ..78
Example 5.18 Page break within logical structure ..79
Example 5.19 Logical structure out-of-order in physical structure ...80
Example A.1 Using JDF pdfmark to set Trapping element and subelement attributes ..82

 8

Preface

The Adobe® Acrobat® Distiller® application is a PostScript® language interpreter that converts PostScript
language files into Adobe PDF files. Because PDF has features (such as annotations, bookmarks, articles,
and forms) that are not expressible using the standard PostScript operators, some PostScript language
extension is necessary to describe features that are present in PDF but not in standard PostScript.

To satisfy this need, Distiller supports the pdfmark operator, which is not supported by standard PostScript
interpreters. The use of pdfmark allows an independent software vendor (ISV) already using the PostScript
language to express, in PostScript syntax, idioms that are converted by Distiller to PDF without having to
write PDF files directly.

What’s in this guide?
This document describes the syntax and use of the pdfmark operator, and contains examples of many of
the features that can be implemented using pdfmark.

Who should read this guide?
This document is intended for those who use pdfmark constructs in PostScript code intended for
conversion to PDF by Distiller.

Related documentation
The resources in this table can help you learn about the Acrobat SDK.

For information about See

A guide to the documentation in the Acrobat SDK Acrobat SDK Documentation Roadmap

Detailed descriptions of APIs for controlling
Distiller for PDF file creation

Acrobat Distiller API Reference

Specifying settings for the creation of PDF files Adobe PDF Creation Settings

A detailed description of the PDF file format PDF Reference

The PostScript language PostScript Language Reference, third edition

 9

1 Introduction

This chapter describes the pdfmark operator, its syntax, and its use by Distiller and other PostScript
interpreters. It also describes how built-in and user-defined PDF objects are referred to and defined.

The pdfmark operator is a PostScript-language extension that describes features that are present in PDF,
but not in standard PostScript. The pdfmark operator has been available beginning with Distiller 3.0, and,
as an extensible operator, has evolved with each release of the PDF specification. This document describes
pdfmark as it applies to PDF version 1.7 and corresponds to the Acrobat 8 suite of products.

Note: While the pdfmark operator provides for greater extensibility, it is not intended to define every
feature that is present in PDF but not in standard PostScript.

Those using pdfmark typically do so in one of the following ways:

● By manual creation or modification of PostScript code

● By filtering or post-processing existing PostScript code

● By an application that directly generates pdfmark constructs as part of its PostScript code generation

Syntax of pdfmark operators
The pdfmark operator requires the following syntax:

[any1 ... anyn feature pdfmark

The syntax has the following characteristics:

● It begins with a mark object (either mark or [).

● It is followed by zero or more PostScript objects called the arguments of the pdfmark operator.

● It concludes with a name object that indicates the particular feature that the pdfmark operator is to
apply.

Any instance of the pdfmark operator, the mark, its arguments, and the feature name in a PostScript
program is referred to as a pdfmark in this document.

Frequently, the arguments for a given feature are sequences of key-value pairs. Many of the pdfmark keys
correspond directly to PDF dictionary keys. However, some keys may be new, entirely different, or
abbreviated forms of keys as found in PDF dictionaries. For example, the PDF Subtype key may become
the pdfmark key S, the Dest key may become D, and the File key may become F, and so forth. See the
PDF Reference for more information on PDF keys.

The pdfmark operator does not change the operand nor the dictionary stacks, but may alter the execution,
graphics state, or clipping stacks, depending on the particular pdfmark feature.

Adobe Acrobat SDK Introduction
pdfmark Reference Usage with standard PostScript interpreters 10

Usage with standard PostScript interpreters
Support for the pdfmark operator is implemented in Distiller, but is not available in many other PostScript
products. Therefore, if a PostScript program containing pdfmark constructs is to be used by other such
products, they must be able to respond appropriately when they encounter the pdfmark operator.

One reasonable response is to ignore pdfmark constructs. This can be accomplished by defining a pdfmark
procedure that discards the pdfmark code for interpreters in which the pdfmark operator does not exist.
One way to do this is to place the following code in the prolog of a PostScript program.

Example 1.1 Ignoring pdfmark constructs

%%BeginProlog
/pdfmark where % Is pdfmark already available?

{ pop } % Yes: do nothing (use that definition)
{ % No: define pdfmark as follows:
/globaldict where % globaldict is preferred because

{ pop globaldict } % globaldict is always visible; else,
{ userdict } % use userdict otherwise.

ifelse
/pdfmark /cleartomark load put
} % Define pdfmark to remove all objects

ifelse % up to and including the mark object.
%%EndProlog

This code example works on PostScript Level 1 and higher interpreters. To simplify the presentation of the
following examples, PostScript Level 2 or higher is assumed.

Here is a similar example.

Example 1.2 Ignoring pdfmark if not defined in the PostScript interpreter

%%BeginProlog
/pdfmark where

{ pop globaldict /?pdfmark /exec load put } % pdfmark is built-in: exec code.
{
globaldict

begin
/?pdfmark /pop load def % pdfmark is absent: ignore code.
/pdfmark /cleartomark load def
end

}
ifelse
%%EndProlog

Most pdfmark features are atomic. That is, the pdfmark construct stands alone and, if removed, does not
affect surrounding PostScript code. A few pdfmark features, on the other hand, are modal. A modal feature
is one that, once completed, leaves the interpreter in a different state. Most modal features are paired: one
feature shifts to a new state and a corresponding feature shifts back to the previous state. For example,
consider:

[any1 ... anyn /BeginFeature pdfmark
additional PostScript code
[any1 ... anym /EndFeature pdfmark

Adobe Acrobat SDK Introduction
pdfmark Reference Usage with standard PostScript interpreters 11

If you want to make the additional PostScript code conditional on the availability of the pdfmark
operator, then the above definition of pdfmark needs to be improved.

%%BeginProlog
/pdfmark where

{ pop globaldict /?pdfmark /exec load put } % pdfmark is built-in: exec code.
{
globaldict

begin
/?pdfmark /pop load def % pdfmark is absent: ignore code.
/pdfmark /cleartomark load def
end

}
ifelse
%%EndProlog

With this, the handling of modal code can be performed as:

[any1 ... anyn /BeginFeature pdfmark
{ additional PostScript code } ?pdfmark
[any1 ... anym /EndFeature pdfmark

While the above solution is sufficient in most circumstances, you might want to define a pdfmark
procedure to handle individual features. The following example demonstrates a simple framework for
handling individual pdfmark features:

Example 1.3 Handling individual pdfmark features

%%BeginProlog
currentglobal currentpacking % Because the pdfmark definition below uses
true setglobal true setpacking % composite objects, we need to make sure

% the procedure is defined in global VM mode.
/pdfmark where

{ pop globaldict /?pdfmark /exec load put}
{
globaldict

begin
/?pdfmark /pop load def
/pdfmark

{
{ counttomark pop } % Check to see that a mark is on the stack.

stopped
{ /pdfmark errordict /unmatchedmark get exec stop }

if % Raise an error if no mark is found.
dup type /nametype ne % The topmost argument must be the feature.

{ /pdfmark errordict /typecheck get exec stop }
if % The feature must be a name object.

{
dup /FEATURE1 eq

{ (Interpreting FEATURE 1\n) print cleartomark exit }
if % Replace the above code with actual code
dup /FEATURE2 eq

{ (Interpreting FEATURE 2\n) print cleartomark exit }
if % Replace the above code with actual code
(Feature not supported:) print == cleartomark exit

% Replace the above code with actual code
}

Adobe Acrobat SDK Introduction
pdfmark Reference Syntax for private keys 12

loop
} bind def

end
}

ifelse
setpacking setglobal % Restore to original modes.
%%EndProlog

In the preceding code, the name objects FEATUREn would be replaced with actual pdfmark feature names
and the code that follows the dup /FEATUREn eq would be replaced with code that consumes all of the
arguments and the mark object.

In the examples that follow in this document, the ?pdfmark definition is assumed to be as shown above.
To work correctly with non-Distiller PostScript interpreters, any production implementation of these or
additional definitions must take into account factors such as PostScript level, VM allocation modes,
packing modes, and others.

Syntax for private keys
Some features can accept arbitrary key–value pairs, providing a way of placing private data into PDF files.
All keys must be name objects. Unless otherwise stated, values must be Boolean, number, string, name,
array, or dictionary objects. Array elements must be Boolean, number, string, or name objects.

When specifying arbitrary key–value pairs, key names must contain a specific prefix to ensure that they do
not collide with key names used by other developers. Contact Adobe to obtain a prefix to be used by your
company or organization.

Note: The private key names in this document use the Adobe prefix ADBE.

Named objects
This section describes how built-in and user-defined PDF objects are referred to and defined.

Built-in named objects
A PDF file contains built-in objects such as the Catalog and Page dictionaries. To refer to one of these
dictionaries in a pdfmark construct, a syntax called a named object is used:

{objname}

The objname is one of:

Catalog — The PDF file’s Catalog dictionary

DocInfo — The PDF file’s Info dictionary

PageN — The dictionary for page N (where N is a positive integer)

ThisPage — The dictionary for the current page being processed in the PostScript stream

PrevPage — The dictionary for the page before the current page

NextPage — The dictionary for the page after the current page

Note: The objname used here is not a standard PostScript name object. It does not start with a slash “/”
but instead is surrounded with braces “{}”. It otherwise follows the syntax of PostScript name
objects. The objname serves as a reference name to identify particular PDF objects and has no
relationship to any identifier created in the resultant PDF file.

Adobe Acrobat SDK Introduction
pdfmark Reference User-defined named objects 13

User-defined named objects
In addition to built-in named objects, user-defined named objects can be created. The syntax to specify a
user-defined named object is the following:

[/_objdef {objname} /type objtype /OBJ pdfmark

The name /_objdef indicates that a named object is to be defined and is followed by the {objname}.
The object type, objtype, specifies the PDF type of the named object that is to be created and must be
one of the following name objects:

/array — Creates an array.

/dict — Creates a dictionary.

/stream — Creates a stream.

Note: The feature /OBJ is used only to declare a particular objname and its associated type. Other
pdfmark features are required to associate this objname with actual content and to have some
existing PDF object refer to it.

Here is an example in which the named object “galaxy” is declared to be a dictionary type:

[/_objdef {galaxy} /type /dict /OBJ pdfmark

A few pdfmark features allow for the definition of a named object as part of the argument list. In these
cases, the modified syntax is as follows:

[/_objdef {objname} any1 ... anyn feature pdfmark

In this case, the objname is not only created, but also refers to the PDF object created as a result of the
pdfmark feature. The type entry is not used because the feature implicitly provides this information. The
following features support this syntax:

ANN — Annotation

BP — Encapsulated graphic

DEST — Named destination

NI — Encapsulated image

StPNE — Structure element

Named objects created in any of the preceding ways can be used in the definition of other named objects.
That is, an {objname} can be used as an argument in a pdfmark construct as the value of a key–value pair or
as an element in an array. In these cases, Distiller places an indirect reference to the object with which
{objname} is associated in the PDF file.

Note: A pdfmark construct can make an object reference to {objname} before defining the object
{objname}. That is, the {objname} can be in the argument list of a pdfmark construct before it is
defined. If {objname} is never defined, it is left as an unresolved reference in the cross-reference
table. Hence, any consumer of such a PDF file must be able to handle unresolved references.

Adobe Acrobat SDK Introduction
pdfmark Reference Namespaces 14

Namespaces
When using named objects in PostScript programs, it is possible that the same name might be used more
than once. To avoid conflicts in name object definitions, Distiller provides a means for specifying the scope
in which named objects have well-defined meaning.

In addition to the standard five PostScript stacks, Distiller maintains a stack of namespaces. The
namespace stack is similar to the PostScript dictionary stack, except that only the top-most namespace
name objects are visible. The namespace stack is also similar to the graphics state stack, except that no
currentgstate analog is provided. For more information on PostScript stacks, see the PostScript
Language Reference.

A namespace contains:

● Names for user-defined named objects (see “User-defined named objects” on page 13)

● Names for stored implicit parent stacks (see StStore on page 58)

● Names for images (see “Named images (NI)” on page 36)

The appropriate use of namespaces can help ensure that there are no named-object conflicts when you
use pdfmark constructs from various sources to create a PostScript file. A common example is the handling
of Encapsulated PostScript files (see “EPS considerations” on page 58).

Note: The built-in named objects are managed separately from the namespace stack and are always
visible.

The following pdfmark features are available for manipulating namespaces:

● NamespacePush causes a new, empty namespace to be pushed onto the namespace stack and causes
all other namespaces to be hidden. The syntax for pushing a namespace is as follows:

[/NamespacePush pdfmark

● NamespacePop pops the topmost namespace from the stack. Once a namespace has been popped, it
cannot be accessed again. The next lower namespace on the stack becomes the current namespace.

The syntax for popping a namespace is as follows:

[/NamespacePop pdfmark

A warning is issued by Distiller if NamespacePop is encountered when the namespace stack is empty.

%%[Warning: /NamespacePop pdfmark ignored: No matching NamespacePush]%%

Note: There are no pdfmark features to save or restore namespaces.

Adding content to named objects
Once a named object has been declared, content can be added to the PDF object that it refers to. There are
several pdfmark features to accomplish this for each of the types of named objects.

Arrays

There are several methods for adding content to arrays that are named objects. The most basic of these is
the PUT feature, using this syntax:

[{arrayname} index value /PUT pdfmark

Adobe Acrobat SDK Introduction
pdfmark Reference Adding content to named objects 15

The PUT feature inserts the value argument at the location index. Indices start at 0, and the array grows
automatically to hold the largest index specified. Unspecified entries are created as NULL objects. For
example:

[/_objdef {MoonInfo} /type /array /OBJ pdfmark
[{MoonInfo} 0 (Earth to Moon) /PUT pdfmark
[{MoonInfo} 1 238855 /PUT pdfmark
[{MoonInfo} 2 /miles /PUT pdfmark

The above code creates an array object and populates it with objects of various types. At this point, the
named object cannot be reached because there are no entries in the PDF file’s cross-reference table or file
trailer that lead to it.

Adding array objects as above can become tedious. When adding objects to contiguous array index
positions, the pdfmark feature PUTINTERVAL can simplify this task. The syntax for this feature is as
follows:

[{arrayname} index [value1 ... valuen] /PUTINTERVAL pdfmark

The operation of this feature is the same as in PostScript: value1 is placed in arraynameindex, value2 is
placed in arraynameindex+1, and so forth. The array is resized if necessary to hold the objects added. The
previous example can be simplified to:

[/_objdef {MoonInfo} /type /array /OBJ pdfmark
[{MoonInfo} 0 [(Earth to Moon) 238855 /miles] /PUTINTERVAL pdfmark

One additional convenience for adding objects to an array is available: the APPEND feature. This feature
adds one additional entry immediately after the end of the array. Its syntax is as follows:

[{arrayname} value /APPEND pdfmark

Dictionaries

The PUT feature can also be used to add dictionary content. The named object can be either a built-in
name, such as {Catalog} or {Page37}, or a user-defined object name.

For dictionary named objects, the syntax of the PUT feature is as follows:

[{dictname} <<key1 value1 ... keyn valuen >> /PUT pdfmark

For dictionary named objects, PUT adds the key–value pairs provided as arguments. Continuing the
previous example:

[{Catalog} << /TheMoon {MoonInfo} >> /PUT pdfmark

This adds a key–value pair to the PDF Catalog dictionary. The inserted key is /TheMoon and the value is an
indirect object. To illustrate this, the resultant PDF file might have the following content:

trailer
<< … /Root 9 0 R … >>
…
9 0 obj << … /Type /Catalog … /TheMoon 3 0 R … >>
endobj
3 0 obj [(Earth to Moon)238855/miles]
endobj

The named object MoonInfo does not appear in the resultant PDF file, but the object it referred to, 3 0
obj in this case, does.

Adobe Acrobat SDK Introduction
pdfmark Reference Adding content to named objects 16

Streams

For stream named objects, the syntax can take several forms:

[{streamname} string /PUT pdfmark
[{streamname} file /PUT pdfmark
[{streamname} <<key1 value1 ... keyn valuen >> /PUT pdfmark

A stream object consists of a sequence of bytes, its character data, and an associated dictionary. When the
stream named object is created, the character data is empty. The source of stream data can come from an
explicit string or can be read from a PostScript file object (a file or filter), in which case reading proceeds
until the end of file is reached.

In addition to the character data, a stream has an associated PDF dictionary. Some dictionary entries such
as Length are created automatically. Key–value pairs that do not conflict with the keys common to PDF
stream dictionaries can be added to this dictionary. The resultant PDF object associated with the stream
named object is always compressed using a lossless method that can be specified in Distiller’s Adobe PDF
Settings dialog box.

The CLOSE feature closes a stream object created by pdfmark and has the syntax:

[{streamname} /CLOSE pdfmark

The named stream object is closed and written to the PDF file. The {streamname} is still valid and may be
referenced by other objects, but it can no longer be written to. When Distiller completes writing a PDF file,
any open streams are closed and written automatically.

For example:

[/_objdef {MoonNotes} /type /stream /OBJ pdfmark
[{MoonNotes} (Hipparchus around 129 BC calculated the distance to the Moon.\n)

/PUT pdfmark
[{MoonNotes} (The Moon was first touched by Armstrong on July 20, 1969.\n)

/PUT pdfmark
[{MoonNotes} << /Author (Steve Amerige) /Company (Adobe) >> /PUT pdfmark
[{Catalog} << /MoonNotes {MoonNotes} >> /PUT pdfmark
[{MoonNotes} /CLOSE pdfmark

 17

2 Basic Features

This chapter describes the basic pdfmark features. In general, the key–value pairs used as arguments for
pdfmark follow closely the key–value pairs that appear in the PDF file. For a description of the PDF file
format, see the PDF Reference.

The following features are described in this chapter:

● Annotations (ANN)

● Articles (ARTICLE)

● Bookmarks (OUT)

● Document Info dictionary (DOCINFO)

● Document open options (DOCVIEW)

● Embedded file content (EMBED)

● Graphics encapsulation (BP, EP, SP)

● Marked content (MP, DP, BMC, BDC, EMC)

● Metadata (Metadata)

● Named images (NI)

● Page crops (PAGE, PAGES)

● Page label and plate color (PAGELABEL)

● Transparency (SetTransparency)

Other pdfmark features are defined in other chapters of this document.

Annotations (ANN)
PDF supports several types of annotations. The properties of each annotation are specified in an
annotation dictionary containing various key–value pairs. The PDF Reference describes all the types of
annotations, and their required and optional dictionary entries.

