

Adobe ®

ActionScript Virtual Machine 2 (AVM2) Overview

May 2007

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 2

Copyright © 2006–2007 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in hardcopy or electronic
form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of Adobe Systems Incorporated.

Adobe, the Adobe Logo, and ActionScript, are trademarks or registered trademarks of Adobe Systems Incorporated in the United States and/or other
countries. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a commitment by
Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for particular
purposes, and noninfringement of third party rights.

Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110
(408) 536-6000

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 3

Contents

1 Introduction.. 5
1.1 Concepts..5

2 The structure of the ActionScript Virtual Machine .. 7
2.1 Constant values... 7
2.2 Virtual machine overview... 7
2.3 Names .. 8

2.3.1 QName (Qualified Name).. 8
2.3.2 RTQName (Runtime Qualified Name) .. 8
2.3.3 RTQNameL (Runtime Qualified Name Late)...9
2.3.4 Multiname (Multiple Namespace Name) ..9
2.3.5 MultinameL (Multiple Namespace Name Late)...9
2.3.6 Resolving multinames ... 10

2.4 Method invocation notes ... 10
2.5 Instruction set summary...11

2.5.1 Load and store instructions ..11
2.5.2 Arithmetic instructions...11
2.5.3 Bit manipulation instructions..11
2.5.4 Type conversion instructions..11
2.5.5 Object creation and manipulation instructions .. 12
2.5.6 Stack management instructions .. 12
2.5.7 Control transfer instructions ... 12
2.5.8 Function invocation and return instructions... 12
2.5.9 Exception instructions ... 12
2.5.10 Debugging instructions ... 13

3 Loading, linking, verification, and execution...14
3.1 Overview .. 14
3.2 Loading and linking .. 14
3.3 Execution ... 15

3.3.1 Program invocation and exit... 15
3.3.2 Class initialization... 15
3.3.3 Method entry... 15
3.3.4 Execution mechanics .. 16
3.3.5 Calling and returning.. 16
3.3.6 Exception handling .. 16

3.4 Verification... 16

4 The ActionScript Byte Code (abc) format...18
4.1 Primitive data types ...18
4.2 abcFile .. 19
4.3 Constant pool ... 20
4.4 String .. 21

4.4.1 Namespace .. 22
4.4.2 Namespace set.. 22
4.4.3 Multiname... 23

4.5 Method signature... 24
4.5.1 Optional parameters ... 25
4.5.2 Parameter names...27

4.6 metadata_info..27
4.7 Instance... 28
4.8 Trait .. 29

4.8.1 Summary of trait types ... 29
4.8.2 Slot and const traits .. 30
4.8.3 Class traits.. 30
4.8.4 Function traits... 31

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 4

4.8.5 Method, getter, and setter traits... 31
4.8.6 Trait attributes... 31

4.9 Class ... 31
4.10 Script ... 32
4.11 Method body .. 32
4.12 Exception .. 34

5 AVM2 instructions...35

6 Hints for compiler writers.. 107
6.1 Reestablishing the scope stack following an exception ... 107
6.2 In-line subroutines for handling “finally”.. 107
6.3 Creating an environment for nested functions ...108
6.4 Optimizing method dispatch ...108

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 5

1 Introduction

The Adobe® ActionScript™ Virtual Machine 2, or AVM2 for short, was designed to execute programs written in
the ActionScript 3.0 language. ActionScript 3.0 is based on ECMAScript, the international standardized
programming language for scripting. ActionScript 3.0 is compliant with the ECMAScript Language
Specification, Third Edition (ECMA-262). It also contains functionality based on ongoing work on
ECMAScript Edition 4, occurring within the Ecma International standards body.

This document describes the operation of the AVM2 and defines the file formats, data structures, and
instruction formats used by the AVM2.

1.1 Concepts

The AVM2 was designed to support the ActionScript (AS) 3.0 language, and for the remaining chapters it is
assumed that the reader is aware of the terminology and concepts of the language.

The following vocabulary and associated definitions are taken from the ActionScript 3.0 Language Specification
and are presented only as a review of the material. For full details, refer to the language specification.

 Virtual Machine—A virtual machine is a mechanism that takes as its input the description of a
computation and that performs that computation. For the AVM2, the input is in the form of an ABC file,
which contains compiled programs; these comprise constant data, instructions from the AVM2 instruction
set, and various kinds of metadata.

 Script—A script set of traits and an initializer method; a script populates a top-level environment with
definitions and data.

 Bytecode, code—Bytecode or code is a specification of computation in the form of a sequence of simple
actions on the virtual machine state.

 Scope—Scope is a mapping from names to locations, where no two names are the same. Scopes can nest,
and nested scopes can contain bindings (associations between names and locations) that shadow the
bindings of the nesting scope.

 Object—An object is an unordered collection of named properties, which are containers that hold values.
A value in ActionScript 3.0 is either an Object reference or one of the special values null or undefined.

 Namespace—Namespaces are used to control the visibility of a set of properties independent of the major
structure of the program.

 Class—A class is a named description of a group of objects. Objects are created from classes by
instantiation.

 Inheritance—New classes can be derived from older classes by the mechanism known as inheritance or
subclassing. The new class is called the derived class or subclass of the old class, and the old class is called the
base class or superclass.

 Trait—A trait is a fixed-name property shared by all objects that are instances of the same class; a set of
traits expresses the type of an object.

 Method—The word method is used with two separate meanings. One meaning is a method body, which is
an object that contains code as well as data that belong to that code or that describe the code. The other
meaning is a method closure, which is a method body together with a reference to the environment in which
the closure was created. In this document, functions, constructors, ActionScript 3.0 class methods, and
other objects that can be invoked are collectively referred to as method closures.

http://www.ecma-international.org/publications/standards/Ecma-262.htm�

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 6

 Verification—The contents of an ABC file undergo verification when the file is loaded into the AVM2.
The ABC file is rejected by the verifier if it does not conform to the AVM2 Overview. Verification is
described in Chapter 3.

 Just-in-Time (JIT) Compiler—AVM2 implementations may contain an optional run-time compiler for
transforming AVM2 instructions into processor-specific instructions. Although not an implementation
requirement, employing a JIT compiler provides a performance benefit for many applications.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 7

2 The structure of the ActionScript Virtual Machine

2.1 Constant values

The constant values of the AVM2 are one of the following types: int, uint, double, string, namespace,
undefined, or null. The values of these types appear directly in the ABC file or in the instruction encodings.
Important characteristics of these types are:

 int—This type is used to represent an integer valued number whose values are 32-bit signed two’s
complement integers. The range of values is from -2,147,483,648 to 2,147,483,647 (-231 to 231-1),
inclusive.

 uint—This type is used for integer valued numbers with values that are 32-bit unsigned two’s complement
integers. The range of values is from 0 to 4,294,967,296 (232), inclusive.

 double—This type is used for capturing floating point numbers using 64-bit double precision IEEE 754
values as specified in IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard. 754-
1985).

 string—This type represents a sequence of Unicode characters. Strings are represented in UTF-8 and can
be as long as 230-1 bytes.

 namespace—Namespaces tie a URI (represented internally by a string) to a trait. The relationship is
unidirectional, meaning the namespace data type only contains a URI. Each namespace is also of a
particular kind, and there are restrictions regarding the relationships between the trait and kind. These
rules are defined later in this chapter.

 null—A singleton value representing “no object”.

 undefined—A singleton value representing “no meaningful value”. This constant value is allowed only in
certain contexts.

The AVM2 utilizes several representations for values in its instruction encoding and in the ABC file in order to
provide as compact an encoding as is required.

2.2 Virtual machine overview

Computation in the AVM2 is based on executing the code of a method body in the context of method
information, a local data area, a constant pool, a heap for non-primitive data objects created at run-time, and a
run-time environment. Many data elements are static and are read at startup from an ABC file, whose structure is
defined in Chapter 4.

 The code for a method body is composed of instructions, defined in Chapter 5. Each instruction
modifies the state of the machine in some way, or has an effect on the external environment by means
of input or output.1

 The method information determines how the method is used—for example, how default argument
values should be substituted for missing arguments when the method is called.

 The local data area for the method consists of the operand stack, the scope stack, and the local registers.

1 In practice, the AVM2 may transform the code at run-time by means of a JIT, but this does not affect the
semantics of execution, only its performance.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 8

o The operand stack holds operands for the instructions and receives their results. Arguments
are pushed onto the stack top or popped off the stack top. The top element always has
address 0; the one below it has address 1, and so on. Stack addresses are not used except as a
specification mechanism.

o The scope stack is part of the run-time environment and holds objects that are to be searched
by the AVM2 when an instruction is executed that calls for name lookup. Instructions push
elements onto the scope stack as part of the implementation of exception handling, closure
creation, and for the ActionScript 3.0 with statement.

o The local registers hold parameter values, local variables in some cases, and temporaries.

 The constant pool holds constant values that are referenced, ultimately, by the instruction stream:
numbers, strings, and various kinds of names.

 Instructions and the AVM2 can create new objects at run-time, and these objects are allocated in the
heap. The only way to access the heap is through an object allocated in it. Objects in the heap that
are no longer needed will eventually be reclaimed by the AVM2.

 The run-time environment logically consists of a chain of objects, and named properties on these
objects are the locations found during a name lookup at run-time. Name lookup proceeds from the
innermost (most recently pushed) scope toward the outermost (global) scope.

The creation of a method closure causes the run-time environment that is current at the time of
creation to be captured in the closure; when the closure is later invoked, that scope is made current,
and will be extended by the code in the method body.

2.3 Names

Names in the AVM are represented by a combination of an unqualified name and one or more namespaces.
These are collectively called multinames. Multiname entries usually consist of a name index, and a namespace or
namespace set index. Some multinames can have the name and/or namespace part resolved at runtime. There
are a number of different types of multinames as described below. Properties of objects are always named by a
simple QName (a pair of name and namespace). The other types of multinames are used to resolve properties
at runtime.

RTQName, RTQNameL, and MultinameL are collectively referred to as runtime multinames.

2.3.1 QName (Qualified Name)
This is the simplest form of a multiname. It is a name with exactly one namespace, hence QName for qualified
name. QName entries will have a name index followed by a namespace index. The name index is an index into
the string constant pool, and the namespace index is an index into the namespace constant pool.

QNames are typically used to represent the names of variables, and for type annotations.

public var s : String;

This code will produce two QName entries, one for the variable s (public namespace, name "s") and one for the
type String (public namespace, name "String").

2.3.2 RTQName (Runtime Qualified Name)
This is a runtime QName, where the namespace is not resolved until runtime. RTQName entries will have
only a name index, which is an index into the string constant pool. The namespace is determined at runtime.
When a RTQName is an operand to an opcode, there should be a namespace value on the stack the

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 9

RTQName should use. So when the RTQName is used, the top value of the stack will be popped off, and the
RTQName will use that as its namespace.

RTQNames are typically used for qualified names when the namespace is not known at compile time.

var ns = getANamespace();
x = ns::r;

This code will produce a RTQName entry for ns::r. It will have a name of "r" and code will be generated to
push the value of ns onto the stack.

2.3.3 RTQNameL (Runtime Qualified Name Late)
This is a runtime QName, where both the name and namespace are resolved at runtime. When a RTQNameL
is an operand to an opcode there will be a name and a namespace value on the stack. The name value on the
stack must be of type String, and the namespace value on the stack must be of type Namespace.

RTQNameLs are typically used for qualified names when neither the name, nor the qualifier is known at
compile time.

var x = getAName();
var ns = getANamespace();

w = ns::[x];

This code will produce a RTQNameL entry in the constant pool for ns::[x]. It has neither a name nor a
namespace, but code will be generated to push the value of ns and x onto the stack.

2.3.4 Multiname (Multiple Namespace Name)
This is a multiname with a name and a namespace set. The namespace set is used to represent a collection of
namespaces. Multiname entries will have a name index followed by a namespace set index. The name index is
an index into the string constant pool, and the namespace set index is an index into the namespace set constant
pool.

Multinames are typically used for unqualified names. In these cases all open namespaces are used for the
multiname.

use namespace t;
trace(f);

This code will produce a multiname entry for f. It will have a name of "f" and a namespace set for all the open
namespaces (the public namespace, the namespace t, and any private or internal namespaces open in that
context). At runtime f could be resolved in any of the namespaces specified by the multiname.