The pdfmark operator using the feature name ANN is used to specify an annotation in a PostScript file. The
general syntax is as follows:

[/Rect [xll yll xur yur]
/Subtype name
…Optional key–value pairs…
/ANN pdfmark

Adobe Acrobat SDK Basic Features
pdfmark Reference Annotations (ANN) 18

The following table describes the two required keys for annotations.

Required annotation keys

Key Type Semantics

Rect array An array of four numbers [xll yll xur yur] specifying the lower-left x,
lower-left y, upper-right x, and upper-right y coordinates—in user space—of
the rectangle defining the open note window or link button.

Subtype name The annotation’s PDF subtype. If omitted, the value defaults to Text, indicating
a note annotation. See the table PDF annotation types for the possible
subtypes that can be used.

As of PDF 1.3, the following annotation types are supported:

PDF annotation types

Value of subtype key Description

Circle Circle annotation

FileAttachment File attachment annotation

FreeText Free text annotation

Highlight Highlight annotation

Ink Ink annotation

Line Line annotation

Link Link annotation

Movie Movie annotation

Popup Pop-up annotation

Sound Sound annotation

Square Square annotation

Stamp Rubber stamp annotation

StrikeOut Strikeout annotation

Text Text annotation (note)

TrapNet Trap network annotation

Underline Underline annotation

Widget Widget annotation

Each type has its own set of key-value pairs that can be specified, as described in the PDF Reference. Future
versions of PDF may introduce new types.

Adobe Acrobat SDK Basic Features
pdfmark Reference Annotations (ANN) 19

In addition to these types, annotations with unrecognized Subtype values, called custom annotations,
are supported. Custom annotations can contain, in addition to the Rect and Subtype keys, arbitrary
key-value pairs.

Example 2.1 Custom annotation

[/Rect [400 435 500 535]
/Subtype /ADBETest_DummyType
/ADBETest_F8Array [0 1 1 2 3 5 8 13]
/ANN pdfmark

When viewed with Acrobat Viewer, this annotation appears with an unknown annotation icon.

The following table lists optional keys that are common to all annotations. Specific annotation types have
additional keys that they use. See the PDF Reference for complete information.

Optional annotation keys

Key Type Semantics

Action

(PDF key = A)

name or
dictionary

An action to be performed when the annotation is activated. See
“Actions” on page 44 for details.

For links, this key is not permitted if the Dest key is present.

AP dictionary An appearance dictionary specifying how the annotation is presented
visually. See the PDF Reference for details.

AS name The annotation’s appearance state. See the PDF Reference for details.

Border array The link’s border properties. Border is an array containing three
numbers and, optionally, an array. All elements are specified in user
space coordinates.

If Border is of the form [bx by c], the numbers specify the horizontal
corner radius (bx), the vertical corner radius (by), and the width (c) of the
link’s border. The link has a solid border.

If it is of the form [bx by c [d]], the fourth element (d) is a dash array that
specifies the lengths of dashes and gaps in the link’s border.

The default value for Border is [0 0 1].

Color

(PDF key = C)

array A color value used for the background of the annotation’s icon when
closed; the title bar of the annotation’s pop-up window; and the border
of a link annotation.

The value is an array containing three numbers (red, green, and blue),
each of which must be between 0 and 1, inclusive, specifying a color in
the DeviceRGB color space. (See the PDF Reference for a description of
this color space.) If omitted, a default color is used.

F integer A set of flags specifying various characteristics. See the PDF Reference
for details.

Adobe Acrobat SDK Basic Features
pdfmark Reference Text annotations (notes) 20

“Text annotations (notes)” on page 20 and “Links” on page 22 describe the syntax for two of the original
and most commonly used annotation types in more detail.

Text annotations (notes)
Notes are known as text annotations in PDF. The syntax for creating a note is as follows:

[/Contents string
/Rect [xll yll xur yur]
/SrcPg pagenum
/Open boolean
/Color array
/Title string
/ModDate datestring
/Name name
/Subtype /Text
/ANN pdfmark

ModDate

(PDF key = M)

string The date and time the note was last modified. It should be of the form:

(D:YYYYMMDDHHmmSSOHH'mm')

D: is an optional but strongly recommended prefix. YYYY is the year. All
fields after the year are optional. MM is the month (01-12), DD is the day
(01-31), HH is the hour (00-23), mm are the minutes (00-59), and SS are
the seconds (00-59). The remainder of the string defines the relation of
local time to GMT. O is either + for a positive difference (local time is
later than GMT) or - (minus) for a negative difference. HH' is the absolute
value of the offset from GMT in hours, and mm' is the absolute value of
the offset in minutes. If no GMT information is specified, the relation
between the specified time and GMT is considered unknown.
Regardless of whether or not GMT information is specified, the
remainder of the string should specify the local time.

SrcPg integer The sequence number of the page on which the annotation appears.
(The first page in a document is always page 1.) If this key is used, the
pdfmark can be placed anywhere in the PostScript language file. If
omitted, the pdfmark must occur within the PostScript language
description for the page on which the annotation is to appear.

Title

(PDF key = T)

string The text label to be displayed in the title bar of the annotation’s pop-up
window when open and active

The encoding and character set used is either PDFDocEncoding (as
described in the PDF Reference) or Unicode. If Unicode, the string must
begin with <FEFF>. For example, the string “ABC” is represented as
(ABC) in PDFDocEncoding and <FEFF004100420043> in Unicode.
Title has a maximum length of 255 PDFDocEncoding characters or
126 Unicode values, although a practical limit of 32 characters is
advised so that it can be read easily in the Acrobat viewer.

Key Type Semantics

Adobe Acrobat SDK Basic Features
pdfmark Reference Text annotations (notes) 21

In addition to the keys described in the tables Required annotation keys and Optional annotation keys, the
keys specific to text annotations are listed in the following table. In addition to these keys, notes may also
specify arbitrary key–value pairs.

Keys specific to text annotations

Key Type Semantics

Contents string Required. Contains the note’s text string. The maximum length of the
Contents string is 65,535 characters. The encoding and character set used is
the PDFDocEncoding (described in the PDF Reference) or Unicode. If Unicode,
the string must begin with <FEFF>.

Open Boolean Optional. If true, the note is open (that is, the text is visible). If false (the default
if omitted), the note is closed (that is, displayed as an icon).

Name name Optional. The name of an icon to be used in displaying the note. The values are:
Note (default), Comment, Help, Insert, Key, NewParagraph, Paragraph.

The following examples demonstrate the use of notes.

Example 2.2 Text annotation

[/Contents (My unimaginative contents)
/Rect [400 550 500 650]
/Open false
/Title (My Boring Title)
% The following is private data. Keys within the private
% dictionary do not need to use the organization’s prefix
% because the dictionary encapsulates them.
/ADBETest_MyInfo

<<
/Routing [(Me) (You)]
/Test_Privileges << /Me /All /You /ReadOnly >>
>>

/ADBETest_PrivFlags 42
/ANN pdfmark

Example 2.3 Simple note

[/Rect [75 586 456 663]
/Contents (This is an example of a note. You can type text directly into a

note or copy text from the clipboard.)
/ANN pdfmark

Example 2.4 Fancy note

[/Rect [75 425 350 563]
/Open true
/Title (John Doe)
/Contents (This is an example of a note. \nHere is some text

after a forced line break.

This is another way to do line breaks.)

/Color [1 0 0]
/Border [0 0 1]
/ANN pdfmark

Adobe Acrobat SDK Basic Features
pdfmark Reference Links 22

Example 2.5 Private data in note

[/Contents (My unimaginative contents)
/Rect [400 550 500 650]
/Open false
/Title (My Boring Title)

% The following is private data. Keys within the private
% dictionary do not need to use the organization’s prefix
% because the dictionary encapsulates them.

/ADBETest_MyInfo
<<
/Routing [(Me) (You)]
/Test_Privileges << /Me /All /You /ReadOnly >>
>>

/ADBETest_PrivFlags 42
/ANN pdfmark

Links
A link annotation represents either a hypertext link to a destination in the document, or an action to be
performed.

The usual syntax for creating a link is as follows:

[/Rect [xll yll xur yur]
/Border [bx by c [d]]
/SrcPg pagenum
/Color array
/Subtype /Link
… Action-or-destination-specifying key–value pairs …
/ANN pdfmark

In addition to the keys described in the tables Required annotation keys and Optional annotation keys, a
link may also contain keys specifying destinations or actions, described in “Actions and Destinations” on
page 44.

The following examples demonstrate the use of links.

Example 2.6 Link annotation

[/Rect [70 550 210 575]
/Border [0 0 2 [3]]
/Color [0 1 0]
/Page /Next
/View [/XYZ -5 797 1.5]
/Subtype /Link
/ANN pdfmark

Example 2.7 Simple link (old style, compatible with all Distiller application versions)

[/Rect [70 650 210 675]
/Page 3
/View [/XYZ -5 797 1.5]
/LNK pdfmark

Adobe Acrobat SDK Basic Features
pdfmark Reference Links 23

Example 2.8 Simple link

[/Rect [70 650 210 675]
/Border [16 16 1]
/Color [1 0 0]
/Page 1
/View [/FitH 5]
/Subtype /Link
/ANN pdfmark

Example 2.9 Fancy link

[/Rect [70 550 210 575]
/Border [0 0 2 [3]]
/Color [0 1 0]
/Page /Next
/View [/XYZ -5 797 1.5]
/Subtype /Link
/ANN pdfmark

Example 2.10 Link that launches another file

[/Rect [70 600 210 625]
/Border [16 16 1]
/Color [0 0 1]
/Action /Launch
/File (test.doc)
/Subtype /Link
/ANN pdfmark

Example 2.11 Custom link action (URI link for the Acrobat WebLink plug-in)

[/Rect [50 425 295 445]
/Action << /Subtype /URI /URI (http://www.adobe.com) >>
/Border [0 0 2]
/Color [.7 0 0]
/Subtype /Link
/ANN pdfmark

% Equivalent link using Launch action
[/Rect [50 425 295 445]

/Action /Launch
/Border [0 0 2]
/Color [.7 0 0]
/URI (http://www.adobe.com)
/Subtype /Link
/ANN pdfmark

% URI link with a named destination
[/Rect [50 425 295 445]

/Action << /Subtype /URI /URI (http://www.adobe.com#YourDestination) >>
/Border [0 0 2]
/Color [.7 0 0]
/Subtype /Link
/ANN pdfmark

Adobe Acrobat SDK Basic Features
pdfmark Reference Other annotations 24

Example 2.12 Custom link action (named action)

% Link with a named action—executes a menu item
[/Rect [50 425 295 445]

/Action << /Subtype /Named /N /GeneralInfo >>
/Border [0 0 2]
/Color [.7 0 0]
/Subtype /Link
/ANN pdfmark

Other annotations
A number of other annotation types are available. For example, consider the following movie annotation.

Example 2.13 Movie annotation

[/Subtype /Movie
/Rect [216 503 361 612]
/T (Title)
/F 1
% The specified file may be a movie or sound file
% Add your movie in place of "(/Disk/moviefile)"
/Movie << /F (/Disk/moviefile) /Aspect [160 120] >>
/A << /ShowControls true >>
/Border [0 0 3]
/C [0 0 1]
/ANN pdfmark

For a complete list of available annotation types, see “PDF annotation types” on page 18.

One useful type of annotation is the widget annotation. Widgets are used by PDF interactive forms to
represent the appearance of fields and to manage user interactions. See the PDF Reference for detailed
information on using interactive forms.

For examples of using widget annotations to create interactive forms, see “Define the Widget annotations,
which are also field dictionaries for this form” on page 72.

The following example appears with an unknown annotation icon in the Acrobat viewers, because they do
not know how to interpret this annotation type.

Example 2.14 Custom annotation type

[/Rect [400 435 500 535]
/Subtype /ADBETest_DummyType
/ADBETest_F8Array [0 1 1 2 3 5 8 13]
/ANN pdfmark

Articles (ARTICLE)
Articles consist of a title and a list of rectangular areas called beads. Each bead is specified by the pdfmark
operator in conjunction with the feature name ARTICLE. Beads are added to the article in the order that
they are encountered in the PostScript language file.

Adobe Acrobat SDK Basic Features
pdfmark Reference Articles (ARTICLE) 25

The syntax for a bead pdfmark is as follows:

[/Title string
/Rect [xll yll xur yur]
/Page pagenum
/ARTICLE pdfmark

Article bead attributes

Key Type Semantics

Title string Required. The title of the article to which a bead belongs. The encoding
and character set used is either PDFDocEncoding (as described in the PDF
Reference) or Unicode. If Unicode, the string must begin with <FEFF>. For
example, the Unicode string for (ABC) is <FEFF004100420043>. Title has
a maximum length of 255 PDFDocEncoding characters or 126 Unicode
values, although a practical limit of 32 characters is advised so that it can
be read easily in the Acrobat viewer.

Rect array Required. An array of four numbers [xll, yll, xur, yur] specifying
the lower-left x, lower-left y, upper-right x, and upper-right y coordinates—
in user space—of the rectangle defining the bead.

Page integer Optional. The sequence number of the page on which the bead is located.
A bead pdfmark that contains the optional Page key can be placed
anywhere in the PostScript language file. A bead pdfmark that does not
contain this key must occur within the PostScript language description for
the page on which the article bead is to appear.

In addition to the keys listed in the preceding table, the first bead in an article can also specify arbitrary
key–value pairs. Suggested keys are Subject, Author, and Keywords.

Note: Articles do not support dictionaries as values in arbitrary key–value pairs.

The following examples demonstrate the use of articles.

Example 2.15 Article action

[/Action /Article /Dest (Now is the Time)
/Title (Now is the Time)
/OUT pdfmark

Example 2.16 Create text for the article “Now is the Time”

/Helvetica 12 selectfont
(Now is the Time \(Article\)) 230 690 moveto show
(Now is the time for all good men to come to the aid of their
country.) 230 670 moveto show
(Now is the time for all good people to come to the aid of their
country.) 230 655 moveto show
% ... additional text ...
(Click here to go to Adobe's Home Page on the Web) 55 430 moveto show

Adobe Acrobat SDK Basic Features
pdfmark Reference Bookmarks (OUT) 26

Example 2.17 Article containing two beads

[/Title (Now is the Time)
/Author (John Doe)
/Subject (Coming to the aid of your country)
/Keywords (Time, Country, Aid)
/Rect [225 500 535 705]
/Page 2
/ARTICLE pdfmark

[/Title (Now is the Time)
/Rect [225 500 535 705]
/Page 3
/ARTICLE pdfmark

Bookmarks (OUT)
Bookmarks are known as outline items in PDF. They are specified by using the pdfmark operator with the
feature name OUT.

The syntax for a bookmark pdfmark is as follows:

[/Title string
/Count int
/Color array
/F integer
…Action-specifying key–value pairs…
/OUT pdfmark

Bookmark attributes

Key Type Semantics

Title string Required. The bookmark’s text. The encoding and character set used is
either PDFDocEncoding (as described in the PDF Reference) or Unicode.
If Unicode, the string must begin with <FEFF>. For example, the
Unicode string for (ABC) is <FEFF004100420043>. Title has a
maximum length of 255 PDFDocEncoding characters or 126 Unicode
values, although a practical limit of 32 characters is advised so that it
can be read easily in the Acrobat viewer.

Count integer Required if the bookmark has subordinate bookmarks, omitted
otherwise. This key’s absolute value is the number of bookmarks
immediately subordinate—that is, excluding subordinates of
subordinates. If the value is positive, the bookmark is open, revealing its
subordinates; if negative, the bookmark is closed, hiding its
subordinates.

Note: This differs from the PDF Count key, which represents the total
number of open descendants at all lower levels of the outline
hierarchy.

Adobe Acrobat SDK Basic Features
pdfmark Reference Bookmarks (OUT) 27

In addition to the keys listed in the table Bookmark attributes, a bookmark must contain key–value pairs
that specify an action. See “Actions and Destinations” on page 44 for more information.

The bookmark pdfmarks can begin anywhere in the PostScript language file. However, they must appear
in sequential order.

Example 2.18 Bookmark examples

[/Count 2 /Page 1 /View [/XYZ 44 730 1.0] /Title (Open Actions) /OUT pdfmark
[/Action /Launch /File (test.doc) /Title (Open test.doc) /OUT pdfmark
[/Action /GoToR /File (test.pdf) /Page 2 /View [/FitR 30 648 209 761]

/Title (Open test.pdf on page 2) /OUT pdfmark

[/Count 2 /Page 2 /View [/XYZ 44 730 1.0] /Title (Fixed Zoom) /OUT pdfmark
[/Page 2 /View [/XYZ 44 730 2.0] /Title (200% Magnification) /OUT pdfmark
[/Count 1 /Page 2 /View [/XYZ 44 730 4.0] /Title (400% Magnification)

/OUT pdfmark
[/Page 2 /View [/XYZ 44 730 5.23] /Title (523% Magnification) /OUT pdfmark

[/Count 3 /Page 1 /View [/XYZ 44 730 1.0] /Title (Table of Contents #1)

/OUT pdfmark
[/Page 1 /View [/XYZ 44 730 1.0] /Title (Page 1 - 100%) /OUT pdfmark
[/Page 2 /View [/XYZ 44 730 2.25] /Title (Page 2 - 225%) /OUT pdfmark
[/Page 3 /View [/Fit] /Title (Page 3 - Fit Page) /OUT pdfmark

[/Count -3 /Page 1 /View [/XYZ 44 730 1.0] /Title (Table of Contents #2)

/OUT pdfmark
[/Page 1 /View [/XYZ null null 0] /Title (Page 1 - Inherit) /OUT pdfmark
[/Page 2 /View [/XYZ null null 0] /Title (Page 2 - Inherit) /OUT pdfmark
[/Page 3 /View [/XYZ null null 0] /Title (Page 3 - Inherit) /OUT pdfmark

[/Count 1 /Page 0 /Title (Articles) /OUT pdfmark
[/Action /Article /Dest (Now is the Time) /Title (Now is the Time) /OUT pdfmark

% Bookmark with color and style (new in Acrobat 5.0)
[/Count 0

/Title (The Adobe home page)
/Action /Launch
/URI (http://www.adobe.com)

Color array Optional. The bookmark’s color. The value is an array containing three
numbers (red, green, and blue), each of which must be between 0 and
1, inclusive, specifying a color in the DeviceRGB color space. (See the
PDF Reference for a description of this color space.)