2.3.5 MultinameL (Multiple Namespace Name Late)
This is a runtime multiname where the name is resolved at runtime. The namespace set is used to represent a
collection of namespaces. MultinameL entries have a namespace set index. The namespace set index is an index
into the namespace set constant pool. When a MultinameL is an operand to an opcode there will be a name
value on the stack. The name value on the stack must be of type String.

MultinameLs are typically used for unqualified names where the name is not known at compile time.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 10

use namespace t;
trace(o[x]);

This code will produce a MultinameL entry. It will have no name, and will have a namespace set for all the
open namespaces in that context. Code will be generated to push the value of x onto the stack, and that value
will be used as the name.

2.3.6 Resolving multinames
Typically, the order of the search for resolving multinames is the object’s declared traits, its dynamic properties,
and finally the prototype chain.2 The dynamic properties and prototype chain search will only happen if the
multiname contains the public namespace (dynamic properties are always in the public namespace in
ActionScript 3.0; a run-time error is signaled if an attempt is add a non-public property). If a search does not
include one or more of these locations, it is noted in the text in the following chapters. Otherwise, you can
assume that all three are searched in this order to resolve a multiname.

If the multiname is any type of QName, then the QName will resolve to the property with the same name and
namespace as the QName. If no property has the same name and namespace as the QName, the QName is
unresolved on that object.

If the multiname has a namespace set, then the object is searched for any properties whose name is the same as
the multinames name, and whose namespace matches any of the namespaces in the multinames namespace set.
Since the multiname may have more than one namespace, there could be multiple properties that match the
multiname. If there are multiple properties that match a TypeError is raised since it is ambiguous which
property the multiname is referring to. If no properties match, then the multiname is unresolved on that object.

2.4 Method invocation notes

When invoking a method in the AVM2, the first argument is always the “this” value to be used in the method.
All methods take at least 1 argument (the “this” value), followed by any declared arguments.

When invoking the [[Call]] property, the behavior is different for different types of closures. A closure is an
object that contains a reference to a method, and the [[Call]] property acts differently depending on whether it
is a function, method, or class closure. A function closure is one that is of a global method that isn‘t associated
with any instance of a class. A method closure contains an instance method of a class, and will always remember
its original “this” value.

function f(){}
var a = f; // a is a function closure

class C{
 function m(){}
}
var q = new C();
var a = q.m; // a is a method closure

If the closure is a function closure, then the first argument passed to [[Call]] is passed on to the method and
gets used as the “this” value. If the first argument is null or undefined, then the global object will be used as
the “this” value for the method.

2 ECMAScript 3 supports prototyped-based inheritance. See ECMA 262 section 4.2.1 for a description of
the prototype chain.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 11

If the closure is a method closure, then the first argument of [[Call]] will be ignored, and the saved “this” value
for the method closure will be passed to the method as the first argument. A method closure records what its
original “this” value was and always uses that instead of the first argument to [[Call]].

If the closure is a class closure, and there is 1 argument passed to [[Call]] (in addition to the “this” argument),
then the call is treated as a type conversion, and the argument will be coerced to the type represented by the
closure.

2.5 Instruction set summary

This section provides an overview of the AVM2 instruction set. By convention, instructions specific to a
specific data type are named with a suffix which indicates the data type on which it operates. Specifically, the
following suffixes are used: _b (Boolean), _a (any), _i (int), _d (double), _s (string), _u (unsigned), and _o
(object).

2.5.1 Load and store instructions
Local registers can be accessed using the following instructions: getlocal, getlocal0, getlocal1, getlocal2,
getlocal3, setlocal, setlocal0, setlocal1, setlocal2, setlocal3.

2.5.2 Arithmetic instructions
The arithmetic instructions provide a full repertoire of mathematical operations. Zero, one, or more typically
two operands are removed from the top of the stack and the result of the operation is pushed back onto the
operand stack.

Addition is performed using one the following: increment, increment_i, inclocal, inclocal_i, add,
add_i.

Subtraction is accomplished using the following: decrement, decrement_i, declocal, declocal_i,
subtract, subtract_i.

Multiplication and division are achieved with multiply, multiply_i, divide, and modulo.

In order to reverse the sign of a value, the negate or negate_i instruction can be used.

There also exists a set of instructions that perform value comparisons on the top two entries on the stack
replacing them with a true or false value. These include equals, strictequals, lessthan, lessequals,
greaterthan, greaterequals, istype, istypelate, and in.

2.5.3 Bit manipulation instructions
Instructions that allow the bits of a value to be manipulated include bitnot, bitand, bitor, bitxor, lshift,
rshift, urshift.

Prior to executing these instructions, the value to be operated upon is converted to an integer, if necessary.

2.5.4 Type conversion instructions
The ActionScript language is a loosely typed language where objects are freely converted into whatever types are
necessary in order to complete an operation. In some cases explicit conversion is required and for those
instances the coerce instructions are provided. These include coerce, convert_b, coerce_a, convert_i,
convert_d, coerce_s, convert_s, convert_u, and convert_o.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 12

2.5.5 Object creation and manipulation instructions
Entities are created by using one of the following instructions: newclass, newobject, newarray,
newactivation.

In order to invoke an object’s constructor the instructions construct, constructsuper, and constructprop
are used.

Namespaces can be constructed dynamically using dxns and dxnslate.

2.5.6 Stack management instructions
A number of instructions provide direct access to manipulate values placed on the stack. Instructions that push
a value directly include pushnull, pushundefined, pushtrue, pushfalse, pushnan, pushbyte, pushshort,
pushstring, pushint, pushdouble, pushscope, and pushnamespace.

A value can be removed from the stack by using pop, while dup duplicates the value at the top of the stack, and
similarly swap exchanges the top two values on the stack.

2.5.7 Control transfer instructions
The control transfer instructions transfer execution to an instruction other than the one immediately following
the transfer instruction. The transfer can be unconditional or based upon a comparison operation that is
implicit with the instruction.

The conditional branches instructions include iflt, ifle, ifnlt, ifnle, ifgt, ifge, ifngt, ifnge, ifeq,
ifne, ifstricteq, ifstrictne, iftrue, and iffalse. These instructions perform any necessary type
conversions in order to implement the compare; the conversion rules are outlined in ECMA-262.

The label instruction is used to mark the target position of backwards branch instruction. Thus the target
location of every backwards branch instruction should land on a label instruction.

The lookupswitch instruction provides a compact form for encoding a multi-way compare expression.

2.5.8 Function invocation and return instructions
There are a number of instructions to invoke functions and methods. The call instruction implements a fully
compliant rendition of Function.prototype.call of the ECMA-262 specification. To invoke object instance
methods the callmethod instruction is utilized. Likewise for calling class, also known as static methods,
callstatic exists. In order to invoke instance methods not on an object, but on its base class, callsuper is
used. For named elements which are invoked as a method and for which the ActionScript compiler can validate
the usage as such, callproperty and callproplex are available. The latter is for the case when the object for
which the property being invoked exists on the stack.

For cases in which the return value of the call is never used, callpropvoid and callsupervoid can be used in
place of callproperty and callsuper, respectively.

2.5.9 Exception instructions
An exception is thrown programmatically using the throw instruction. Exceptions can also be thrown by
various AVM instructions when an abnormal condition is encountered.

The try/catch statement in the ActionScript language is translated into a table of intervals, and target
instructions that are specified in the method body portion of the abc file. The table defines a range of
instructions over which a given exception type may be caught. Thus if during the execution of a given set of
instructions an exception is thrown and there is an associated entry in the exception table, program execution
will continue at the target instruction specified in the table.

http://www.ecma-international.org/publications/standards/Ecma-262.htm�

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 13

2.5.10 Debugging instructions
Unlike many traditional execution environments the debugging facilities of the AVM2 are tightly intertwined
with a series of instructions that are placed directly in the execution stream. To track current file name and line
number information debugfile and debugline are emitted at appropriate points in the instruction stream. In
cases where additional debugging detail is required, the debug instruction is used. For example, the names of
local variables are provided by this mechanism.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 14

3 Loading, linking, verification, and execution

3.1 Overview

An ABC file is processed by the AVM2 in four logical phases, known as loading, linking, verification, and
execution. These phases overlap and, in particular, verification overlaps with all of the other phases.

During loading, the ABC file is read into memory and decoded. For example, the constant pool is transformed
to an in-memory data structure using different encodings. Verification at this stage is relative to the structure
of the ABC file, which must conform to the definitions presented in the next chapter.

During linking, some names referenced from individual fields of the ABC file structure are resolved, and the
resulting objects are linked together into a more complex data structure. For example, a class definition’s “base
class” field names the base class; resolving that name finds the definition of the base class, and a final class
object for the derived class is created based on information from the two definition objects. Verification at this
stage is relative to this web of objects: the names mentioned must resolve; the resulting traits sets must be
coherent; and so on.

During execution, the bytecodes representing compiled code in the ABC file are run through an interpreter,
thus performing computation. Verification at this stage is relative to the stream of instructions and the
contents of the execution stack: instructions must not jump outside the bytecode array; instructions that require
certain operand types can be applied only to operands whose known type is the correct one; the code must not
use more stack and register space than it has reserved; and so on.

When verification fails during any of these phases, the AVM2 throws a VerifyError. VerifyErrors thrown
during execution can be caught by the program.

The AVM2 interleaves linking with both loading and execution. When linking is performed during loading,
forward references are precluded; for example, class definitions can only reference previously defined classes as
base classes. In contrast, when linking is performed during execution, some references to undefined entities
may not be flagged as errors; for example, a method that uses the name of a type that hasn’t been defined may
not cause a VerifyError to be thrown provided the method isn’t invoked.

3.2 Loading and linking

During the loading and linking phase, the following steps occur. (Note that a fair amount of linking is deferred
until the execution phase.)

• Each ABC file is loaded into memory and decoded. This initial decoding verifies that the ABC file
has the correct structure and that the fields that matter at this stage contain valid references to other
parts of the ABC file.

• Trait objects are created for classes and scripts.

• Subclass/superclass relationships are resolved. The trait set of each class’s superclass is merged into the
trait set for the class, and interfaces in the class’s interface set are looked up. Early resolution ensures
that the inheritance graph is a tree.

• The constant pool is constructed. Each reference to another element of the constant pool is resolved
(it must be in range for the correct type).

• Method bodies are linked with their method information (signature) structures.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 15

3.3 Execution

This section describes the state of the virtual machine as it is observed by the executing bytecode.

3.3.1 Program invocation and exit
One of the entries in the ABC file is an array of script_info entries (see the next chapter). Each of these
entries contains a reference to an initialization method for the script and a set of traits to be defined in the
script’s environment. The last entry in that array is the entry point for the ABC file; that is, the last entry’s
initialization method contains the first bytecode that’s run when the ABC file is executed.

The other scripts’ initialization blocks are run on demand, when entities exported from those scripts are first
referenced by the program during property lookup.

As far as the virtual machine is concerned, the initialization blocks are normal methods, and they should signal
normal termination by executing one of the return instructions (OP_returnvalue, OP_returnvoid). The
value returned by a script is ignored.

3.3.2 Class initialization
The class’s static initializer will be run when the newclass instruction is executed on the class_info entry for
the class.

3.3.3 Method entry
When a method body is first entered, its execution environment is set up in a particular way. In the following
discussion, method_info and method_body_info refer to structures defined in the next chapter.

When control enters a method, three local data areas are allocated for it, as outlined in Chapter 2—an operand
stack segment, a scope stack segment, and a set of local registers. The operand stack segment holds operands to
the instructions; values are pushed onto that stack or popped off it by most instructions. The scope stack
segments holds scope objects in which the virtual machine will look up names at execution time. Objects are
pushed onto the scope stack by OP_pushscope and OP_pushwith, and popped off by OP_popscope and by the
exception handling machinery. The local registers hold parameter values, local variables, and temporaries.

On method entry, the state of these data areas is as follows.

• The operand stack is empty and has room for method_body_info.max_stack values.

• The scope stack is empty and has room for method_body_info.max_scope_stack values.

• There are method_body_info.local_count registers.

• Register 0 holds the “this” object. This value is never null.

• Registers 1 through method_info.param_count holds parameter values coerced to the declared types
of the parameters. If fewer than method_body_info.local_count values are supplied to the call then
the remaining values are either the values provided by default value declarations (optional arguments)
or the value undefined.

• If NEED_REST is set in method_info.flags, the method_info.param_count+1 register is set up to
reference an array that holds the superflous arguments.