F integer Optional. The style of the bookmark. Four styles are implemented:

● 0 — Plain (the default)

● 1 — Italic

● 2 — Bold

● 3 — Bold and Italic

Key Type Semantics

Adobe Acrobat SDK Basic Features
pdfmark Reference Document Info dictionary (DOCINFO) 28

/C [1 0 0]
/F 3
/OUT pdfmark

% Bookmark with a URI as an action
[/Count 0 /Title (The Adobe home page)

/Action << /Subtype /URI /URI (http://www.adobe.com)>> /OUT pdfmark

Document Info dictionary (DOCINFO)
A document’s Info dictionary contains key–value pairs that provide various pieces of information about
the document. Info dictionary information is specified by using the pdfmark operator in conjunction with
the name DOCINFO.

The syntax for specifying Info dictionary entries is as follows:

[/Author string
/CreationDate string
/Creator string
/Producer string
/Title string
/Subject string
/Keywords string
/ModDate string
/DOCINFO pdfmark

All the allowable keys are strings, and they are all optional. In addition to the keys listed in the following
table, arbitrary keys (which must also take string values) can be specified.

Info dictionary attributes

Key Type Semantics

Author string Optional. The document’s author

CreationDate string Optional. The date the document was created. See the description
of the ModDate key for information on the string’s format.

Creator string Optional. If the document was converted to PDF from another
form, the name of the application that originally created the
document

Producer string Optional. The name of the application that converted the
document from its native form to PDF.

Note: Distiller ignores the setting of this attribute.

Title string Optional. The document’s title.

Subject string Optional. The document’s subject.

Adobe Acrobat SDK Basic Features
pdfmark Reference Document open options (DOCVIEW) 29

Info dictionary pdfmarks can occur anywhere in the PostScript language file.

Example 2.19 Info dictionary

[/Title (My Test Document)
/Author (John Doe)
/Subject (pdfmark 3.0)
/Keywords (pdfmark, example, test)
/Creator (Hand programmed)
/ModificationDate (D:19940912205731)
/ADBETest_MyKey (My private information)
/DOCINFO pdfmark

Document open options (DOCVIEW)
A PDF file can specify the following to determine what happens when it is opened:

● The way the document is displayed. The options are: the document only, the document plus thumbnail
images, the document plus bookmarks, or just the document in full screen mode.

● A location other than the first page that is to be displayed.

● An optional action that occurs.

The above information is contained in key–value pairs in the document’s Catalog dictionary. This
information can be set using the pdfmark operator in conjunction with the name DOCVIEW.

The syntax for specifying Catalog dictionary entries is as follows:

[/PageMode name
…Action-specifying key–value pairs…
/DOCVIEW pdfmark

Keywords string Optional. Keywords relevant for this document. These are used
primarily in cross-document searches.

ModDate string Optional. The date and time the document was last modified. It
should be of the form:

(D:YYYYMMDDHHmmSSOHH'mm')

D: is an optional prefix. YYYY is the year. All fields after the year are
optional. MM is the month (01-12), DD is the day (01-31), HH is the
hour (00-23), mm are the minutes (00-59), and SS are the seconds
(00-59). The remainder of the string defines the relation of local
time to GMT. O is either + for a positive difference (local time is
later than GMT) or - (minus) for a negative difference. HH' is the
absolute value of the offset from GMT in hours, and mm' is the
absolute value of the offset in minutes. If no GMT information is
specified, the relation between the specified time and GMT is
considered unknown. Regardless of whether or not GMT
information is specified, the remainder of the string should specify
the local time.

Key Type Semantics

Adobe Acrobat SDK Basic Features
pdfmark Reference Embedded file content (EMBED) 30

The PageMode key specifies how the document is to be displayed when opened. It can take the following
values:

● UseNone — Open the document, displaying neither bookmarks nor thumbnail images.

● UseOutlines — Open the document and display bookmarks.

● UseThumbs — Open the document and display thumbnail images.

● FullScreen — Open the document in full screen mode.

If PageMode is not specified, the value defaults to UseNone.

The DOCVIEW pdfmark can also specify a destination (a page to which the document should be opened)
or an action, by using additional key–value pairs. See “Actions and Destinations” on page 44 for details
about the key–value pairs that can be used.

DOCVIEW pdfmarks can occur anywhere in the PostScript language file.

Example 2.20 File Open action

[/PageMode /UseOutlines
/Page 2 /View [/XYZ null null null]
/DOCVIEW pdfmark

Embedded file content (EMBED)
The pdfmark feature EMBED enables the embedding of file content into a PDF document. The syntax for
this feature is as follows:

[/Name (Unicode Name)
/FS << /Type /Filespec /F (name) /EF << /F {streamName} >> >>
EMBED pdfmark

This use of this feature embeds file content into a name tree within the EmbeddedFiles dictionary of the
name dictionary (Names, a collection of name trees). This corresponds to the following structure as found
in PDF documents:

<< /Type /Catalog % The catalog dictionary
/Names % The name dictionary
<< /EmbeddedFiles % One particular name tree

<< /Names % The name tree node
[
(Unicode Name) % Unique Unicode string used for Acrobat access

<< % The file specification dictionary
/F (name) % The file name for export
/EF << ... >> % Embedded file stream dictionary
>>

]
>>

>>
>>

Adobe Acrobat SDK Basic Features
pdfmark Reference Graphics encapsulation (BP, EP, SP) 31

For example:

[/NamespacePush pdfmark
[/_objdef {fstream} /type /stream /OBJ pdfmark
[{fstream} << /Type /EmbeddedFile >> /PUT pdfmark
[{fstream} (Simulating file content here) /PUT pdfmark
[/Name (Unicode Unique Name) % e.g., <feff 0041 0073> is Unicode for "As"

/FS<<
/Type /Filespec
/F (myfile.txt)
/EF << /F {fstream} >>
>>

/EMBED pdfmark
[{fstream} /CLOSE pdfmark
[/NamespacePop pdfmark

Graphics encapsulation (BP, EP, SP)
Distiller allows a PostScript language program to specify that a given set of graphical operations should be
encapsulated and treated as a single object. The pdfmark features BP (Begin Picture) and EP (End Picture)
enclose a set of graphic operations. The SP (Show Picture) pdfmark indicates where to insert an object
(which may be inserted in more than one place).

The syntax for the graphics encapsulation commands is as follows:

[/_objdef {objname} /BBox [xll yll xur yur] /BP pdfmark
... page marking instructions ...
[/EP pdfmark
[{objname} /SP pdfmark

The _objdef {objname} key–value pair in the BP pdfmark names the picture objname. Any
subsequent pdfmark can refer to this object.

Note: Graphics names are in the namespace governed by NamespacePush and NamespacePop, defined
in “Namespaces” on page 14.

The BBox key is an array of four numbers [xll, yll, xur, yur] specifying the lower-left x, lower-left y,
upper-right x, and upper-right y coordinates—in user space—of the rectangle defining the graphic’s
bounding box.

When Distiller sees a BP pdfmark, it forks the distillation from the current context and distills subsequent
graphics into a PDF Form object. When it encounters an EP pdfmark, Distiller finishes the Form object, and
distillation continues in the original context. BP and EP pdfmark operators can be nested.

The SP pdfmark tells Distiller to insert a use of a named picture in the current context—in the same
manner as if it were a cached PostScript form painted with the execform PostScript language operator. It
includes the picture in the current context (page, form, and so forth) using the current transformation
matrix (CTM) to position the graphic.

In addition to using SP to insert pictures, other pdfmark features that allow specifying named objects can
add pictures built using BP and EP to a page.

The following examples demonstrate graphic encapsulation.

Adobe Acrobat SDK Basic Features
pdfmark Reference Graphics encapsulation (BP, EP, SP) 32

Example 2.21 Creating a picture

This PostScript language sample draws a gray rectangle, then builds a picture enclosed by the BP and EP
pdfmarks. The picture is simply an X. It shows the picture in three places on the page using the SP
pdfmark, then draws another gray rectangle.

% draw a gray rectangle
0.5 setgray
0 0 100 100 rectfill

% create a picture
[/BBox [0 0 100 100] /_objdef {MyPicture} /BP pdfmark
0 setgray
0 0 moveto 100 100 lineto stroke
100 0 moveto 0 100 lineto stroke
[/EP pdfmark

% make the picture appear on the page
[{MyPicture} /SP pdfmark

% make the picture appear in another place on the page
gsave
200 200 translate
[{MyPicture} /SP pdfmark
grestore

% make the picture appear in another place on the page at a different size
gsave
100 400 translate
.5 .5 scale
[{MyPicture} /SP pdfmark
grestore

% draw another gray rectangle
0.5 setgray
512 692 100 100 rectfill showpage

The resulting page stream in the PDF file contains the following:

0.5 g
0 0 100 100 re f
q 1 0 0 1 0 0 cm /Fm1 Do Q
q 1 0 0 1 200 200 cm /Fm1 Do Q
q 0.5 0 0 0.5 100 400 cm /Fm1 Do Q
512 692 100 100 re f

The graphics between the BP and the EP pdfmarks have been saved in a Form object, which has this
stream:

0 g
0 0 m
100 100 l
100 0 m
0 100 l
S

Adobe Acrobat SDK Basic Features
pdfmark Reference Graphics encapsulation (BP, EP, SP) 33

The resulting page looks like this:

Example 2.22 Using BP and EP pdfmarks to define button faces for forms

Even if you define the pdfmark operator so that a PostScript interpreter ignores any text between a mark
and a pdfmark, any PostScript operators between the BP and EP pdfmarks are still processed. To avoid
printing anything between the BP and EP pdfmarks, use a conditional construct like the one shown in this
example.

This code defines common objects that can be used by widgets for forms.

% AcroForm Begin
[/BBox [0 0 100 100] /_objdef {Check} /BP pdfmark

{0 0 1 setrgbcolor /ZapfDingbats 119 selectfont 0 7 moveto (4) show}
?pdfmark
[/EP pdfmark

[/BBox [0 0 100 100] /_objdef {Cross} /BP pdfmark

{0 0 1 setrgbcolor /ZapfDingbats 119 selectfont 9.7 7.3 moveto (8) show}
?pdfmark
[/EP pdfmark

% Up/Down button appearances
[/BBox [0 0 200 100] /_objdef {Up} /BP pdfmark

{
0.3 setgray 0 0 200 100 rectfill 1 setgray 2 2 moveto
2 98 lineto 198 98 lineto 196 96 lineto 4 96 lineto 4 4 lineto fill
0.34 setgray 198 98 moveto
198 2 lineto 2 2 lineto 4 4 lineto 196 4 lineto 196 96 lineto fill
0 setgray 8 22.5 moveto 1 0 0 setrgbcolor /Helvetica 72 selectfont (Up) show

}
if
[/EP pdfmark

Adobe Acrobat SDK Basic Features
pdfmark Reference Marked content (MP, DP, BMC, BDC, EMC) 34

[/BBox [0 0 200 100] /_objdef {Down} /BP pdfmark
{
0.7 setgray 0 0 200 100 rectfill 1 setgray 2 2 moveto
2 98 lineto 198 98 lineto 196 96 lineto 4 96 lineto 4 4 lineto fill
0.34 setgray 198 98 moveto
198 2 lineto 2 2 lineto 4 4 lineto 196 4 lineto 196 96 lineto fill
0 setgray 8 22.5 moveto 0 0 1 setrgbcolor /Helvetica 72 selectfont (Down) show
}

?pdfmark
[/EP pdfmark
% Submit button appearances
[/BBox [0 0 250 100] /_objdef {Submit} /BP pdfmark

{
0.6 setgray 0 0 250 100 rectfill 1 setgray 2 2 moveto
2 98 lineto 248 98 lineto 246 96 lineto 4 96 lineto 4 4 lineto fill
0.34 setgray 248 98 moveto
248 2 lineto 2 2 lineto 4 4 lineto 246 4 lineto 246 96 lineto fill
/Helvetica 76 selectfont 0 setgray 8 22.5 moveto (Submit) show
}

?pdfmark
[/EP pdfmark

[/BBox [0 0 250 100] /_objdef {SubmitP} /BP pdfmark

{
0.6 setgray 0 0 250 100 rectfill 0.34 setgray 2 2 moveto
2 98 lineto 248 98 lineto 246 96 lineto 4 96 lineto 4 4 lineto fill
1 setgray 248 98 moveto
248 2 lineto 2 2 lineto 4 4 lineto 246 4 lineto 246 96 lineto fill
/Helvetica 76 selectfont 0 setgray 10 20.5 moveto (Submit) show
}

?pdfmark
[/EP pdfmark

For more information on forms, see “Structure examples” on page 75. For the definition of ?pdfmark, see
“Usage with standard PostScript interpreters” on page 10.

Marked content (MP, DP, BMC, BDC, EMC)
PDF 1.2 introduced marked content operators, which identify (mark) a portion of a PDF document as
elements that can be processed by an application or plug-in.

Several pdfmark names can be used to specify marked content:

● MP and DP designate a single marked-content point in the document’s content stream.

● BMC, BDC, and EMC bracket a marked-content sequence of objects in the content stream. These are
complete graphics objects, not just a sequence of bytes.

Note: Marked content can also be used in conjunction with PDF’s logical structure facilities. See “Logical
Structure” on page 51 for information about pdfmark features that implement logical structure.

Adobe Acrobat SDK Basic Features
pdfmark Reference Marked-content points 35

Marked-content points
MP creates a marked-content point in the PDF file. DP creates a marked-content point, with an associated
property list. Their syntax is as follows:

[tag
/MP pdfmark

[tag
property-list
/DP pdfmark

The tag is an optional name object indicating the role or significance of the point. The property-list
is a dictionary containing key-value pairs that are meaningful to the program creating the marked content.

Marked-content sequences
BMC and BDC begin a marked-content sequence, and EMC ends a sequence. Their syntax is as follows:

[tag
/BMC pdfmark

[tag
property-list
/BDC pdfmark

[/EMC pdfmark

The tag is an optional name for the sequence. The property-list is a dictionary containing key-value
pairs that are meaningful to the program creating the marked content.

Metadata (Metadata)
The ability to add metadata to the Catalog was added in Distiller 6.0. The syntax for the Metadata
feature is as follows:

[{Catalog} {XMPStreamName} /Metadata pdfmark

In future releases of Distiller, metadata may be attached to objects other than the Catalog object.

If the target is not the Catalog object or if DSC processing is enabled and this feature is located within
Encapsulated PostScript (EPS), then this feature is ignored. Otherwise, the metadata associated with the
stream XMPStreamName is added to the Catalog object with the key Metadata. See the PDF Reference
for more information.

Example 2.23 Metadata example

[/_objdef {myMetadata} /type stream /OBJ pdfmark
[{myMetadata} currentfile 0 (% -- end --) /SubFileDecode filter /PUT pdfmark
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
...
% -- end --
[{myMetadata} << /Type /Metadata /Subtype /XML>> /PUT pdfmark
[{Catalog} {myMetadata} /Metadata pdfmark

Adobe Acrobat SDK Basic Features
pdfmark Reference Named images (NI) 36

Named images (NI)
The NI pdfmark gives a name to a PostScript image. Subsequently, the name can be used to refer to the
image in the same way that a named object is referenced. For example, an image can be included in PDF
logical structure with StOBJ (see StOBJ on page 56) so that it can be included later in element
content. The example in “Using OBJ and PUT pdfmarks to create an alternate image” on page 69 shows
using NI with an alternate image.

The syntax for defining an image name is as follows:

[/_objdef {objname}
/NI pdfmark

NI takes the standard _objdef key to name the image within Distiller. Image names are in the
namespace governed by NamespacePush and NamespacePop, defined in “Namespaces” on page 14.

The image named by an NI command is to be found subsequently in the PostScript source file, but it does
not need to immediately follow the NI. An image is assigned the name given by the most recent NI not
yet paired with an image.

In other words, Distiller maintains a stack of names pushed by NI and popped by the occurrence of an
image. If an image is encountered when this stack is empty, it is not an error: the image simply does not
receive a name.

Page crops (PAGE, PAGES)
Page cropping is used to specify the dimensions of a page or pages in a PDF file that will be displayed or
printed, without altering the actual data in the file. Cropping is specified by using the pdfmark operator
with the names PAGE (for an individual page) or PAGES (for the entire document).

The syntax for specifying a non-default page cropping for a particular page in a document is as follows:

[/CropBox [xll yll xur yur]
/PAGE pdfmark

The syntax for specifying the default page cropping for a document is as follows:

[/CropBox [xll yll xur yur]
/PAGES pdfmark

The CropBox key is an array representing the location and size of the viewable area of the page. CropBox
is an array of four numbers [xll, yll, xur, yur] specifying the lower-left x, lower-left y, upper-right x,
and upper-right y coordinates—measured in default user space—of the rectangle defining the cropped
page. The minimum allowed page size is .04 x .04 inch (3 x 3 units) and the maximum allowed page size is
200 x 200 inches (14,400 x 14,400 units) in the default user space coordinate system.

The PAGE pdfmark must be placed before the showpage operator for the page it is to affect. It is
recommended that it be placed before any marks are made on the page. For example, it affects only the
first page of a document if it is placed before any marks are made on the first page.

The PAGES pdfmark can be placed anywhere in the PostScript language program, but it is recommended
that it be placed at the beginning of the file, in the Document Setup section between the document
structuring comments %%BeginSetup and %%EndSetup, before any marks are placed on the first page.

Adobe Acrobat SDK Basic Features
pdfmark Reference Page label and plate color (PAGELABEL) 37

Example 2.24 Crop this page

% ...
[/CropBox [0 0 288 288] /PAGE pdfmark
/Helvetica findfont 12 scalefont setfont
/DrawBorder

{
10 278 moveto 278 278 lineto 278 10 lineto
10 10 lineto closepath stroke
} bind def

%%EndSetup
%%Page: 1 1
DrawBorder
75 250 moveto (This is Page 3) show
75 230 moveto (Click here to go to page 1.) show
75 200 moveto (Click here to open test.doc.) show

Example 2.25 Crop all pages

% ...
[/CropBox [54 403 558 720] /PAGES pdfmark
/DrawBorder

{
58 407 moveto 554 407 lineto 554 716 lineto
58 716 lineto closepath stroke
} bind def

/Helvetica findfont 10 scalefont setfont
%%EndSetup
%%Page: 1 1
DrawBorder
75 690 moveto (This is Page 1) show
75 670 moveto (Below is a closed, default note created using pdfmark:) show
75 570 moveto (Below is an open note with a custom color and label:) show
400 670 moveto (Below is a closed note) show
400 655 moveto (containing private data:) show
400 570 moveto (Below is a custom annotation.) show
400 555 moveto (It should appear as an unknown) show
400 540 moveto (annotation icon:) show

Page label and plate color (PAGELABEL)
The PAGELABEL pdfmark allows specification of the page label for a given page. Page labels can be strings
like “iv” or “3-24”, and do not necessarily correspond to the actual page numbers, which run consecutively.
See the PDF Reference for details.