• If NEED_ARGUMENTS is set in method_info.flags, the method_info.param_count+1 register is set up
to reference an “arguments” object that holds all the actual arguments: see ECMA-262 for more
information. (The AVM2 is not strictly compatible with ECMA-262; it creates an Array object for
the “arguments” object, whereas ECMA-262 requires a plain Object.)

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 16

3.3.4 Execution mechanics
Execution begins with the first instruction of the code in the method_body_info. The address of this first
instruction is 0. The first byte of each instruction is the opcode, which is followed by zero or more bytes of
operands. The instruction may modify the local data areas as well as objects on the heap, and it may create new
objects on the heap either directly or indirectly. (The AVM2 instruction set is defined in Section 2.5.)

Branch and jump instructions add a signed offset to the program counter to effectuate the branch. The base
value for the program counter is the instruction address following the instruction.

3.3.5 Calling and returning
When one of the call instructions is executed, a new local data area is created for the called function. The called
function has no access to the local data area of its caller. The actual parameter values are coerced to the types
expected by the called function as part of the call protocol.

The return instructions transfer a single value from the returning function’s stack, or the implied value
undefined, to the caller. The returned value is coerced to the returning function’s declared return type as part
of the return protocol. The coerced value replaces the operands of the call instruction in the calling method’s
stack, and the called method’s local data area is destroyed.

3.3.6 Exception handling
Exception handlers are defined by a table associated with each method. The table defines a range of bytecode
addresses across which a particular handler is active, the bytecode address of the handler, and a type which is
used to determine whether the handler will handle a particular exception.

When an exception is thrown, the call stack is unwound until a method is found that contains a handler which
covers the current program counter and whose type is a supertype of the type of the object thrown. The
method containing the handler is reactivated and the program counter is set to point to the first address of the
handler. The value and scope stacks in the handling method are cleared before the handler is entered.

A finally clause is normally translated as an exception handler that accepts any type of value, which it catches
and rethrows after the body of the finally block finishes executing.

3.4 Verification

As noted earlier, verification does not happen all at once. Verification is often put off until a datum is actually
needed or until some dependent object has been loaded, so that forward references will be possible.

The following list summarizes some of the verification errors signaled by the AVM2. (Not all verification errors
are listed.)

• There must be no nonzero bits above bit 30 in a u30 value.

• No control flow instruction must cause control to be transferred outside the code vector or into the
middle of another instruction.

• Multiple control flow instructions to the same instruction must have compatible scope stacks, operand
stacks, and register values.

• Named types (for example, in coerce instructions or in a base class reference) must always be
uniquely resolvable.

• Names may not reference index zero of the name pool unless explicitly specified for that particular
name field.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 17

• Some name fields (for example, instance_info) require the referenced name to be a QName.

• A class cannot subclass a final class or an interface.

• The interface set of a class cannot reference interface zero, and must reference interfaces (not classes).

• Method indices for callmethod and callstatic must provably be within the range of the receiver
object’s method table.

• When an instruction definition section contains wording along the lines of “<value> must be less than
<constraint>”, this usually implies a static constraint that is checked by the verifier.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 18

4 The ActionScript Byte Code (abc) format

Syntactically complete sections of ActionScript code are processed by a compiler into ActionScript Byte Code
segments. These segments are described by the abcFile structure, which is defined below. The abcFile
structure is the unit of loading and execution used by the AVM2.

The abcFile structure describes the interpretation of a block of 8-bit bytes. Despite the name, the contents of
an abcFile does not need to be read from a file in the file system; it can be generated dynamically by a run-
time compiler or other tools. The use of the word “file” is historical.

The abcFile structure comprises primitive data, structured data, and arrays of primitive and structured data.
The following sections describe all the data formats.

Primitive data include integers and floating-point numbers encoded in various ways.

Structured data, including the abcFile itself, are presented here using a C-like structural notation, with
individual named fields. Fields within this structure are in reality just sequences of bytes that are interpreted
according to their type. The fields are stored sequentially without any padding or alignment.

4.1 Primitive data types

Multi-byte primitive data are stored in little-endian order (less significant bytes precede more significant bytes).
Negative integers are represented using two’s complement.

 The type u8 represents a one-byte unsigned integer value.

 The type u16 represents a two-byte unsigned integer value.

 The type s24 represents a three-byte signed integer value.

 The type u30 represents a variable-length encoded 30-bit unsigned integer value.

 The types u32 and s32 represent variable-length encoded 32-bit unsigned and signed integer values
respectively.

 The type d64 defines an 8-byte IEEE-754 floating point value. The high byte of the double value
contains the sign and upper bits of the exponent, and the low byte contains the least significant bits of
the significand.

The variable-length encoding for u30, u32, and s32 uses one to five bytes, depending on the magnitude of the
value encoded. Each byte contributes its low seven bits to the value. If the high (eighth) bit of a byte is set,
then the next byte of the abcFile is also part of the value. In the case of s32, sign extension is applied: the
seventh bit of the last byte of the encoding is propagated to fill out the 32 bits of the decoded value.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 19

4.2 abcFile

abcFile
{
 u16 minor_version
 u16 major_version
 cpool_info constant_pool
 u30 method_count
 method_info method[method_count]
 u30 metadata_count
 metadata_info metadata[metadata_count]
 u30 class_count
 instance_info instance[class_count]
 class_info class[class_count]
 u30 script_count
 script_info script[script_count]
 u30 method_body_count
 method_body_info method_body[method_body_count]
}

The abcFile structure describes an executable code block with all its constant data, type descriptors, code, and
metadata. It comprises the following fields.

minor_version, major_version
The values of major_version and minor_version are the major and minor version numbers of the
abcFile format. A change in the minor version number signifies a change in the file format that is
backward compatible, in the sense that an implementation of the AVM2 can still make use of a file of an
older version. A change in the major version number denotes an incompatible adjustment to the file
format.

As of the publication of this overview, the major version is 46 and the minor version is 16.

constant_pool
The constant_pool is a variable length structure composed of integers, doubles, strings, namespaces,
namespace sets, and multinames. These constants are referenced from other parts of the abcFile
structure.

method_count, method
The value of method_count is the number of entries in the method array. Each entry in the method array
is a variable length method_info structure. The array holds information about every method defined in
this abcFile. The code for method bodies is held separately in the method_body array (see below).
Some entries in method may have no body—this is the case for native methods, for example.

metadata_count, metadata
The value of metadata_count is the number of entries in the metadata array. Each metadata entry is a
metadata_info structure that maps a name to a set of string values.

class_count, instance, class
The value of class_count is the number of entries in the instance and class arrays.

Each instance entry is a variable length instance_info structure which specifies the characteristics of
object instances created by a particular class.

Each class entry defines the characteristics of a class. It is used in conjunction with the instance field to
derive a full description of an AS Class.

script_count, script
The value of script_count is the number of entries in the script array. Each script entry is a
script_info structure that defines the characteristics of a single script in this file. As explained in the
previous chapter, the last entry in this array is the entry point for execution in the abcFile.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 20

method_body_count, method_body
The value of method_body_count is the number of entries in the method_body array. Each method_body
entry consists of a variable length method_body_info structure which contains the instructions for an
individual method or function.

4.3 Constant pool

The constant pool is a block of array-based entries that reflect the constants used by all methods. Each of the
count entries (for example, int_count) must be one more than the number of entries in the corresponding
array, and the first entry in the array is element “1”. For all constant pools, the index “0” has a special meaning,
typically a sensible default value. For example, the “0” entry is used to represent the empty sting (""), the any
namespace, or the any type (*) depending on the context it is used in. When “0” has a special meaning it is
described in the text below.

cpool_info
{
 u30 int_count
 s32 integer[int_count]
 u30 uint_count
 u32 uinteger[uint_count]
 u30 double_count
 d64 double[double_count]
 u30 string_count
 string_info string[string_count]
 u30 namespace_count
 namespace_info namespace[namespace_count]
 u30 ns_set_count
 ns_set_info ns_set[ns_set_count]
 u30 multiname_count
 multiname_info multiname[multiname_count]
}

If there is more than one entry in one of these arrays for the same entity, such as a name, the AVM may or may
not consider those two entries to mean the same thing. The AVM currently guarantees that names flagged as
belonging to the “private” namespace are treated as unique.

int_count, integer

The value of int_count is the number of entries in the integer array, plus one. The integer array
holds integer constants referenced by the bytecode. The “0” entry of the integer array is not present in
the abcFile; it represents the zero value for the purposes of providing values for optional parameters and
field initialization.

uint_count, uinteger

The value of uint_count is the number of entries in the uinteger array, plus one. The uinteger array
holds unsigned integer constants referenced by the bytecode. The “0” entry of the uinteger array is not
present in the abcFile; it represents the zero value for the purposes of providing values for optional
parameters and field initialization.

double_count, double

The value of double_count is the number of entries in the double array, plus one. The double array
holds IEEE double-precision floating point constants referenced by the bytecode. The “0” entry of the
double array is not present in the abcFile; it represents the NaN (Not-a-Number) value for the purposes
of providing values for optional parameters and field initialization.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 21

string_count, string

The value of string_count is the number of entries in the string array, plus one. The string array
holds UTF-8 encoded strings referenced by the compiled code and by many other parts of the abcFile.
In addition to describing string constants in programs, string data in the constant pool are used in the
description of names of many kinds. Entry “0” of the string array is not present in the abcFile; it
represents the empty string in most contexts but is also used to represent the “any” name in others
(known as “*” in ActionScript).

namespace_count, namespace

The value of namespace_count is the number of entries in the namespace array, plus one. The
namespace array describes the namespaces used by the bytecode and also for names of many kinds. Entry
“0” of the namespace array is not present in the abcFile; it represents the “any” namespace (known as
“*” in ActionScript).

ns_set_count, ns_set

The value of ns_set_count is the number of entries in the ns_set array, plus one. The ns_set array
describes namespace sets used in the descriptions of multinames. The “0” entry of the ns_set array is not
present in the abcFile.

multiname_count, multiname

The value of multiname_count is the number of entries in the multiname array, plus one. The
multiname array describes names used by the bytecode. The “0” entry of the multiname array is not
present in the abcFile.

4.4 String

A string_info element encodes a string of 16-bit characters on a length-and-data format. The meaning of
each character is normally taken to be that of a Unicode 16-bit code point. The data are UTF-8 encoded. For
more information on Unicode, see unicode.org.

string_info
{
 u30 size
 u8 utf8[size]
}

http://unicode.org/�

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 22

4.4.1 Namespace
A namespace_info entry defines a namespace. Namespaces have string names, represented by indices into the
string array, and kinds. User-defined namespaces have kind CONSTANT_Namespace or
CONSTANT_ExplicitNamespace and a non-empty name. System namespaces have empty names and one of the
other kinds, and provides a means for the loader to map references to these namespaces onto internal entities.

namespace_info
{
 u8 kind
 u30 name
}

A single byte defines the type of entry that follows, thus identifying how the name field should be interpreted by
the loader. The name field is an index into the string section of the constant pool. A value of zero denotes an
empty string. The table below lists the legal values for kind.

Namespace Kind Value

CONSTANT_Namespace 0x08

CONSTANT_PackageNamespace 0x16

CONSTANT_PackageInternalNs 0x17

CONSTANT_ProtectedNamespace 0x18

CONSTANT_ExplicitNamespace 0x19

CONSTANT_StaticProtectedNs 0x1A

CONSTANT_PrivateNs 0x05

4.4.2 Namespace set
An ns_set_info entry defines a set of namespaces, allowing the set to be used as a unit in the definition of
multinames.

ns_set_info
{
 u30 count
 u30 ns[count]
}

The count field defines how many ns’s are identified for the entry, while each ns is an integer that indexes into
the namespace array of the constant pool. No entry in the ns array may be zero.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 23

4.4.3 Multiname
A multiname_info entry is a variable length item that is used to define multiname entities used by the
bytecode. There are many kinds of multinames. The kind field acts as a tag: its value determines how the
loader should see the variable-length data field. The layout of the contents of the data field under a particular
kind is described below by the multiname_kind_ structures.

multiname_info
{
 u8 kind
 u8 data[]
}

Multiname Kind Value

CONSTANT_QName 0x07

CONSTANT_QNameA 0x0D

CONSTANT_RTQName 0x0F

CONSTANT_RTQNameA 0x10

CONSTANT_RTQNameL 0x11

CONSTANT_RTQNameLA 0x12

CONSTANT_Multiname 0x09

CONSTANT_MultinameA 0x0E

CONSTANT_MultinameL 0x1B

CONSTANT_MultinameLA 0x1C

Those constants ending in “A” (such as CONSTANT_QNameA) represent the names of attributes.