Its syntax is as follows:

[/Label string
/PlateColor string
/PAGELABEL pdfmark

Both the Label and PlateColor keys are optional. Label takes a string representing the page label for
the page on which the pdfmark appears.

Adobe Acrobat SDK Basic Features
pdfmark Reference Transparency (SetTransparency) 38

PlateColor takes an optional string representing a device colorant. It is used in high-end printing
situations where the pages are pre-separated prior to generating PDF. This means that there are multiple
page objects in the PDF file (each representing a different colorant) corresponding to a single physical
page.The color for each separation must be specified in a separation dictionary; see the PDF Reference for
details.

Consecutive pages that specify PlateColor, with the same value for Label, are placed in the same
separation group. The last instance of a Label or PlateColor on a page overrides any earlier settings of
the same key on the same page.

Example 2.26 Page Label

%%Page: Sec1:2 1
%%PlateColor: Cyan
[/Label (Sec1:1) /PlateColor (Cyan) /PAGELABEL pdfmark

%%Page: iii 3
[/Label (iii) /PAGELABEL pdfmark

Transparency (SetTransparency)
PDF 1.4 extended the Adobe imaging model to include the notion of transparency. See the PDF Reference
for complete information on transparency. To produce PDF files with transparency from PostScript files,
use the SetTransparency pdfmark feature. This feature provides a mechanism for specifying the
following graphics state parameters:

Graphics state parameters for transparency

Key Value Meaning

AIS Boolean The alpha source flag (“alpha is shape”), specifying whether the current
soft mask and alpha constant are to be interpreted as shape values
(true) or opacity values (false). Default is false.

BM name or array of
names

Current blend mode. Default is Normal.

CA number Current stroking alpha constant, specifying the constant shape or
constant opacity value to be used for stroking operations. Default is 1.0.

ca number Same as CA, but for nonstroking operation. Default is 1.0.

SMask dictionary or
None

Current soft mask, specifying the mask shape or mask opacity values.
Default is None.

TK Boolean The text knockout flag, which determines the behavior of overlapping
glyphs within a text object. Default is true.

Adobe Acrobat SDK Basic Features
pdfmark Reference Transparency (SetTransparency) 39

The syntax of the SetTransparency feature is as follows:

[key–value pairs /SetTransparency pdfmark

where recognized key-value pairs are found in the table Graphics state parameters for transparency.

Note: The keys used by this pdfmark feature are the same as are found in PDF documents.

The arguments to the SetTransparency feature are checked for correct types and values. Unrecognized
keys are ignored and their values are neither checked nor written to the PDF document. If no recognized
key-value pairs are presented, then this feature adds no transparency information to the PDF document.

The values set by this feature are subject to gsave/grestore. For example:

[/ca .8 /SetTransparency pdfmark % Nonstroking alpha is now .8
gsave
[/ca .7 /SetTransparency pdfmark % Nonstroking alpha is now .7
grestore

% Nonstroking alpha is now .8

The initgraphics operator resets all of the graphics state parameters for transparency to the defaults
as shown in the table Graphics state parameters for transparency.

The following PostScript code demonstrates a use of the SetTransparency feature using Normal blend
mode with differing opacities.

Example 2.27 Transparencies

/DeviceCMYK setcolorspace 15 setlinewidth
[/ca .6 /CA .3 /BM /Normal /SetTransparency pdfmark

0 1 1 0 setcolor 220 330 150 0 360 arc fill % red
0 0 1 0 setcolor 320 503 150 0 360 arc fill % yellow
1 1 0 0 setcolor 420 330 150 0 360 arc fill % blue

1 0 0 0 setcolor 230 440 104 0 360 arc stroke % cyan
0 1 0 0 setcolor 410 440 104 0 360 arc stroke % magenta
0 0 1 0 setcolor 320 284 104 0 360 arc stroke % yellow

Adobe Acrobat SDK Basic Features
pdfmark Reference Transparency (SetTransparency) 40

Compare this to the following in which the blend mode has been changed:

/DeviceCMYK setcolorspace 15 setlinewidth
[/ca .6 /CA .3 /BM /Difference /SetTransparency pdfmark

0 1 1 0 setcolor 220 330 150 0 360 arc fill % red
0 0 1 0 setcolor 320 503 150 0 360 arc fill % yellow
1 1 0 0 setcolor 420 330 150 0 360 arc fill % blue

1 0 0 0 setcolor 230 440 104 0 360 arc stroke % cyan
0 1 0 0 setcolor 410 440 104 0 360 arc stroke % magenta
0 0 1 0 setcolor 320 284 104 0 360 arc stroke % yellow

Note that filling and stroking the same path results in the use of the PDF f and S operators and not the B
operator. This produces a “double border” effect and is not usually desirable.

/DeviceCMYK setcolorspace 15 setlinewidth
[/ca .6 /CA .3 /BM /Normal /SetTransparency pdfmark

0 1 1 0 setcolor 220 330 150 0 360 arc % red path

gsave fill grestore stroke % fill, then stroke
0 0 1 0 setcolor 320 503 150 0 360 arc % yellow path

gsave fill grestore stroke % fill, then stroke
1 1 0 0 setcolor 420 330 150 0 360 arc % blue path

gsave fill grestore stroke % fill, then stroke

Adobe Acrobat SDK Basic Features
pdfmark Reference Transparency group XObject and soft mask 41

Transparency group XObject and soft mask
To specify a soft mask dictionary in a graphics state, it is necessary to define and access a transparency
group XObject—a form XObject with a Group entry. See the PDF Reference for complete information.

Transparency group XObject

There are two PostScript idioms that create a Form XObject with Distiller: the execform operator and the
BP pdfmark feature. In Distiller 6.0 and later, each of these recognize the Group key that is used to indicate
a transparency group. Two forms with differing Group content are considered to be different. The syntax
for these two idioms are:

<< /FormType 1
/BBox [xll yll xur yur]
/Group group-dictionary
...

>>

[/_objdef {myForm}
/BBox [xll yll xur yur]
/Group group-dictionary
...
/BP pdfmark

Soft mask dictionaries

Because Distiller is configured to use execform (not /Form defineresource), there is no direct way
for Distiller to access a PostScript form dictionary if it is not used by execform. But a form used by
execform will always leave marks on the page. So the way to create a soft mask dictionary is to create a
transparency group form XObject using the BP pdfmark feature, then to refer to this form in the soft mask
dictionary in the Graphics state. For example:

[/_objdef {myForm} % Name to be used by G in Soft Mask below
/BBox [xll yll xur yur]
/Group dict
/BP pdfmark
... define the shapes here
/EP pdfmark

% Set the soft mask in Graphics state
[/SMask << /S /Alpha /G {myForm} >> /SetTransparency pdfmark

Adobe Acrobat SDK Basic Features
pdfmark Reference Transparency group XObject and soft mask 42

Here is another example.

Example 2.28 Soft mask dictionaries

280 0 translate
/DeviceCMYK setcolorspace
% Draw the background...
0 0 0 0.2 setcolor 10 540 100 200 rectfill
1 1 1 0 setcolor 10 540 200 200 rectstroke
% Define the form...
[/_objdef {aForm} /BBox [10 540 210 740]
/Group << /S /Transparency /K true>> /BP pdfmark
/DeviceCMYK setcolorspace
0.14 0.85 0.77 0.03 setcolor 72 600 50 0 360 arc fill
0.12 0.02 0.78 0 setcolor 110 650 50 0 360 arc fill
0.93 0.69 0.07 0.01 setcolor 147 600 50 0 360 arc fill
[/EP pdfmark
% Draw the form...
gsave
[/ca 0.5 /BM /Normal /SetTransparency pdfmark
[{aForm} /SP pdfmark
grestore
% Use the Form as Soft Mask...
[/SMask << /S /Alpha /G {aForm} >> /SetTransparency pdfmark
...

Soft mask images

There are two ways to specify a soft mask in PDF: a soft-mask dictionary in the Graphics state as described
above, and a soft-mask image associated with another image XObject (as an SMask entry).

A soft-mask image XObject has the same entries as an ordinary image XObject, with some restrictions:

● ColorSpace must be DeviceGray.

● Matte is an array of component values in the color space of the parent image.

● Width and Height must be the same as in the parent image if Matte is present.

● ImageMask must be false or absent.

● Mask and SMask must be absent.

● BitsPerComponent is required.

Adobe Acrobat SDK Basic Features
pdfmark Reference Transparency group XObject and soft mask 43

Distiller has a mechanism for naming and identifying image objects using the NI pdfmark feature. To
support soft masks, NI also recognizes three additional entries: IsSoftMask, Matte, and SMask.

NI pdfmark

Key Value Comments

/_objdef {nameobject} A name object assigned to the next image.

IsSoftMask Boolean Default is false.

Matte array Array of component values specifying matte color with
which the parent image data has been pre-blended.

SMask {SoftMaskImageName} {SoftMaskImageName} must be defined already by
another NI pdfmark. If SMask is present, IsSoftMask
must be false.

Using the NI pdfmark feature, you must define the soft-mask image first and then use it as the SMask
entry for the parent image. For example:

Example 2.29 Soft mask images

[/_objdef {mySoftMask} % Name assigned to the next image.
/SoftMask true % Next image {mySoftMask123} is a soft mask.
/Matte [.1 .2 .3]
/NI pdfmark

... define the soft mask image (ColorSpace must be /DeviceGray)

[/_objdef {myImage} % Name assigned to next image.

/SMask {mySoftMask} % Associate soft mask {mySoftMask123}
/NI pdfmark

... define the image here

In this example, the image’s ColorSpace must have three components and the image data must be
preblended with [.1 .2 .3].

 44

3 Actions and Destinations

When a user opens a file, clicks on a link, or clicks on a bookmark, several types of information need to be
specified to indicate what should happen. Different pdfmark types require one or more of the following:

● Actions specify what type of action should be taken. They are indicated by the Action key in a
pdfmark. See “Actions” on page 44. File specifiers indicate the target of an action when it is not the
current file. See the table “File specifier keys” on page 45.

● Destinations specify a particular location in a file, and a zoom factor. See “Destinations” on page 47.

Actions
PDF defines several types of actions that can be specified for bookmarks and annotations. The following
table outlines the types defined as of PDF 1.3.

Action types

Action type Description

GoTo Go to a destination in the current document.

GoToR Go to a destination in another document.

Hide Set an annotation’s Hidden flag.

ImportData Import field values from a files.

JavaScript Execute a JavaScript™ script.

Launch Launch an application, usually to open a file.

Movie Play a movie.

Named Execute an action predefined by the viewer application.

ResetForm Set fields to their default values.

Sound Play a sound.

SubmitForm Send data to a URL.

Thread Begin reading an article thread.

URI Resolve a uniform resource identifier.

Adobe Acrobat SDK Actions and Destinations
pdfmark Reference GoTo actions 45

When using pdfmark, the type of action for the annotation or bookmark is specified by the Action key. It
takes one of the following values:

● A predefined name corresponding to one of the first four items in the table Action types: GoTo, GoToR,
Launch, or Article (which corresponds to the Thread type in PDF).

● A dictionary specifying one of the other types, or a custom action. This dictionary must contain the
key–value pairs that are to be placed into the action dictionary in the PDF file. See the PDF Reference for
a detailed description of all the actions and their dictionaries. The syntax for this type of Action key is
as follows:

/Action << / Subtype actiontype
...other action dictionary key–value pairs... >>

“Custom link action (URI link for the Acrobat WebLink plug-in)” on page 23 shows a note pdfmark
containing a URI action.

If the Action key is not present, the action is assumed to be the equivalent of GoTo; that is, jumping to a
location in the current document. Actions other than GoTo may require a file-specifier key to specify an
external document (see the table “File specifier keys” on page 45).

GoTo actions
GoTo actions jump to a specified page and zoom factor within the current document. They require the
Dest key, or both the Page and View keys. See “Destinations” on page 47 for more information on these
keys.

GoToR actions
GoToR actions specify a location in another PDF file. They require the Dest key, or both the Page and
View keys, plus one or more file-specifier keys (see the table File specifier keys).

See “Bookmarks (OUT)” on page 26 for an example of a GoToR action.

The following table specifies keys that can be used with the GoToR, Launch, and Article actions to
specify the target file.

File specifier keys

Key Type Semantics

DOSFile string Optional. The MS-DOS path (in the PDF path format), of the PDF file.
Acrobat viewer applications in Windows and DOS ignore the File key
if the DOSFile key is present.

File string Required. The device-independent path of the PDF file.

ID array Optional. An array of two strings specifying the PDF file ID. This key can
be used to ensure the correct version of the destination file is found. If
present, the destination PDF file’s ID is compared with ID, and the user
is warned if they are different.

MacFile string Optional. The Mac OS file name (in the PDF path format) of the PDF file.
Acrobat viewer applications in Mac OS ignore the File key if the
MacFile key is present.

Adobe Acrobat SDK Actions and Destinations
pdfmark Reference Launch actions 46

The PDF Reference provides more information about the above specifiers.

Launch actions
Launch actions launch an arbitrary application or document, specified by the File key. If an application
is specified, some platforms allow passing options or filenames to the application that is launched. See
“Link that launches another file” on page 23 for an example of a launch action.

See the table File specifier keys for the file specifier keys that can be used by Launch actions. In addition,
the following optional keys can be used.

Optional keys for Launch actions

Key Type Semantics

Dir string Optional. The default directory of a Windows application.

Op string Optional. The operation to perform; used only under Windows. The
string must be open (the default) or print. If WinFile specifies an
application, not a document, this key is ignored and the application is
launched.

Params string Optional. The parameters passed to a Windows application started with
the Launch action. If the WinFile key specifies an application, Params
must not be present.

WinFile string Optional. The MS-DOS file name of the document or application to
launch.

Note: Acrobat viewer applications running under Windows use the Windows function ShellExecute to
launch an application specified using the Launch action. The keys WinFile, Dir, Op, and Params
correspond to the parameters of ShellExecute.

UnixFile string Optional. The UNIX file name (in the PDF path format) of the PDF file.
Acrobat viewer applications in UNIX ignore the File key if the
UnixFile key is present.

URI string Optional. The uniform resource identifier (URI) of a file on the Internet. It
can be either an HTML or PDF file. Acrobat viewer applications ignore
the File key if the URI key is present.

Named destinations may be appended to URLs, following a “#”
character, as in http://www.example.com/example.pdf#name.
The Acrobat viewer displays the part of the PDF file specified by the
named destination.

Note: This key is used with the Launch action. URIs can also be
specified with an action dictionary where the value of the
Subtype key is /URI (see “Custom link action (URI link for the
Acrobat WebLink plug-in)” on page 23.)

Key Type Semantics

Adobe Acrobat SDK Actions and Destinations
pdfmark Reference Article actions 47

Article actions
Article actions set the Acrobat viewer to article-reading mode, at the beginning of a specified article in the
current document or another PDF document.

They require the Dest key, which takes one of the following values:

● An integer that specifies the article’s index in the document (the first article in a document has an index
of 0).

● A string that matches the article’s Title.

In addition, article actions require one or more file-specifier keys if the article is in a different PDF file (see
the table “File specifier keys” on page 45).

See “Article action” on page 25 for an example of an article action.

Destinations
There are two ways of specifying a location within a document that is the target of an action:

● View destinations explicitly specify a page, a location on the page, and a fit type. View destinations require
a Page key and a View key. Typically they are used along with an Action key; if there is no Action
key, the action is the equivalent of GoTo, meaning to jump to the destination in the current file. See
“View destinations” on page 47.

● Named destinations specify the target as a name which has been defined. Named destinations are
specified by the Dest key. They specify a destination in the same file or another file, by name. See
“Defining named destinations” on page 49.

View destinations
View destinations require the following two keys.

Keys for view destinations

Key Type Semantics

Page integer or
name

The destination page. An integer value represents the sequence
number of the page within the PDF file. The first page in a file is page 1,
not page 0.

The name objects Next and Prev are valid destination page values for
links and articles.

If the destination of a link is on the same page, the Page key should be
omitted. If the value of the Page key is 0, the bookmark or link has a
NULL destination.

View array Specifies a link or bookmark’s destination on a page, and its fit type. The
first array entry is one of the fit type names shown in the table “Fit type
names and parameters” on page 48. The remaining entries, if any,
specify the location as either a rectangle, a point, or an x– or y–
coordinate, depending on the fit type.

Adobe Acrobat SDK Actions and Destinations
pdfmark Reference View destinations 48

All distances and coordinates specified in the following table are in default user space.

Fit type names and parameters

Name Parameters Description

Fit None Fit the page to the window. This is a shortcut for specifying FitR
with the rectangle being the crop box for the page.

FitB None Fit the bounding box of the page contents to the window.

FitBH top Fit the width of the bounding box of the page contents to the
window. top specifies the distance from the page origin to the top
of the window.

FitBV left Fit the height of the bounding box of the page contents to the
window. left specifies the distance from the page origin to the
left edge of the window.

FitH top Fit the width of the page to the window. top specifies the distance
from the page origin to the top of the window. This is a shortcut for
specifying FitR with the rectangle having the width of the page,
and both y-coordinates equal to top.

FitR x1 y1 x2 y2 Fit the rectangle specified by the parameters to the window.

FitV left Fit the height of the page to the window. left specifies the distance
in from the page origin to the left edge of the window. This is a
shortcut for specifying FitR with the rectangle having the height
of the page, and both x-coordinates equal to left.

XYZ left top zoom left and top specify the distance from the origin of the page to
the top-left corner of the window. zoom specifies the zoom factor,
with 1 being 100% magnification. If left, top or zoom is NULL, the
current value of that parameter is retained. For example, specifying
a view destination of

/View [/XYZ NULL NULL NULL]

goes to the specified page and retains the same horizontal and
vertical offset and zoom as the current page. A zoom of 0 has the
same meaning as a zoom of NULL.

The zoom factors for the horizontal and vertical directions are identical; there are not separate zoom
factors for the two directions. As a result, more of the page may be shown than specified by the
destination. For example, when using FitR, portions of the page outside the destination rectangle appear
in the window unless the window happens to have the same aspect ratio (height-to-width ratio) as the
destination rectangle.