QName

The multiname_kind_QName format is used for kinds CONSTANT_QName and CONSTANT_QNameA.

multiname_kind_QName
{
 u30 ns
 u30 name
}

The ns and name fields are indexes into the namespace and string arrays of the constant_pool entry,
respectively. A value of zero for the ns field indicates the any (“*”) namespace, and a value of zero for the name
field indicates the any (“*”) name.

RTQName

The multiname_kind_RTQName format is used for kinds CONSTANT_RTQName and CONSTANT_RTQNameA.

multiname_kind_RTQName
{
 u30 name
}

The single field, name, is an index into the string array of the constant pool. A value of zero indicates the any
(“*”) name.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 24

RTQNameL

The multiname_kind_RTQNameL format is used for kinds CONSTANT_RTQNameL and CONSTANT_RTQNameLA.

multiname_kind_RTQNameL
{
}

This kind has no associated data.

Multiname

The multiname_kind_Multiname format is used for kinds CONSTANT_Multiname and CONSTANT_MultinameA.

multiname_kind_Multiname
{
 u30 name
 u30 ns_set
}

The name field is an index into the string array, and the ns_set field is an index into the ns_set array. A
value of zero for the name field indicates the any (“*”) name. The value of ns_set cannot be zero.

MultinameL

The multiname_kind_MultinameL format is used for kinds CONSTANT_MultinameL and
CONSTANT_MultinameLA.

multiname_kind_MultinameL
{
 u30 ns_set
}

The ns_set field is an index into the ns_set array of the constant pool. The value of ns_set cannot be zero.

4.5 Method signature

The method_info entry defines the signature of a single method.

method_info
{
 u30 param_count
 u30 return_type
 u30 param_type[param_count]
 u30 name
 u8 flags
 option_info options
 param_info param_names
}

The fields are as follows:

param_count, param_type

The param_count field is the number of formal parameters that the method supports; it also represents
the length of the param_type array. Each entry in the param_type array is an index into the multiname

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 25

array of the constant pool; the name at that entry provides the name of the type of the corresponding
formal parameter. A zero value denotes the any (“*”) type.

return_type

The return_type field is an index into the multiname array of the constant pool; the name at that entry
provides the name of the return type of this method. A zero value denotes the any (“*”) type.

name

The name field is an index into the string array of the constant pool; the string at that entry provides the
name of this method. If the index is zero, this method has no name.

flags

The flag field is a bit vector that provides additional information about the method. The bits are
described by the following table. (Bits not described in the table should all be set to zero.)

Name Value Meaning
NEED_ARGUMENTS 0x01 Suggests to the run-time that an “arguments” object (as specified by the

ActionScript 3.0 Language Reference) be created. Must not be used
together with NEED_REST. See Chapter 3.

NEED_ACTIVATION 0x02 Must be set if this method uses the newactivation opcode.

NEED_REST 0x04 This flag creates an ActionScript 3.0 rest arguments array. Must not be
used with NEED_ARGUMENTS. See Chapter 3.

HAS_OPTIONAL 0x08 Must be set if this method has optional parameters and the options
field is present in this method_info structure.

SET_DXNS 0x40 Must be set if this method uses the dxns or dxnslate opcodes.

HAS_PARAM_NAMES 0x80 Must be set when the param_names field is present in this method_info
structure.

options

This entry may be present only if the HAS_OPTIONAL flag is set in flags.

param_names

This entry may be present only if the HAS_PARAM_NAMES flag is set in flags.

4.5.1 Optional parameters
The option_info entry is used to define the default values for the optional parameters of the method. The
number of optional parameters is given by option_count, which must not be zero nor greater than the
parameter_count field of the enclosing method_info structure.

option_info
{
 u30 option_count
 option_detail option[option_count]
}

option_detail
{
 u30 val
 u8 kind
}

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 26

Each optional value consists of a kind field that denotes the type of value represented, and a val field that is an
index into one of the array entries of the constant pool. The correct array is selected based on the kind.

Constant Kind Value Entry

CONSTANT_Int 0x03 integer

CONSTANT_UInt 0x04 uinteger

CONSTANT_Double 0x06 double

CONSTANT_Utf8 0x01 string

CONSTANT_True 0x0B -

CONSTANT_False 0x0A -

CONSTANT_Null 0x0C -

CONSTANT_Undefined 0x00 -

CONSTANT_Namespace 0x08 namespace

CONSTANT_PackageNamespace 0x16 namespace

CONSTANT_PackageInternalNs 0x17 Namespace

CONSTANT_ProtectedNamespace 0x18 Namespace

CONSTANT_ExplicitNamespace 0x19 Namespace

CONSTANT_StaticProtectedNs 0x1A Namespace

CONSTANT_PrivateNs 0x05 namespace

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 27

4.5.2 Parameter names
The param_names entry is available only when the HAS_PARAM_NAMES bit is set in the flags. Each param_info
element of the array is an index into the constant pool’s string array. The parameter name entry exists solely
for external tool use and is not used by the AVM2.

param_info
{
 u30 param_name[param_count]
}

4.6 metadata_info

The metadata_info entry provides a means of embedding arbitrary key /value pairs into the ABC file. The
AVM2 will ignore all such entries.

metadata_info
{
 u30 name
 u30 item_count
 item_info items[item_count]
}

The name field is an index into the string array of the constant pool; it provides a name for the metadata
entry. The value of the name field must not be zero. Zero or more items may be associated with the entry;
item_count denotes the number of items that follow in the items array.

item_info
{
 u30 key
 u30 value
}

The item_info entry consists of item_count elements that are interpreted as key/value pairs of indices into the
string table of the constant pool. If the value of key is zero, this is a keyless entry and only carries a value.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 28

4.7 Instance

The instance_info entry is used to define the characteristics of a run-time object (a class instance) within the
AVM2. The corresponding class_info entry is used in order to fully define an ActionScript 3.0 Class.

instance_info
{
 u30 name

u30 super_name
u8 flags
u30 protectedNs
u30 intrf_count
u30 interface[intrf_count]
u30 iinit
u30 trait_count
traits_info trait[trait_count]

}

name

The name field is an index into the multiname array of the constant pool; it provides a name for the
class. The entry specified must be a QName.

super_name

The super_name field is an index into the multiname array of the constant pool; it provides the name of
the base class of this class, if any. A value of zero indicates that this class has no base class.

flags

The flags field is used to identify various options when interpreting the instance_info entry. It is bit
vector; the following entries are defined. Other bits must be zero.