A common destination is “upper left corner of the specified page, with a zoom factor of 1.” This can be
obtained using the XYZ destination form, with a left of -4 and a top equal to the top of the CropBox (or
the page size if no CropBox was specified) plus 4. The offset of 4 is used to slightly move the page corner
from the corner of the window, to provide a visual cue that the corner of the page is being shown.

The following sections have examples related to destinations: “Links” on page 22, “Bookmarks (OUT)” on
page 26, “File Open action” on page 30, and “Defining named destinations” on page 49.

Adobe Acrobat SDK Actions and Destinations
pdfmark Reference Defining named destinations 49

Defining named destinations
Locations in PDF files can be specified by name instead of by page number and view. These names can
then be used as destinations of bookmarks or links. Using named destinations is particularly advantageous
for cross-document links, because if the document containing a link’s destination is revised, the link still
works, regardless of whether its location in the file has changed.

A named destination is specified by using the pdfmark operator with the name DEST. The syntax for a
named destination pdfmark is as follows:

[/Dest name
/Page pagenum
/View destination
/DEST pdfmark

Named destination attributes

Key Type Description

Dest name Required. The destination’s name.

Page integer Optional. The sequence number of the destination page. If present, the
named destination pdfmark can be placed anywhere in the PostScript
language file. If omitted, the pdfmark must occur within the PostScript
language description for the destination page.

View array Optional. The view to display on the destination page. If omitted,
defaults to a null destination (lower left corner of the page at a zoom of
100%). See “Destinations” on page 47 for information on specifying a
view destination.

In addition to the keys listed in the table Named destination attributes, named destinations can also
specify arbitrary key–value pairs.

Named destinations can be appended to URLs, following a “#” character, as in
http://www.example.com/example.pdf#nameddest=name. The Acrobat viewer displays the part
of the PDF file specified in the named destination.

Example 3.1 Definition of named destination

[/Dest /MyNamedDest
/Page 1
/View [/FitH 5]
/DEST pdfmark

Example 3.2 Link to a named destination

[/Rect [70 650 210 675]
/Border [16 16 1 [3 10]]
/Color [0 .7 1]
/Dest /MyNamedDest
/Subtype /Link
/ANN pdfmark

Adobe Acrobat SDK Actions and Destinations
pdfmark Reference Referencing named destinations 50

Referencing named destinations
Named destinations that have been defined with the DEST pdfmark can be used as the target of a
bookmark or link, or by the optional open action in a document’s Catalog dictionary. They are specified
using the Dest key.

See “Defining named destinations” on page 49 for examples of named destinations.

Note: When used with the Article action, Dest has a different syntax. See “Article actions” on page 47.

 51

4 Logical Structure

PDF files (in versions 1.3 and later) can contain structure trees giving a logical structure to the information
in a document. The facilities for logical structure in PDF are described in the PDF Reference.

A structure suite of names is used with the pdfmark operator that can be used to specify logical structure
within PDF files.

“Structure examples” on page 75 gives a variety of examples of using the structure suite.

Elements and parents
A document’s logical structure consists of a hierarchy of structure elements. Elements can contain contents
and attributes. At the root of the hierarchy is a dictionary object called the Structure Tree Root.

When using the structure suite, the hierarchy is established by means of the implicit parent stack of
elements. Elements can be pushed onto or popped off of this stack. When an element is created, its parent
is the current top item on the stack. If the stack is empty, the document’s Structure Tree Root is made the
parent; the Structure Tree Root is created if it does not already exist. When element content is created, its
containing element is the current top item on the stack.

Note: Some operators that specify an element cannot accept the Structure Tree Root as the implicit
argument; therefore these commands are in error if the implicit parent stack is empty when they are
encountered or if the top item on the stack is the Structure Tree Root. These cases are noted in the
command descriptions.

Structure operators
This section lists the pdfmark names that make up the structure suite. Most of these are directly related to
PDF logical structure features, but some only manipulate the state of the PDF creation process, without
corresponding to any particular output.

● Structure Tree Root

● StRoleMap adds entries to the role map.

● StClassMap adds entries to the class map.

● Elements

● StPNE creates a new structure element.

● StBookmarkRoot creates a root bookmark for a structure bookmark tree.

● StPush pushes an existing element onto the implicit parent stack.

● StPop pops an element off the implicit parent stack.

● StPopAll empties the implicit parent stack.

Adobe Acrobat SDK Logical Structure
pdfmark Reference Structure Tree Root 52

● Element Content

● StBMC indicates the beginning of marked content.

● StBDC indicates the beginning of marked content with a dictionary.

● EMC delimits the end of marked content.

● StOBJ adds an existing PDF object as part of an element’s content.

● Attributes

● StAttr enables the attachment of attribute objects to elements.

● Saving and restoring the stack

● StStore saves the current state of the implicit parent stack.

● StRetrieve restores the implicit parent stack from a saved state.

The following sections provide details about the structure suite.

Structure Tree Root
Distiller automatically creates a new Structure Tree Root the first time it creates a new element with StPNE
(see StPNE on page 53).

The Structure Tree Root contains a role map and a class map (see the PDF Reference for details). The
following two pdfmark features can be used to add information to these maps.

StRoleMap
StRoleMap specifies key-value pairs to be added as dictionary entries to the Structure Tree Root’s role
map. If the Structure Tree Root doesn’t already exist, it is created; if the Structure Tree Root doesn’t have a
role map dictionary, one is created. A given key–value pair always modifies the role map, even if the key is
already in the dictionary.

The syntax for adding entries to a role map is as follows:

[/new-element-subtype-name
/standard-structural-subtype-name

...
/new-element-subtype-name

/standard-structural-subtype-name
/StRoleMap pdfmark

StClassMap
StClassMap behaves like StRoleMap, except that it adds entries to the Structure Tree Root’s class map,
rather than the role map. The syntax for adding entries to a class map is as follows:

[/class-name /attribute-object-name
...
/class-name /attribute-object-name
/StClassMap pdfmark

Adobe Acrobat SDK Logical Structure
pdfmark Reference Elements 53

Elements
The structure suite provides several commands to create elements and link them into structure trees.

StPNE
StPNE (“Push New Element”) creates a new element whose parent is the element on the top of the implicit
parent stack. Its syntax is as follows:

[/Subtype name
/_objdef {objname}
/Title string
/Alt string
/ID string
/Class name
/At integer
/Bookmark dictionary
/StPNE pdfmark

These keys are described in the following table.

Common element keys

Key Type Description

Subtype name Required. The element type, such as Link or Section.

Title string Optional. A human-readable name for the particular element.

Alt string Optional. An alternate representation of the element’s contents as
human-readable text

ID string Optional. A unique identifier for the element. The identifier must be
unique within the document in which the element occurs. It is an error
to specify an element with the same ID as an existing element in the
same tree.

Class name Optional. The class name to be associated with the element

At integer Optional. Index at which to insert this item within its parent. If omitted,
or greater than or equal to the parent’s current number of children, the
item is added as the last child of its parent, retaining all existing items in
their original positions. If less than or equal to zero, the new item
becomes the first child of its parent. If the index is any other number,
the item is inserted at that index within the container, and all items that
had indices greater than or equal to the given index are shifted to the
position with index one greater. An item may be an element, marked
content, or a PDF object.

Bookmark dictionary Optional. Specifies a bookmark that is generated for this structural
element. The table “Bookmark dictionary / bookmark tree root” on
page 54 describes this dictionary.

Adobe Acrobat SDK Logical Structure
pdfmark Reference StBookmarkRoot 54

A new element is added to its parent at the index specified with the At key. The newly-created element is
pushed onto the implicit parent stack.

Note: If the implicit parent stack is empty, the Structure Tree Root is pushed onto the stack and used as
the new element’s parent. If there is no Structure Tree Root, one is created, pushed onto the stack,
and used as the new element’s parent.

StPNE may also take the key _objdef to specify an object name for the element. Once an element is
named, it can be referenced with the E key of the StPush pdfmark (see StPush on page 55).

The Bookmark key allows a bookmark to be automatically generated for an element and added to the
Structured Bookmark subtree. Its value is a bookmark dictionary, which may contain the Title and Open
keys described in the following table.

Bookmark dictionary / bookmark tree root

Key Type Semantics

Open Boolean Optional. If true, the bookmark is open, that is, its children are visible. If
false, the bookmark is closed. If this key is absent, the bookmark is closed.

Title string Optional. The bookmark title. The encoding and character set used is either
PDFDocEncoding (as described in the PDF Reference) or Unicode. If Unicode,
the string must begin with <FEFF>. For example, the Unicode string for (ABC)
is <FEFF004100420043>. Title has a maximum length of 255
PDFDocEncoding characters or 126 Unicode values, although a practical limit
of 32 characters is advised so that it can be read easily in the Acrobat viewer.

If the Title key is absent, the title is the title of the element or its subtype.

The bookmark dictionary may also contain key-value pairs that specify an action to be taken when the
bookmark is activated (see “Actions and Destinations” on page 44). If none of the action keys are present,
the bookmark’s action is to go to either the first page where marked content is a child of this element or a
child in one of its descendant elements.

“A bookmark for a structural element” on page 77 defines a bookmark for an element.

StBookmarkRoot
StBookmarkRoot creates the root bookmark for structure bookmarks added by a StPNE with a
Bookmark key. Its syntax is as follows:

[/Title string
/Open boolean
... action-specifying-keys ...
/StBookmarkRoot pdfmark

It contains the Title and Open keys shown in the table Bookmark dictionary / bookmark tree root. If the
Title key is absent, the title is “Untitled”.

It may also contain the action keys in Actions and Destinations if none of these keys are present, the
bookmark root has no action associated with it.

An operator with StBookmarkRoot must appear before any StPNE with a Bookmark key; otherwise the
default (“Untitled”, closed, no action) is used for the structured bookmark subtree.

Adobe Acrobat SDK Logical Structure
pdfmark Reference StPush 55

StPush
StPush pushes an existing element onto the implicit parent stack. The syntax for pushing an element is as
follows:

[/E {objname}
/StPush pdfmark

The E key specifies an existing element, given as an object name of the special form {objname} used to
refer to Cos objects. It must be a name that was created by a previous StPNE using the _objdef key (see
StPNE on page 53).

Note: If the E key is omitted, the Structure Tree Root of the document is specified. The Structure Tree Root
is created if it does not already exist.

StPop
StPop removes the element at the top of the implicit parent stack. It is an error for StPop to be
encountered when the implicit parent stack is empty.

The syntax for popping an element is as follows:

[/StPop pdfmark

StPopAll
StPopAll completely empties the implicit parent stack. The syntax for emptying the stack is as follows:

[/StPopAll pdfmark

StUpdate
StUpdate updates the entries of the current structure element. The syntax is as follows:

[<< /S /Span... >> /StUpdate pdfmark

Element content
Elements can have two kinds of document content: marked content and references to PDF objects.

Use StBDC and StBMC to indicate the beginning of marked content and EMC to delimit the end of marked
content. These operators combine the creation of the marked content region in the PDF content stream
with the creation of marked content and its placement within the structure hierarchy.

Note: Marked content can be specified independently of the structure suite, using the operators
described in “Marked content (MP, DP, BMC, BDC, EMC)” on page 34.

It is possible to nest marked content by nesting the StBMC/BDC and EMC operators. This is different from
the nesting maintained by the tree structure of elements, which is implemented using StPNE and StPop.
Note that nested marked content may belong to elements in different branches of a Structure Tree.

To specify references to PDF objects, use the StOBJ operator.

Adobe Acrobat SDK Logical Structure
pdfmark Reference StBMC 56

StBMC
StBMC marks the beginning of a sequence of marked content objects. Its syntax is as follows:

[/T tag
/At integer
/StBMC pdfmark

The marked content is added to its containing element (the top element of the implicit parent stack) at the
position optionally specified by the At key (see the table Common element keys). The T key is described in
the following table. It is an error if the implicit parent stack is empty when StBMC is encountered.

Specifying tags and property list entries for marked content

Key Type Description

P (Properties) dictionary Optional. Key–value pairs that are entered into the properties
dictionary of the marked content being created. If this key is
omitted, no properties other than those required by the
implementation of logical structure in PDF are entered into the
properties dictionary. This key is supported only with StBDC.

T (Tag) name Optional. The tag to be given to the marked content being
created. If this key is omitted, the subtype of the containing
element is used.

StBDC
StBDC marks the beginning of a sequence of page content objects with an associated property list, given
by a dictionary. StBDC behaves just like StBMC, with the addition of a property list. Its syntax is as follows:

[/T tag
/P properties-dictionary
/At integer
/StBDC pdfmark

The marked content is added to its containing element (the element on top of the implicit parent stack) at
the position optionally specified by the At key (see the table Common element keys). The P
(Properties) and T (Tag) keys are described in the table Specifying tags and property list entries for
marked content. It is an error if the implicit parent stack is empty when StBDC is encountered.

EMC
EMC signals the end of a marked sequence of page content operators. Its syntax is as follows:

[/EMC pdfmark

StOBJ
StOBJ adds an existing PDF object to the content of the top element of the implicit parent stack, using
the Cos object reference mechanism. Its syntax is as follows:

[/Obj {objname}
/At integer
/StOBJ pdfmark

Adobe Acrobat SDK Logical Structure
pdfmark Reference Attribute objects 57

The Obj key specifies the object to be added as data to the specified element, given as an object name of
the special form {objname} used to refer to Cos objects. This object must have been created previously
and must be a dictionary or stream.

The At key (see the table Common element keys) specifies the position of the new content within the
containing element.

It is an error if the implicit parent stack is empty when StOBJ is encountered.

Attribute objects
Elements can have additional information, or attributes, associated with them. Attributes are held in
attribute objects, which can be associated with either a single element by using StAttr (see StAttr on
page 57), or with a group of objects by storing it in the ClassMap of the Structure Tree Root, using
StClassMap (see StClassMap on page 52).

StAttr
StAttr creates a new attribute object and adds it to the element on top of the implicit parent stack.

The syntax to create a new attribute object is as follows:

[/Obj {objname}
/StAttr pdfmark

The Obj key specifies the object to be added as an attribute object to the specified element, given as an
object name of the special form {objname} used to refer to Cos objects. This object must have been
created previously and must be a dictionary or stream.

Note: In the PDF file, the attribute object is stored in the A key in the element’s dictionary.

It is an error if the implicit parent stack is empty when StAttr is encountered.

Storage and retrieval of the implicit parent stack
Structure suite operators specify parents implicitly by means of the stack. However, it is not always
possible to mimic a tree’s structure by nesting the structure within the document. For example, a
paragraph may be represented by regions on more than one page, or it may be interrupted by other page
content.

To allow applications flexibility in their page output while allowing them the convenience of specifying
tree structure, the structure suite provides a way of storing and later retrieving the tree’s context.

See “Interrupted structure” on page 77 for an example of storing and retrieving the implicit parent stack.

Note: The names under which implicit parent stacks are stored and retrieved are in the current
namespace governed by the stack operators NamespacePush and NamespacePop, defined in
“Namespaces” on page 14.

Adobe Acrobat SDK Logical Structure
pdfmark Reference StStore 58

StStore
StStore saves the current state of the implicit parent stack (without changing it). Its syntax is as follows:

[/StoreName name
/StStore pdfmark

The StoreName key specifies a name object to be associated with the saved implicit parent stack state.
Storing an implicit parent stack state under a previously used name completely replaces the implicit
parent stack state already stored under that name.

StRetrieve
StRetrieve restores the implicit parent stack from a saved state, whose name is specified by the
StoreName key (as described in StStore on page 58). The syntax for a restoring the current state is as
follows:

[/StoreName name
/StRetrieve pdfmark

The previous state of the implicit parent stack is overwritten by the restored state. It is an error to try to
retrieve a nonexistent state, that is, to use a name that was not associated with a stack state by a previous
StStore.

EPS considerations
Encapsulated PostScript (EPS) is a form of PostScript used to embed graphics created in one application in
a document created in another application. Applications can create EPS files containing structure
elements without knowing anything about the environment into which the EPS file is to be embedded,
which complicates the processing of a structure inside embedded EPS.

The logical structure design allows structure within an embedded EPS to be connected to the structure of
the surrounding file by way of the implicit parent stack, while insulating the namespace of the containing
file from accidents due to naming coincidences in embedded EPS files.

It is strongly recommended that applications embedding EPS files wrap the embedded PostScript
between NamespacePush and NamespacePop to insulate the overall PostScript document from the
consequences of multiply-defined object names.

Tagged PDF
PDF 1.4 introduced the concept of tagged PDF. Tagged PDF is a type of structured PDF that allows page
content to be extracted and reused for various purposes, such as reflow of text and graphics, conversion to
various file formats such as HTML and XML, and accessibility to the visually impaired.

For detailed information on tagged PDF, see the PDF Reference.

In PDF 1.4, the Catalog dictionary contains a MarkInfo entry whose value is a dictionary. That dictionary
has a single key called Marked whose value is a Boolean; a value of true indicates that the document is a
tagged PDF.

The syntax for indicating tagged PDF using pdfmark is as follows:

[{Catalog} <</MarkInfo <</Marked true >> >> /PUT pdfmark

Adobe Acrobat SDK Logical Structure
pdfmark Reference Tagged PDF 59

Example 4.1 Tagged PDF

This is a sample PostScript file that illustrates the use of tagged PDF.

% Three items should be added to this example for completeness:
% 1. A small table (just two rows, three column)
% 2. A figure (either standalone, or actually embedded in the text)
% 3. If possible, the encoding of a font so that the soft hyphen really works
% without the "actual text"

[/Creator (Hand Created)
/CreationDate (D:20010508130548)
/ModDate (D:20010508145339)
/Author (Adobe Developer)
/Title (Sample Document 1 for tagged PDF creation)
/Subject (A base document for the creation of some simple PostScript and

PDFMarks to show tagged PDF)
/Session (Tagged PDF Dev Tech Seminar)
/Purpose (Demonstration)
/DOCINFO pdfmark

[{Catalog} <</MarkInfo <</Marked true>>>> /PUT pdfmark

% Layout class for documenttitle below
[/_objdef {C1} /type /dict /OBJ pdfmark
[{C1} <</O /Layout /SpaceAfter 10 /SpaceBefore 10 /TextAlign /Center>>
/ PUT pdfmark
[/CM1 {C1} /StClassMap pdfmark

% Layout class for topichead
[/_objdef {C2} /type /dict /OBJ pdfmark
[{C2} <</O /Layout /SpaceAfter 5 /SpaceBefore 5 /TextAlign /Left>>

/PUT pdfmark
[/CM2 {C2} /StClassMap pdfmark

% Layout class for topichead2
[/_objdef {C3} /type /dict /OBJ pdfmark
[{C3} <</O /Layout /SpaceAfter 3 /SpaceBefore 3 /TextAlign /Left>>

/PUT pdfmark
[/CM3 {C3} /StClassMap pdfmark

% Layout class for p
[/_objdef {C4} /type /dict /OBJ pdfmark
[{C4} <</O /Layout /SpaceAfter 1 /SpaceBefore 3 /TextAlign /Left>>

/PUT pdfmark
[/CM4 {C4} /StClassMap pdfmark

[/Subtype /document /Lang (en-US) /StPNE pdfmark

[/_objdef {dta1} /type /dict /OBJ pdfmark

[{dta1} <</O /XML-1.00 /Author (Joe)>> /PUT pdfmark
[/Subtype /documenttitle /Class /CM1 /StPNE pdfmark
[/Obj {dta1} /StAttr pdfmark

Adobe Acrobat SDK Logical Structure
pdfmark Reference Tagged PDF 60

[/StBMC pdfmark

/Helvetica-Bold findfont 24 scalefont setfont
216 720 moveto
(Title of Document) show

[/EMC pdfmark
[/StPop pdfmark

[/Subtype /topic /StPNE pdfmark
[/Subtype /topichead /Class /CM2 /StPNE pdfmark
[/StBMC pdfmark

/Helvetica-Bold findfont 18 scalefont setfont
72 690 moveto
(First Topic) show

[/EMC pdfmark
[/StPop pdfmark

[/Subtype /p /Class /CM4 /StPNE pdfmark
[/StBMC pdfmark

/Helvetica findfont 12 scalefont setfont
72 674 moveto
(Some text in a paragraph in the first topic. These lines may not be
justified, but are illustrative.) show

[/EMC pdfmark
[/StPop pdfmark
[/StPop pdfmark

[/Subtype /topic /StPNE pdfmark
[/Subtype /topichead /Class /CM2 /StPNE pdfmark
[/StBMC pdfmark

/Helvetica-Bold findfont 18 scalefont setfont
72 648 moveto
(Second Topic) show

[/EMC pdfmark
[/StPop pdfmark
[/Subtype /p /Class /CM4 /StPNE pdfmark
[/StBMC pdfmark

/Helvetica findfont 12 scalefont setfont
72 632 moveto
(This is a paragraph of text in the second topic.) show

[/EMC pdfmark
[/Subtype /emph /StPNE pdfmark
[/StBMC pdfmark

/Helvetica-Oblique findfont 12 scalefont setfont

Adobe Acrobat SDK Logical Structure
pdfmark Reference Tagged PDF 61

(Emphasized) show

[/EMC pdfmark
[/StPop pdfmark
[/StBMC pdfmark

/Helvetica findfont 12 scalefont setfont
(words) show

72 618 moveto
(here.) show

[/EMC pdfmark
[/StPop pdfmark

[/Subtype /topic /StPNE pdfmark
[/Subtype /topichead2 /Class /CM3 /StPNE pdfmark

[/StBMC pdfmark

/Helvetica-Bold findfont 14 scalefont setfont
72 596 moveto
(Subtopic of second topic) show

[/EMC pdfmark
[/StPop pdfmark

[/Subtype /p /Class /CM4 /StPNE pdfmark
[/StBMC pdfmark

/Helvetica findfont 12 scalefont setfont
72 580 moveto
(This paragraph of text is the second topic, first subtopic.) show
72 566 moveto
(Hyphenated words make up this para) show

[/EMC pdfmark
[/Subtype /Span /ActualText <FEFF00AD> /StPNE pdfmark
[/StBMC pdfmark

(-) show
[/EMC pdfmark
[/StPop pdfmark
[/StBMC pdfmark

72 552 moveto
(graph also.) show

[/EMC pdfmark
[/StPop pdfmark
[/StPop pdfmark
[/StPop pdfmark

% Add another topic with line numbers

Adobe Acrobat SDK Logical Structure
pdfmark Reference Tagged PDF 62

[/Subtype /topic /StPNE pdfmark
[/Subtype /topichead /Class /CM2 /StPNE pdfmark
[/StBMC pdfmark

/Helvetica-Bold findfont 18 scalefont setfont
72 510 moveto
(Line Numbered Topic) show

[/EMC pdfmark
[/StPop pdfmark

[/Subtype /p /Class /CM4 /StPNE pdfmark

/Helvetica findfont 12 scalefont setfont
[/Artifact <</Type /Layout>> /BDC pdfmark
48 494 moveto (1) show

[/EMC pdfmark
[/StBMC pdfmark

72 494 moveto
(This is some text such as would appear in a legal bill.) show

[/EMC pdfmark
[/Artifact <</Type /Layout>> /BDC pdfmark

48 478 moveto (2) show

[/EMC pdfmark
[/StBMC pdfmark

72 478 moveto
(Note that this text has line numbers, but that) show

[/EMC pdfmark
[/Artifact <</Type /Layout>> /BDC pdfmark

48 464 moveto (3) show

[/EMC pdfmark
[/StBMC pdfmark

72 464 moveto
(the numbers disappear when you reflow) show

[/EMC pdfmark
[/Artifact <</Type /Layout>> /BDC pdfmark

48 450 moveto (4) show

[/EMC pdfmark

[/StBMC pdfmark

72 450 moveto

Adobe Acrobat SDK Logical Structure
pdfmark Reference Tagged PDF 63

(the text or save the text as XML.) show

[/EMC pdfmark
[/StPop pdfmark
[/StPop pdfmark

% ===
% Create a simple link example
% ===

[/Subtype /P /StPNE pdfmark
[/Subtype /Link /StPNE pdfmark

[/_objdef {annotObj} /Rect [70 398 202 412]
/Action << /Subtype /URI /URI (http://www.adobe.com) >>
/Border [0 0 0]
/Subtype /Link
/ANN pdfmark

[/Obj {annotObj} /StOBJ pdfmark

[/StBMC pdfmark
0 0 1 setrgbcolor
72 400 moveto

(http://www.adobe.com.) show

[/EMC pdfmark

[/StPop pdfmark
[/StPop pdfmark

% Set the tab order for the page to structure order.
[{ThisPage} << /Tabs /S >> /PUT pdfmark

% ===
% Create figure with a bounding box
% ===

[/Subtype /Figure /Alt (Logo.) /Title (Company Logo) /StPNE pdfmark

% Generate attribute dictionary for figure
[/_objdef {layoutObj} /type /dict /OBJ pdfmark
[{layoutObj} <</O /Layout /Height 70 /Width 140 /BBox [90 290 250 360]

/Placement /Block>> /PUT pdfmark

% Attach attributes to figure
[/Obj {layoutObj} /StAttr pdfmark

[/StBMC pdfmark

/Helvetica findfont 48 scalefont setfont
0 0 0 setrgbcolor
90 290 moveto

Adobe Acrobat SDK Logical Structure
pdfmark Reference Tagged PDF 64

90 360 lineto
250 360 lineto
250 290 lineto
closepath
stroke
100 300 moveto
1 0 0 setrgbcolor
(LOGO) false charpath
2 setlinewidth stroke

[/EMC pdfmark

[/StPop pdfmark

% ===
% Simple List Example
% ===

/Helvetica-Bold findfont 18 scalefont setfont
0 0 0 setrgbcolor

[/Subtype /L /Lang (en-US) /Title (Some salutations) /StPNE pdfmark

% Create a list attribute which specifies the type of label to use
[/_objdef {firstAttrObj} /type /dict /OBJ pdfmark
[{firstAttrObj} <</O /List /ListNumbering /LowerRoman>> /PUT pdfmark

% Create an attribute specifying the writing direction
[/_objdef {secondAttrObj} /type /dict /OBJ pdfmark
[{secondAttrObj} <</O /Layout /WritingMode /LrTb>> /PUT pdfmark

% Set attribute dict on list
[/Obj {firstAttrObj} /StAttr pdfmark
[/Obj {secondAttrObj} /StAttr pdfmark

/Helvetica-Oblique findfont 12 scalefont setfont

[/Subtype /LI /StPNE pdfmark
[/Subtype /Lbl /StPNE pdfmark

[/StBMC pdfmark
48 238 moveto
(i) show

[/EMC pdfmark
[/StPop pdfmark
[/Subtype /LBody /Lang (en-cockney) /StPNE pdfmark

[/StBMC pdfmark
72 238 moveto
(whatcha) show

[/EMC pdfmark
[/StPop pdfmark

[/StPop pdfmark

[/Subtype /LI /StPNE pdfmark
[/Subtype /Lbl /StPNE pdfmark

Adobe Acrobat SDK Logical Structure
pdfmark Reference Tagged PDF 65

[/StBMC pdfmark
48 226 moveto
(ii) show

[/EMC pdfmark
[/StPop pdfmark
[/Subtype /LBody /Lang (fr) /StPNE pdfmark

[/StBMC pdfmark
72 226 moveto
(bon jour) show

[/EMC pdfmark
[/StPop pdfmark

[/StPop pdfmark

[/StPop pdfmark

% ===
% Simple Table Example
% ===

% Create a table element
[/Subtype /Table /Lang (en-US) /StPNE pdfmark

% Place the frame of the table in an artifact
[/Artifact <</Type /Layout /BBox [40 175 340 220] >> /BDC pdfmark

40 220 moveto 340 220 lineto 340 175 lineto 40 175 lineto closepath
40 196 moveto 340 196 lineto
190 220 moveto 190 175 lineto
stroke

[/EMC pdfmark

% Create a table attribute which specifies the type of label to use
[/_objdef {tableattrObj} /type /dict /OBJ pdfmark
[{tableattrObj} <</O /Layout /Placement /Block /SpaceAfter 10

/BorderColor [0 0 0]>> /PUT pdfmark

% Attach attribute to table
[/Obj {tableattrObj} /StAttr pdfmark

% Create an attribute object with the common settings for each table data cell
[/_objdef {tableCellsObj} /type /dict /OBJ pdfmark
[{tableCellsObj} <</O /Layout /Width 150 /BorderStyle /Solid

/BorderThickness 2 /BorderColor [0 0 0]>> /PUT pdfmark

% Add it to the classmap
[/CommonTableInfo {widthObj} /StClassMap pdfmark

[/Subtype /THead /StPNE pdfmark
[/Subtype /TR /StPNE pdfmark

[/Subtype /TH /Class /CommonTableInfo /StPNE pdfmark
[/StBMC pdfmark

48 200 moveto
(Item) show

[/EMC pdfmark
[/StPop pdfmark
[/Subtype /TH /Class /CommonTableInfo /StPNE pdfmark

Adobe Acrobat SDK Logical Structure
pdfmark Reference Tagged PDF 66

[/StBMC pdfmark
200 200 moveto
(Description) show

[/EMC pdfmark
[/StPop pdfmark

[/StPop pdfmark
[/StPop pdfmark

[/Subtype /TBody /StPNE pdfmark
[/Subtype /TR /StPNE pdfmark

[/Subtype /TD /Class /CommonTableInfo /StPNE pdfmark
[/StBMC pdfmark

48 180 moveto
(Thing) show

[/EMC pdfmark
[/StPop pdfmark

[/Subtype /TD /Class /CommonTableInfo /StPNE pdfmark
[/StBMC pdfmark

200 180 moveto
(Things) show

[/EMC pdfmark
[/StPop pdfmark

[/StPop pdfmark
[/StPop pdfmark

[/StPop pdfmark

[/StPop pdfmark

% Now that the text is done, let's make the outlines.
% The first bookmark magnifies 400 percent, while the others go to their
% line in the text.
[/Count 4 /Page 1 /View [/XYZ 216 744 4.0] /Title (Title of Document)
/OUT pdfmark
[/Page 1 /View [/XYZ 0 704 1.0] /Title (First Topic) /OUT pdfmark
[/Count -1 /Page 1 /View [/XYZ 0 662 1.0] /Title (Second Topic) /OUT pdfmark
[/Page 1 /View [/XYZ 0 610 1.0] /Title (Subtopic of second Topic) /OUT pdfmark
[/Page 1 /View [/XYZ 0 530 1.0] /Title (Line Numbered Topic) /OUT pdfmark
[/PageMode /UseOutlines /Page 1 /View [/XYZ null null null] /DOCVIEW pdfmark

% And finally the rolemap, with every tag that we have used defined.
[/document /Document

/documenttitle /H
/p /P
/emph /Span
/topic /Div
/topic2 /Div
/topichead /H1
/topichead2 /H2
/StRoleMap pdfmark

showpage
(%%[Page: 1]%%) =

 67

5 Examples

This section provides several examples illustrating various uses of the pdfmark operator.

Building an Output Intents array
The following Windows and Mac OS examples demonstrate how to build an Output Intents array, which is
useful in color processing. The hard-coded file and directory path should be applicable to most users.

Example 5.1 Output Intents array in Windows

% Define the profile object. The file is set up using a Windows path.
% You can also use a Mac OS or UNIX path, or embed the profile data
% in the PostScript.

[/NamespacePush pdfmark
[/_objdef {Profile} /type /stream /OBJ pdfmark
[{Profile} <</N 4>> /PUT pdfmark
[{Profile}
(c:/Program Files/Common
Files/Adobe/Color/Profiles/Recommended/EuroscaleCoated.icc)
(r) file /PUT pdfmark

% Build the OutputIntent objects
[/_objdef {OIDict} /type /dict /OBJ pdfmark
[/_objdef {OIArray} /type /array /OBJ pdfmark
[{OIDict} << /Type /OutputIntent /OutputCondition (Test) /S
/GTS_PDFX /OutputConditionIdentifier (Custom) /DestOutputProfile
{Profile} >> /PUT pdfmark
[{OIArray} 0 {OIDict} /PUT pdfmark

% Store the OutputIntents array in the catalog.
[{Catalog}<< /OutputIntents {OIArray} >> /PUT pdfmark
[/NamespacePop pdfmark

Example 5.2 Output Intents array in Mac OS

% Define the profile object. The file is set up using a Mac OS path.
% You can also use a Windows or UNIX path, or embed the profile data
% in the PostScript.

[/NamespacePush pdfmark
[/_objdef {Profile} /type /stream /OBJ pdfmark
[{Profile} <</N 4>> /PUT pdfmark
[{Profile}
(/Library/Application Support/Adobe/Color/Profiles/JapanStandard.icc)
(r) file /PUT pdfmark

Adobe Acrobat SDK Examples
pdfmark Reference Named object examples 68

% Build the OutputIntent objects
[/_objdef {OIDict} /type /dict /OBJ pdfmark
[/_objdef {OIArray} /type /array /OBJ pdfmark
[{OIDict} << /Type /OutputIntent /OutputCondition (Test) /S
/GTS_PDFX /OutputConditionIdentifier (Custom) /DestOutputProfile
{Profile} >> /PUT pdfmark
[{OIArray} 0 {OIDict} /PUT pdfmark

% Store the OutputIntents array in the catalog.
[{Catalog}<< /OutputIntents {OIArray} >> /PUT pdfmark
[/NamespacePop pdfmark

Named object examples
The following examples demonstrate how to work with named objects.

Example 5.3 Creating user-defined named objects

[/_objdef {myarrayname} /type/ array /OBJ pdfmark
[/_objdef {mydictname} /type /dict /OBJ pdfmark
[/_objdef {mystreamname} /type /stream /OBJ pdfmark

Example 5.4 Adding values to named objects

% Insert 132 at location 0
[{myarrayname} 0 132 /PUT pdfmark
[{myarrayname} 100 /APPEND pdfmark
[{myarrayname} /name2 /APPEND pdfmark
[{myarrayname} 2 [200 300] /PUTINTERVAL pdfmark
% At the end of the above examples, the array {myarrayname}
% has the value [132 100 200 300 /name2]
% Insert key–value pair into dictionary
[{mydictname} << /TheKey 366 >> /PUT pdfmark
% Insert string into stream object
[{mystreamname} (any string) /PUT pdfmark
% Use predefined named objects
% Insert key–value pair into Catalog
[{Catalog} << /Answer 42 >> /PUT pdfmark
% Insert key–value pair into Page 37’s dictionary
[{Page37} << /SpecialKey (special string) >> /PUT pdfmark
% Insert key–value pair into the current page’s dictionary
[{ThisPage} << /NewKey (new string) >> /PUT pdfmark

Example 5.5 Creating an annotation as a named object and adding content to it

% Create text annotation
[/_objdef {MikesAnnot} /Contents (a simple text annot)

/Rect [100 100 200 200] /Subtype /Text /ANN pdfmark
% Add another key to this text annotation
[{MikesAnnot} << /AnotherKey (another string value) >> /PUT pdfmark

Adobe Acrobat SDK Examples
pdfmark Reference Named object examples 69

Example 5.6 Using a named object as a value

This example creates a text annotation on the current page with extra keys in the annotation dictionary.
These keys, MyPrivateAnnotArrayData and MyPrivateAnnotDictData, have values that are
indirect references to the array and dictionary objects created by the previous pdfmark entries.

[/_objdef {myarray} /type /array /OBJ pdfmark
[/_objdef {mydict} /type /dict /OBJ pdfmark
[/MyPrivateAnnotArrayData {myarray}

/MyPrivateAnnotDictData {mydict}
/SubType /Text
/Rect [500 500 550 550]
/Contents (Here is a text annotation)
/ANN pdfmark

Example 5.7 Putting a file’s contents into a text annotation

/F (file's platform dependent path name) (r) file def
[/_objdef {mystream} /type /stream /OBJ pdfmark
[{mystream} F /PUT pdfmark
[/MyPrivateAnnotmyStreamData {mystream}

/SubType /Text
/Rect [500 500 550 550]
/Contents (Here is a text annotation)
/ANN pdfmark

Example 5.8 Using OBJ to add an open action to a PDF File

% Go to the fifth page of a document upon opening it.
% First and third lines can be reused.
% Second line specifies the GoTo action, which can be customized easily.
[/_objdef {MyAction} /type /dict /OBJ pdfmark
[{MyAction} << /S /GoTo /D [{Page5} /FitH 770] >> /PUT pdfmark
[{Catalog} << /OpenAction {MyAction} >> /PUT pdfmark

Example 5.9 Using OBJ to create a base URI

% Create a dictionary object
[/_objdef {myURIdict} /type /dict /OBJ pdfmark
% Add a "Base" key-value pair to the dictionary we just created
[{myURIdict} << /Base (http://www.adobe.com) >> /PUT pdfmark
% Add our dictionary to the PDF file’s Catalog dictionary
[{Catalog} << /URI {myURIdict} >> /PUT pdfmark

Example 5.10 Using OBJ and PUT pdfmarks to create an alternate image

This example shows how to create alternate images. In this case, an image is created that has one
Alternate. The Alternate is stored as a JPEG file on a web server, and is the default image used when
printing.

% Give the next image a name, so we can add an Alternates array to it later
[/_objdef {myImage} /NI pdfmark
% Create the base image (just a 2x1 pixel grayscale image for this sample)
<<
/Width 2
/Height 1
/ImageMatrix [1 0 0 1 0 0]

Adobe Acrobat SDK Examples
pdfmark Reference Forms examples 70

/ImageType 1
/Decode [0 1]
/BitsPerComponent 8
/DataSource (1Z)
>> image
% Create a stream for the Alternate Image
[/_objdef {myPrintingImageStream} /type /stream /OBJ pdfmark
% Add the necessary key-value pairs to the stream dictionary to make it a
% valid image XObject.
% This particular image XObject uses the external streams capability of PDF
% to point to an image stored on an IIP server, retrieving it as a JPEG file.
% Since all stream data is stored on a web server, we don’t explicitly add
% data to the stream. As a result, the stream ends up with a length of zero,
% which is OK for external streams.
[{myPrintingImageStream}

<<
/Type /XObject /Subtype /Image /Width 150 /Height 150
/FFilter /DCTDecode /ColorSpace /DeviceRGB /BitsPerComponent 8
/F << /FS /URL /F (http://www.mycompany.com/myfile.jpg) >>

 >>
/PUT pdfmark

% Add an Alternates array to the base image
[{myImage}

<<
/Alternates

[<</Image {myPrintingImageStream} /DefaultForPrinting true >>]
>>

/PUT pdfmark

There are two possibilities for alternate images:

● Alternate image data is outside the PDF file

● Alternate image data is inside the PDF file

The above example shows only how to construct the first type. Note also that if the Alternate uses a
different color space than the base image, it is possible that the PDF file may not contain the appropriate
ProcSet references in the Resources dictionary to print the page to PostScript. For example, if the base
image is grayscale and the Alternate is DeviceRGB, it is likely that the page’s Resources contains only the
ImageB ProcSet (for grayscale images) and not the ImageC ProcSet (for color images).

Forms examples
The examples in this section show how to use the Forms pdfmark suite.

Example 5.11 Define the AcroForm dictionary at the document Catalog

The AcroForm dictionary includes these required entries (see the PDF Reference for more information):

● Fields (the array from where all widgets in the form can be found)

● DA (Default Appearance)

● DR (Default Resources)

● NeedAppearances, set to true to indicate that when the document is opened, all widgets are
traversed to generate their display and to add them to the Fields array.

Adobe Acrobat SDK Examples
pdfmark Reference Forms examples 71

It also includes definitions of common objects that are used by the widgets such as fonts, encoding arrays,
and Form XObjects for button faces.

[/_objdef {pdfDocEncoding} /type /dict /OBJ pdfmark
[{pdfDocEncoding}

<<
/Type /Encoding
/Differences

[
24 /breve /caron /circumflex /dotaccent /hungarumlaut /ogonek /ring

/tilde
39 /quotesingle
96 /grave
128 /bullet /dagger /daggerdbl /ellipsis /emdash /endash /florin

/fraction /guilsinglleft /guilsinglright /minus /perthousand
/quotedblbase /quotedblleft /quotedblright /quoteleft /quoteright
/quotesinglbase /trademark /fi /fl /Lslash /OE /Scaron /Ydieresis
/Zcaron /dotlessi /lslash /oe /scaron /zcaron

164 /currency
166 /brokenbar
168 /dieresis /copyright /ordfeminine
172 /logicalnot /.notdef /registered /macron /degree /plusminus

/twosuperior /threesuperior /acute /mu
183 /periodcentered /cedilla /onesuperior /ordmasculine
188 /onequarter /onehalf /threequarters
192 /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE

/Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute
/Icircumflex /Idieresis /Eth /Ntilde /Ograve /Oacute /Ocircumflex
/Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex
/Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex
/atilde /adieresis /aring /ae /ccedilla /egrave /eacute
/ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis
/eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis
/divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute
/thorn /ydieresis

]
>>

/PUT pdfmark

[/_objdef {ZaDb} /type /dict /OBJ pdfmark
[{ZaDb}
 <<

/Type /Font
/Subtype /Type1
/Name /ZaDb
/BaseFont /ZapfDingbats
>>

/PUT pdfmark

[/_objdef {Helv} /type /dict /OBJ pdfmark
[{Helv}

<<
/Type /Font
/Subtype /Type1
/Name /Helv

Adobe Acrobat SDK Examples
pdfmark Reference Forms examples 72

/BaseFont /Helvetica
/Encoding {pdfDocEncoding}
>>

/PUT pdfmark

[/_objdef {aform} /type /dict /OBJ pdfmark

% Define Fields array of Acroform dictionary. It will contain entries for
% each of the widgets defined below.
% NOTE: It is not necessary to explicitly assign the widget annotations
% to the Fields array; Acrobat does it automatically when the file is opened.

[/_objdef {afields} /type /array /OBJ pdfmark

[{aform}

<<
/Fields {afields}
/DR << /Font << /ZaDb {ZaDb} /Helv {Helv} >> >>
/DA (/Helv 0 Tf 0 g)
/NeedAppearances true
>>

/PUT pdfmark

% Put Acroform entry in catalog dictionary
[{Catalog} << /AcroForm {aform} >> /PUT pdfmark

Example 5.12 Define the Widget annotations, which are also field dictionaries for this form

This is the collection of all individual widget annotations. It is possible to have multiple instances of these
sections, such as for defining a single widget on each instance.

[/Subtype /Widget
/Rect [216 647 361 684]
/F 4
/T (SL Text)
/FT /Tx
/DA (/Helv 14 Tf 0 0 1 rg)
/V (5)
/AA<<

/K << /S /JavaScript /JS (AFNumber_Keystroke\(2, 0, 0, 0, "$", true\);)>>
/F << /S /JavaScript /JS (AFNumber_Format\(2, 0, 0, 0, "$", true\); >>
>>

/ANN pdfmark

[/Subtype /Widget
/Rect [216 503 361 612]
/F 4
/T (Ping Result)
/FT /Tx
/DA (/Helv 0 Tf 0 0 1 rg)
/Ff 4096
/ANN pdfmark

[/Subtype /Widget

Adobe Acrobat SDK Examples
pdfmark Reference Forms examples 73

/Rect [216 432 252 468]
/F 4
/T (Check Box)
/FT /Btn
/DA (/ZaDb 0 Tf 0 g)
/AS /Off
/MK << /CA (4)>>
/AP << /N << /Oui /null >> >>
/ANN pdfmark

[/Subtype /Widget

/Rect [216 360 252 396]
/F 4
/T (Radio)
/FT /Btn
/DA (/ZaDb 0 Tf 0 g)
/Ff 49152
/AS /Off
/MK << /CA (8)>>
/AP << /N << /V1 /null >> >>
/ANN pdfmark

[/Subtype /Widget

/Rect [261 360 297 396]
/F 4
/T (Radio)
/FT /Btn
/DA (/ZaDb 0 Tf 0 g)
/Ff 49152
/AS /Off
/MK << /CA (8)>>
/AP << /N << /V2 /null >> >>
/ANN pdfmark

[/Subtype /Widget

/Rect [306 360 342 396]
/F 4
/T (Radio)
/FT /Btn
/DA (/ZaDb 0 Tf 0 g)
/Ff 49152
/AS /Off
/MK << /CA (8)>>
/AP << /N << /V3 /null >> >>
/ANN pdfmark

[/Subtype /Widget

/Rect [351 360 387 396]
/F 4
/T (Radio)
/FT /Btn
/DA (/ZaDb 0 Tf 0 g)
/Ff 49152
/AS /Off
/MK << /CA (8)>>

Adobe Acrobat SDK Examples
pdfmark Reference Forms examples 74

/AP << /N << /V4 /null >> >>
/ANN pdfmark

[/Subtype /Widget

/Rect [216 287 361 324]
/F 4
/T (Pop Down)
/FT /Ch
/Ff 131072
/Opt [[(1)(First)] [(2)(Second)] [(3)(Third)] [(4)(Fourth)] [(5)(Fifth)]]
/DV (5)
/V (5)
/DA (/TiIt 18 Tf 0 0 1 rg)
/ANN pdfmark

[/Subtype /Widget

/Rect [216 215 361 252]
/F 4
/T (Combo)
/FT /Ch
/Ff 917504
/Opt [(Black)(Blue)(Green)(Pink)(Red)(White)]
/DA (/TiRo 18 Tf 0 g)
/V (Black)
/DV (Black)
/ANN pdfmark

[/Subtype /Widget

/Rect [216 107 253 180]
/F 4
/T (ListBox)
/FT /Ch
/DA (/Helv 10 Tf 1 0 0 rg)
/Opt [(1)(2)(3)(4)(5)]
/DV (3)
/V (3)
/ANN pdfmark

% Example of how the /MK dictionary is used.
% Notice that the text will be shown upside-down (180 degree rotation).
[/Subtype /Widget

/Rect [430 110 570 150]
/F 4
/T (Clear)
/FT /Btn
/H /P
/DA (/HeBo 18 Tf 0 0 1 rg)
/Ff 65536
/MK<<

/BC [1 0 0]
/BG [0.75 0.45 0.75]
/CA (Clear)
/AC (Done!)
/R 180

>>

Adobe Acrobat SDK Examples
pdfmark Reference Structure examples 75

/BS<<
/W 3
/S /I
>>

/A << /S /ResetForm >>
/ANN pdfmark

Structure examples
This section provides examples of various uses of the structure pdfmark suite. The first example shows an
entire structure tree, consisting of one section containing two paragraphs. It illustrates both how to create
the tree structure and how the structure is related to the page content of the PDF file. The second example
shows the parts of the output PDF file that result from the PostScript language code. Other examples
follow.

Example 5.13 A simple structure

This example has one section with two paragraphs, all on one page.

% On the first page:

% Start a section with the unnamed Structure Tree as parent.
% Push the Section element onto the implicit parent stack as
% current implicit parent.
[/Subtype /Section /StPNE pdfmark

% Start a paragraph with the Section as implicit parent.
% Push the Paragraph element on top of the implicit parent
% stack as the current implicit parent.
[/Subtype /P /StPNE pdfmark

% Begin the marked content holding the text of the
% first paragraph. It is implicitly added to the Paragraph
% element.
[/StBMC pdfmark
% [PostScript code for the contents of the first paragraph
% goes here.]

% End the marked content holding the text of the first
% paragraph.
[/EMC pdfmark

% Pop the Paragraph element off the implicit parent stack.
% This exposes the Section element as implicit parent again.
[/StPop pdfmark

% And now for the second paragraph:
[/Subtype /P /StPNE pdfmark

[/StBMC pdfmark
% PostScript code for the contents of the second paragraph goes here.
[/EMC pdfmark

Adobe Acrobat SDK Examples
pdfmark Reference Structure examples 76

% We're being tidy by popping both the second Paragraph
% element and the Section element off the stack. We could have
% left everything hanging at the end of the document, or used
% [/StPopAll pdfmark instead.

[/StPop pdfmark
[/StPop pdfmark

Example 5.14 PDF output resulting from code in previous example

This example is for illustration purposes only. The PDF code actually produced by Distiller would not
include comments and would differ in other ways.

% In the Catalog dictionary, under the key StructTreeRoot,
% the following dictionary is entered as object 3 0:
3 0 obj
<</Type /StructTreeRoot
% The Section element is the only child.
/K [4 0 R]
/ParentTree 100 0 R
>> endobj

% The number tree that locates structure parents of marked content.
100 0 obj
<</Nums [0 101 0 R]
>>
endobj

% Structure parents for page 1.
101 0 obj
[5 0 R 6 0 R]
endobj
% End of parent tree objects.
% As object 4 0, the following dictionary represents the
% Section element:
4 0 obj
<</Type /StructElement
/S /Section
% Parent link refers back to the dictionary representing the
% Structure Tree Root.
/P 3 0 R
% The Section element has two Paragraph elements as children.
/K [5 0 R 6 0 R]
>> endobj

% Object 5 0, the first Paragraph element
5 0 obj
<</Type /StructElement
/S /P
/P 4 0 R
% Page in whose content stream integer Marked Content ID’s denote Kids
/Pg 10 0 R
/K [0]
>> endobj

Adobe Acrobat SDK Examples
pdfmark Reference Structure examples 77

% Object 6 0, the second Paragraph element
6 0 obj
<</Type /StructElement
/S /P
/P 4 0 R
% Page in whose content stream integer Marked Content ID’s denote Kids
/Pg 10 0 R
/K [1]
>> endobj

% Object 10 0, the Page object for the page on which both
% paragraphs are marked. Only the relevant entries in the
% dictionary are shown.
% The Resources dictionary of the Contents stream of the page.
<</StructParents 0
>>
% Inside the Contents stream of the page.
/P <</MCID 0>> BDC
% [Paragraph 1 content marking goes here.]
EMC
/P <</MCID 1>> BDC
% [Paragraph 2 content marking goes here]
EMC

Example 5.15 A bookmark for a structural element

[other /StPNE key-value pairs
/Bookmark

<<
/Title (an element in my structure)
/Open true
>>

/StPNE pdfmark

Example 5.16 Interrupted structure

This example shows a paragraph that is graphically interrupted by a table. The originating application has
chosen to write out the PostScript in graphical order, but logically the paragraph is one element and the
table is another. To further complicate the situation, the document contains a special element that is a list
of tables.

% Start a ListOfTables element directly under the Structure
% Tree Root. Give it an object name for later reference.
[/_objdef {LOT} /Subtype /ListOfTables /StPNE pdfmark

% Pop it off the stack so that the next element becomes a
% child of the Structure Tree Root.
[/StPop pdfmark

% Start the page with the section on it.

% Start the section, also making it the default parent element.
[/Subtype /Section /StPNE pdfmark

Adobe Acrobat SDK Examples
pdfmark Reference Structure examples 78

% Start the paragraph.
[/Subtype /P /StPNE pdfmark

% Here comes the portion of the paragraph before the table
[/StBMC pdfmark

% [Code to write the first portion of the paragraph goes here]

[/EMC pdfmark

% Now we’re interrupted by a table that doesn’t belong to the
% paragraph. Save the context as a conservative move because
% we don’t want to worry about what the table code does to the
% implicit parent stack.
[/StoreName /S1 /StStore pdfmark

% The table is an element, and it contains cells as child elements.
[/E {LOT} /StPush pdfmark
[/Subtype /Table /StPNE pdfmark

% Code to draw the table and establish its logical substructure here

% Pop the table and the List of Tables off the implicit parent stack.
[/StPop pdfmark
[/StPop pdfmark

% Resume the paragraph. It turns out that the table code was
% tidy, but it’s probably a good thing that we didn’t count on
% it. Get the implicit parent stack back into a known state.
[/StoreName /S1 /StRetrieve pdfmark

[/StBMC pdfmark

% [Code to write the second portion of the paragraph

[/EMC pdfmark

% Pop the Paragraph and Section elements and the Structure
% Tree Root off the stack.
[/StPop pdfmark
[/StPop pdfmark
[/StPop pdfmark

Example 5.17 Independence of logical and physical structure

This example shows that the logical structure and the physical nesting of marked content can have
different tree structures. In this example there are two Structure Trees. One is the usual hierarchical
structure of the document; the other is a list of funny words that occur within the document. The words
occur as nested marked content within the marked content forming the contents of a paragraph, but the
words become the content of elements in a separate branch of the structure tree from the Paragraph
elements.

% Set up a List element to hold the Funny Word List.
[/_objdef {FWL}/Subtype /List /Title (Funny Words) /StPNE pdfmark

Adobe Acrobat SDK Examples
pdfmark Reference Structure examples 79

[/StPop pdfmark

[/Subtype /Section /StPNE pdfmark

[/Subtype /P /StPNE pdfmark

% Begin PostScript code for the paragraph
[/StBMC pdfmark
(John was thrilled to find some) show
% Here’s an occurrence of a funny word coming up.
% Start an element for the funny word list...
[/E {FWL} /StPush pdfmark
[/Subtype /Word /StPNE pdfmark
% Fill that element with the funny word from the
% page content. This content is still in the
% marked content within the paragraph element.
[/StBMC pdfmark
(puccoon) show
[/EMC pdfmark
% Pop the Word element off the implicit parent stack.
[/StPop pdfmark
% Resume paragraph content that’s not in the funny word
% (, not knowing that it could also be called)
% ... another funny word ...
[/E {FWL} /StPush pdfmark
[/Subtype /Word /StPNE pdfmark
[/StBMC pdfmark
(gromwell) show
[/EMC pdfmark
[/StPop pdfmark
(.) show
% Close off the marked content for the paragraph...
[/EMC pdfmark
% ...and tidy up the stack
[/StPop pdfmark
[/StPop pdfmark
[/StPop pdfmark

Example 5.18 Page break within logical structure

This example shows how to handle a logical structure spanning more than one page. It shows a logical
paragraph spanning a page break.

%%Page: 1 1

% Begin a Paragraph element
[/Subtype /P /StPNE pdfmark

[/StBMC pdfmark
% ... write the portion of the paragraph that’s on Page 1 ...
[/EMC pdfmark
showpage

%%Page: 2 2

Adobe Acrobat SDK Examples
pdfmark Reference Structure examples 80

% The Paragraph element is still on the top of the stack, so
% we can just add some more content to it implicitly.
[/StBMC pdfmark
% ... write the portion of the paragraph that’s on Page 2 ...
[/EMC pdfmark

Example 5.19 Logical structure out-of-order in physical structure

This example shows how to build a logical structure whose elements appear in a different physical order in
the document from their logical order. The example is based on a magazine in which an opinion piece
starting on the last inside page is continued on an earlier page in the printing order.

%%Page 5 5
[/Subtype /Section /ID (ID string) /StPNE pdfmark

% Within the Section element, this Paragraph element is actually
% a later paragraph than the Paragraph element that appears
% on the next page.
[/Subtype /P /StPNE pdfmark

% No /At key, so defaults to being inserted
% as last child of its parent.

[/StBMC pdfmark
% ... draw the paragraph...
[/EMC pdfmark

% ... the rest of the page ...
showpage

% Pop the Paragraph element off the stack
[/StPop pdfmark
%%Page 6 6

[/Subtype /P /At 0 /StPNE pdfmark
% Insert as first child of parent.

[/StBMC pdfmark
% ... draw the paragraph...
[/EMC pdfmark

% Pop the Paragraph and Section elements off the stack
[/StPop pdfmark
[/StPop pdfmark

 81

A JDF Features

The use of pdfmark in PostScript can include representations of Job Definition Format (JDF) features. JDF is
an extensible XML-based job ticketing format designed for use by the printing industry. Information about
JDF can be obtained from http://www.cip4.org.

In particular, pdfmark for JDF allows the PostScript file/stream to specify elements and attributes to be
added to a JDF document being used for a job. Applications that support JDF pdfmark include Acrobat
Distiller 6.0 and 7.0.

Note: Distiller 8.0 and later does not support JDF. Any JDF-related pdfmark commands in the PostScript
stream are ignored.

Syntax
[/Attribute string

/Value string
/Subtype /CreateAttribute
/JDF pdfmark

The Attribute and Value keys are described in the following table.

Keys supported by JDF pdfmark

Key Type Semantics

Attribute string An XPath expression that identifies the location of the attribute absolutely
from the root of the JDF. If any portion of the hierarchy of elements
containing the attribute is not present in the JDF, they are created. XPath is a
language for addressing parts of an XML document, as defined in XML Path
Language (XPath) Version1.0, which is available from
http://www.w3.org/TR/xpath.

JDF pdfmark supports the following subset of XPath expressions:

Expression ::= JDFRoot'/'Attribute |
JDFRoot'/'Children'/’Attribute
JDFRoot ::= '//JDF'
Children ::= Element | Element'/'Children
Element ::= element |
element'['FilterExpression']'
FilterExpression ::=
Filter | Filter 'and' FilterExpression | Filter
'or' FilterExpression
Filter ::= Attribute'='Value
Attribute ::= '@'attribute

Value string The value to be assigned to the attribute, using the XPath expression:

Value ::= ' " 'value' " '

http://www.w3.org/TR/xpath
http://www.cip4.org

Adobe Acrobat SDK JDF Features
pdfmark Reference Examples 82

Examples
The following table presents examples of XPath expressions.

Examples of XPath expressions

Expression Interpretation

//JDF/@JobID Selects the JobID attribute in root JDF node.

//JDF/JDFResourceLinkPool
/ComponentLink/@rRef

Selects the rRef attribute of the ComponentLink
found in the ResourcePool in the root JDF node.

//JDF/JDF[@Type="Trapping"]/@Status Selects the Status attribute of the Trapping
node that is a child of the root JDF node.

//JDF/JDFResourceLinkPool
/ComponentLink[@Usage="Output" and
@ProcessUsage="Good"]/@rRef

First identifies the ResourceLinkPool of the root
JDF node. It then selects the rRef attribute of the
ComponentLink with both a Usage attribute
value “Output” and a ProcessUsage attribute
with value “Good”.

Note: In actual use, all XPath expressions should end with @attribute because they must define the
location of an attribute.

The JDF pdfmark commands shown in the following example cause supporting applications to modify the
current JDF document, as illustrated in the following diagram.

Example A.1 Using JDF pdfmark to set Trapping element and subelement attributes

[/Attribute (//JDF/JDF[@Type="Trapping"]/@Type)
/Value (Trapping)
/Subtype /CreateAttribute /JDF pdfmark

[/Attribute
(//JDF/JDF[@Type="Trapping"]/ResourceLinkPool/TrappingDetailsLink/@rRef)
/Value (TD1)
/Subtype /CreateAttribute /JDF pdfmark

[/Attribute
(//JDF/JDF[@Type="Trapping"]/ResourceLinkPool/TrappingDetailsLink
[@rRef="TD1"]/@Usage)
/Value (Input)
/Subtype /CreateAttribute /JDF pdfmark

Adobe Acrobat SDK JDF Features
pdfmark Reference Examples 83

The following shows the JDF structure created through JDF pdfmark in the preceding example.

JDFRoot

JDF
Type = “Trapping”

TrappingDetailsLink
rRef = “TD1”
Usage=”Input”

ResourceLinkPool

 84

B Distilling Optional Content

The ProcSet entry in a content stream’s resource dictionary holds an array consisting of the names of the
procedure sets used in that content stream. This section describes the ProcSet used to build optional
content into a PDF document.

Optional content refers to content in a PDF document that can be selectively viewed or hidden. Optional
content is a feature that became available with Acrobat 6.

For more information on ProcSet entries and optional content, see the PDF Reference.

Note: While the optional content ProcSet makes extensive use of pdfmark internally, clients of the
optional content ProcSet should not have to use pdfmark to add optional content to a PDF file.

Initialization and termination code
To use the optional content ProcSet, clients must insert the following code into the document setup
section of the PostScript job. This places definitions of the optional content ProcSet procedures in
userdict for easy access by the client.

{/OCProcSet /ProcSet findresource} stopped not
{/initialize get exec}
{

/BeginOC /pop load def
/EndOC {} def
/SimpleOC /pop load def
/SetOCGInitState {pop pop} bind def
/OCEndPage {} def
/SetOCGIntent {pop pop} bind def
/SetOCGUsage {pop pop} bind def
/AddASEvent {pop pop pop} bind def
/GetOCGPdfmarkTag {{---invalidpdfmarkname---}} bind def

}
ifelse

Also, the following code must be inserted into the trailer section of the PostScript file:

 {/OCProcSet /ProcSet findresource /terminate get exec} stopped pop

When using the optional content ProcSet, the optional content group is the primary data item. It is
referred to by the group’s name, which is a string object. (See the description of the entries in the optional
content group dictionary in the PDF Reference.) Clients of the ProcSet do not need to do anything to set up
optional content groups—they simply refer to them by their name strings, and the ProcSet takes care of
creating them on-the-fly. Clients can set the initial state, intent, and usage info for optional content
groups, using SetOCGInitState, SetOCGIntent, and SetOCGUsage, respectively.

Adobe Acrobat SDK Distilling Optional Content
pdfmark Reference Procedure definitions 85

There are two techniques for using the ProcSet to make content optional: one for non-nested optional
content, and one for nested optional content:

● The simplest technique is for non-nested optional content using the SimpleOC procedure. Simply
pass in a string for the optional content group name, and all marks up to the next SimpleOC belong to
the optional content group with that name. Passing in null SimpleOC makes subsequent content
non-optional. At the end of the page, before the showpage, issue null SimpleOC.

● For nested optional content, the technique is for documents that have nested visibility control. For
these the ProcSet provides stack-style optional content control. This is also the style of control used if
you have content that requires an Optional Content Membership Dictionary (OCMD), because it
belongs to more than one optional content group and can require a visibility policy entry in the OCMD.
For this sort of optional content, use the BeginOC and EndOC procedures. With this style, you should
call OCEndPage at the end of the page (before showpage). This ensures that the marked content is
closed properly.

Procedure definitions
This section describes the optional content procedures and provides their syntax and examples.

AddASEvent
Adds an auto state event to the PDF’s default configuration. See the PDF Reference for a description of auto
state control for optional content.

Syntax
event_type event_categories ocgnames AddASEvent

Parameters

event_type Must be a PostScript name. Either /View, /Print, or /Export.

event_categories Must be a PostScript array of name objects (typically matching keys in
optional content group usage dictionaries). For a description of usage
dictionaries, see the PDF Reference.

ocgnames Array of valid PostScript string variables representing optional content
groups

Example
/View [/Zoom] [(30,000 Feet) (5,000 Feet) (100 Feet)] AddASEvent

The example declares that the three optional content groups named 30,000 Feet, 5,000 Feet, and
100 Feet are to be controlled for on-screen viewing, based on the current zoom level and the /Zoom
information in each optional content group's Usage dictionary.

Adobe Acrobat SDK Distilling Optional Content
pdfmark Reference BeginOC 86

BeginOC
The BeginOC procedure is used to begin a span of content that belongs to the optional content groups
supplied. It is used for nested visibility control when content can belong to more than one optional
content group. Both multiple membership (using the array of optional content group names) and
stack-based nesting are supported. The EndOC calls must come before the showpage call of any page.
Every BeginOC call should have a matching EndOC call.

Note: You cannot mix SimpleOC and BeginOC/EndOC on the same page.

Syntax
ocgname BeginOC
ocgnames BeginOC
ocgname policy BeginOC
ocgnames policy BeginOC

Parameters

ocgname Array of string objects identifying a set of optional content groups.

ocgnames String object identifying an optional content group.

policy Optional. One of the following names: /AllOn, /AnyOn, /AllOff,
or/AnyOff, identifying the visibility policy to use. If no policy is
specified, /AnyOn is used by default.

See also

EndOC

EndOC
The EndOC procedure is used to end a span of optional content. It is used to close a span of optional
content started by BeginOC. Both multiple membership (using an array of optional content group names)
and stack-based nesting are supported. The EndOC calls must come before the showpage call of any
page.

Every BeginOC call should have a matching EndOC call.

Note: You cannot mix SimpleOC and BeginOC/EndOC on the same page.

Syntax
EndOC

See also

BeginOC

Adobe Acrobat SDK Distilling Optional Content
pdfmark Reference GetOCGPdfmarkTag 87

GetOCGPdfmarkTag
The GetOCGPdfmarkTag returns the object that the ProcSet implementation uses to identify the
optional content group object for pdfmark. Using this object, the client can use the /PUT pdfmark
command to add additional key/value pairs to the optional content group dictionary.

The GetOCGPdfmarkTag is not available in the OCProcSet userdict by default. To use this procedure,
you can add the following to the OCProcSet initialization code within its {/initialize get exec ...
end} clause:

userdict begin
 /GetOCGPdfmarkTag dup OCProcSetRes exch get def
 end

Syntax
ocgname GetOCGPdfmarkTag procedure

Parameters

ocgname String object identifying an optional content group

Returns

The optional content group's /OBJ pdfmark tag.

See also

pdfmark /OBJ and /PUT commands.

Example
[(MyLayer) GetOCGPdfmarkTag <</key1 (easy as) /key2 3.14159>> /PUT pdfmark

This example adds the key/value pairs:

/key1 (easy as)
/key2 3.14159

to the dictionary for the optional content group with the name MyLayer.

OCEndPage
The OCEndPage is called at the end of the page in a multi-page PostScript file to allow the ProcSet to close
any open optional content on the current page. It can be used to close a call to either SimpleOC or
BeginOC.

Syntax
OCEndPage

Adobe Acrobat SDK Distilling Optional Content
pdfmark Reference SetOCGInitState 88

SetOCGInitState
The SetOCGInitState procedure sets the initial state of an optional content group to be either ON
(true) or OFF (false).

Syntax
ocgname bool SetOCGInitState

Parameters

ocgname Valid PostScript string variable representing an optional content group.

bool true or false. Value of ocgname’s initial state. For a description of an optional
content group’s state, see the PDF Reference.

SetOCGIntent
The SetOCGIntent procedure sets the Intent key in ocgname to intent.

Syntax
ocgname intent SetOCGIntent

Parameters

ocgname Valid PostScript string variable representing an optional content group.

intent Value of ocgname’s Intent key, such as /Design, /View, /All, or /None, or an array
of names, excluding /All and /None For a description of an optional content group’s
Intent key, see the PDF Reference. The default value is /View.

SetOCGUsage
The SetOCGUsage procedure sets the Usage key in ocgname to the dict supplied. This is the top level
usage dictionary, not a usage category dictionary. Only one call per optional content group is honored, so
the client must collect all usage subdictionaries and issue a single call to set the Usage dictionary for the
optional content group.

Syntax
ocgname dict SetOCGUsage

Parameters

ocgname Valid PostScript string variable representing an optional content group.

dict Value of ocgname’s Usage key, which is a dictionary. For a description of an optional
content group’s Usage key, see the PDF Reference. By default, there is no Usage key in
the optional content group's dictionary. This procedure simply adds the key to dict.

Adobe Acrobat SDK Distilling Optional Content
pdfmark Reference SimpleOC 89

Example
(30,000 Feet) <</Zoom << /max 0.5 >> >> SetOCGUsage
(5,000 Feet) <</Zoom << /min 0.5 /max 4>> >> SetOCGUsage
(100 Feet) <</Zoom << /min 4 >> >> SetOCGUsage

This example specifies, in conjunction with the AddASEvent example, that the objects in the 30,000
Feet optional content group should be visible when the zoom level is less than 50%, the objects in the
5,000 Feet optional content group should be visible between 50% and 400%, and the objects in the
100 Feet optional content group should be visible when the zoom level is at least 400%.

SimpleOC
The SimpleOC procedure ends any current optional content span, and begins a new one where the
content belongs to ocgname.

To use the SimpleOC procedure, simply pass in a string for the optional content group name, and all
marks up to the next SimpleOC belong to the optional content group with that name. Passing in null
SimpleOC makes subsequent content non-optional. At the end of the page, before the showpage, issue
null SimpleOC.

Note: You cannot mix SimpleOC and BeginOC/EndOC on the same page.

Syntax
ocgname SimpleOC

Parameters

ocgname Valid PostScript string variable representing an optional content group.

Example

To show content on all layers (at all times):

null SimpleOC

 90

Index

A
actions 44
AddASEvent 85
ANN 17
annotations 17
APPEND 15
arrays 14
ARTICLE 24
article actions 47
articles 24
attribute objects 57
Author 28

B
BDC 34
beads 24
Begin Picture 31
BeginOC 86
BMC 34
bookmarks 26
Border 19
BP 31
built-in named objects 12

C
Catalog 29
class maps 52
Color 19
conditional pdfmark 10
Contents 21
Cos objects

APPEND 15
CLOSE 16
PUT 68
PUT 68
PUTINTERVAL 15

Count 26
CreationDate 28
Creator 28
CropBox key 36
crops 36

D
date, format of string 20
defining named destinations 49
DEST 49
destinations

defining named 49
overview 47
referencing named 50
view 47

dictionaries 15

Dir 46
DOCINFO 28
document Info dictionary 28
document open options 29
DOCVIEW 29
DOSFile 45
DP 34

E
elements 51, 53, 55
EMBED 30
embedded file content 30
EMC 34, 56
Encapsulated PostScript 58
encapsulating graphics 13, 31
End Picture 31
EndOC 86
EP 31
EPS 58

F
File 45
Fit 48
FitH 48
FitR 48
FitV 48
forms 70

G
GetOCGPdfmarkTag 87
GoTo actions 45
GoToR actions 45
graphics encapsulation 31

I
ID 45
ignoring pdfmark constructs 10
implicit parent stack 57
Info dictionary 28
interpreters, handling pdfmark 10

J
Job Definition Format (JDF) 81

K
Keywords 29

L
Launch actions 46
link annotations 22
logical structure 51

Adobe Acrobat SDK Index
pdfmark Reference 91

M
MacFile 45
marked content 34
masks, See soft masks
metadata 35
ModDate 20, 29
movie annotations 24
MP 34

N
named destinations 49
named images 36
named objects 12, 14, 68
namespaces 14
NI 36, 43
notes 20

O
objdef 13
objects, See named objects
OCEndPage 87
Op 46
Open 21
open options 29
optional content 84
OUT 26
outline items 26
Output Intents array 67

P
PAGE 36
Page 47, 49
page crops 36
page labels 37
PAGELABEL 37
PAGES 36
Params 46
parent stack 57
parents 51
pdfmark syntax 9
plate color 37
private key syntax 12
ProcSet entries 84
Producer 28
Push New Element 53
PUT 68
PUTINTERVAL 15

R
Rect 18
referencing named destinations 50
role maps 52

S
SetOCGInitState 88
SetOCGIntent 88
SetOCGUsage 88

SetTransparency 38
Show Picture 31
SimpleOC 89
soft masks

dictionaries 41
images 42

SP 31
SrcPg 20
StAttr 57
StBDC 56
StBMC 56
StBookmarkRoot 54
StClassMap 52
StOBJ 56
StPNE 53
StPop 55
StPopAll 55
StPush 55
streams 16
StRetrieve 58
StRoleMap 52
structure elements 51
structure operators 51
Structure Tree Root 52
StStore 58
StUpdate 55
Subject 28
Subtype 18
syntax of pdfmark operators 9

T
tagged PDF 58
text annotations 20
Title 20, 26, 28
transparencies 38

U
UnixFile 46
URI 45, 46
user-defined named objects 13

V
View 47, 49
view destinations 47

W
widget annotations 24
WinFile 46

X
XPath 81
XYZ 48

Z
zoom 48, 85

	Contents
	List of Examples
	Preface
	What’s in this guide?
	Who should read this guide?
	Related documentation

	Introduction
	Syntax of pdfmark operators
	Usage with standard PostScript interpreters
	Syntax for private keys
	Named objects
	Built-in named objects
	User-defined named objects
	Namespaces
	Adding content to named objects
	Arrays
	Dictionaries
	Streams

	Basic Features
	Annotations (ANN)
	Text annotations (notes)
	Links
	Other annotations

	Articles (ARTICLE)
	Bookmarks (OUT)
	Document Info dictionary (DOCINFO)
	Document open options (DOCVIEW)
	Embedded file content (EMBED)
	Graphics encapsulation (BP, EP, SP)
	Marked content (MP, DP, BMC, BDC, EMC)
	Marked-content points
	Marked-content sequences

	Metadata (Metadata)
	Named images (NI)
	Page crops (PAGE, PAGES)
	Page label and plate color (PAGELABEL)
	Transparency (SetTransparency)
	Transparency group XObject and soft mask
	Transparency group XObject
	Soft mask dictionaries
	Soft mask images

	Actions and Destinations
	Actions
	GoTo actions
	GoToR actions
	Launch actions
	Article actions

	Destinations
	View destinations
	Defining named destinations
	Referencing named destinations

	Logical Structure
	Elements and parents
	Structure operators
	Structure Tree Root
	StRoleMap
	StClassMap

	Elements
	StPNE
	StBookmarkRoot
	StPush
	StPop
	StPopAll
	StUpdate

	Element content
	StBMC
	StBDC
	EMC
	StOBJ

	Attribute objects
	StAttr

	Storage and retrieval of the implicit parent stack
	StStore
	StRetrieve

	EPS considerations
	Tagged PDF

	Examples
	Building an Output Intents array
	Named object examples
	Forms examples
	Structure examples

	JDF Features
	Syntax
	Examples

	Distilling Optional Content
	Initialization and termination code
	Procedure definitions
	AddASEvent
	BeginOC
	EndOC
	GetOCGPdfmarkTag
	OCEndPage
	SetOCGInitState
	SetOCGIntent
	SetOCGUsage
	SimpleOC

	Index