Name Value Meaning
CONSTANT_ClassSealed 0x01 The class is sealed: properties can not be dynamically added

to instances of the class.

CONSTANT_ClassFinal 0x02 The class is final: it cannot be a base class for any other
class.

CONSTANT_ClassInterface 0x04 The class is an interface.

CONSTANT_ClassProtectedNs 0x08 The class uses its protected namespace and the
protectedNs field is present in the interface_info
structure.

protectedNs

This field is present only if the CONSTANT_ProtectedNs bit of flags is set. It is an index into the
namespace array of the constant pool and identifies the namespace that serves as the protected namespace
for this class.

intrf_count, interface

The value of the intrf_count field is the number of entries in the interface array. The interface array
contains indices into the multiname array of the constant pool; the referenced names specify the interfaces
implemented by this class. None of the indices may be zero.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 29

iinit

This is an index into the method array of the abcFile; it references the method that is invoked whenever
an object of this class is constructed. This method is sometimes referred to as an instance initializer.

trait_count, trait

The value of trait_count is the number of elements in the trait array. The trait array defines the set
of traits of a class instance. The next section defines the meaning of the traits_info structure.

4.8 Trait

A trait is a fixed property of an object or class; it has a name, a type, and some associated data. The
traits_info structure bundles these data.

traits_info
{

u30 name
 u8 kind

u8 data[]
u30 metadata_count
u30 metadata[metadata_count]

}

name

The name field is an index into the multiname array of the constant pool; it provides a name for the trait.
The value can not be zero, and the multiname entry specified must be a QName.

kind

The kind field contains two four-bit fields. The lower four bits determine the kind of this trait. The
upper four bits comprise a bit vector providing attributes of the trait. See the following tables and
sections for full descriptions.

data

The interpretation of the data field depends on the type of the trait, which is provided by the low four
bits of the kind field. See below for a full description.

metadata_count, metadata

These fields are present only if ATTR_Metadata is present in the upper four bits of the kind field.

The value of the metadata_count field is the number of entries in the metadata array. That array
contains indices into the metadata array of the abcFile.

4.8.1 Summary of trait types
The following table summarizes the trait types.

Type Value

Trait_Slot 0
Trait_Method 1
Trait_Getter 2
Trait_Setter 3
Trait_Class 4
Trait_Function 5
Trait_Const 6

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 30

4.8.2 Slot and const traits
A kind value of Trait_Slot (0) or Trait_Const (6) requires that the data field be read using trait_slot,
which takes the following form:

trait_slot
{
 u30 slot_id
 u30 type_name

u30 vindex
u8 vkind

}

slot_id

The slot_id field is an integer from 0 to N and is used to identify a position in which this trait resides. A
value of 0 requests the AVM2 to assign a position.

type_name

This field is used to identify the type of the trait. It is an index into the multiname array of the
constant_pool. A value of zero indicates that the type is the any type (*).

vindex

This field is an index that is used in conjunction with the vkind field in order to define a value for the
trait. If it is 0, vkind is empty; otherwise it references one of the tables in the constant pool, depending on
the value of vkind.

vkind

This field exists only when vindex is non-zero. It is used to determine how vindex will be interpreted.
See the “Constant Kind” table above for details.

4.8.3 Class traits
A kind value of Trait_Class (0x04) implies that the trait_class entry should be used.

trait_class
{
 u30 slot_id
 u30 classi
}

slot_id

The slot_id field is an integer from 0 to N and is used to identify a position in which this trait resides. A
value of 0 requests the AVM2 to assign a position.

class

The classi field is an index that points into the class array of the abcFile entry.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 31

4.8.4 Function traits
A kind value of Trait_Function (0x05) implies that the trait_function entry should be used.

trait_function
{
 u30 slot_id
 u30 function
}

slot_id

The slot_id field is an integer from 0 to N and is used to identify a position in which this trait resides.
A value of 0 requests the AVM2 to assign a position.

function

The function field is an index that points into the method array of the abcFile entry.

4.8.5 Method, getter, and setter traits
A kind value of Trait_Method (0x01), Trait_Getter (0x02) or Trait_Setter (0x03) implies that the
trait_method entry should be used.

trait_method
{
 u30 disp_id
 u30 method
}

disp_id

The disp_id field is a compiler assigned integer that is used by the AVM2 to optimize the resolution of
virtual function calls. An overridden method must have the same disp_id as that of the method in the
base class. A value of zero disables this optimization.

method

The method field is an index that points into the method array of the abcFile entry.

4.8.6 Trait attributes
As previously mentioned the upper nibble of the kind field is used to encode attributes. A description of how
the attributes are interpreted for each kind is outlined below. Any other combination of attribute with kind
is ignored.

Attributes Value

ATTR_Final 0x1 Is used with Trait_Method, Trait_Getter and Trait_Setter. It marks a
method that cannot be overridden by a sub-class

ATTR_Override 0x2 Is used with Trait_Method, Trait_Getter and Trait_Setter. It marks a
method that has been overridden in this class

ATTR_Metadata 0x4 Is used to signal that the fields metadata_count and metadata follow the
data field in the traits_info entry

4.9 Class

The class_info entry is used to define characteristics of an ActionScript 3.0 class.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 32

class_info
{
 u30 cinit
 u30 trait_count

traits_info traits[trait_count]
}

cinit

This is an index into the method array of the abcFile; it references the method that is invoked when the
class is first created. This method is also known as the static initializer for the class.

trait_count, trait

The value of trait_count is the number of entries in the trait array. The trait array holds the traits
for the class (see above for information on traits).

4.10 Script

The script_info entry is used to define characteristics of an ActionScript 3.0 script.

script_info
{
 u30 init
 u30 trait_count

traits_info trait[trait_count]
}

init

The init field is an index into the method array of the abcFile. It identifies a function that is to be
invoked prior to any other code in this script.

trait_count, trait

The value of trait_count is the number of entries in the trait array. The trait array is the set of traits
defined by the script.

4.11 Method body

The method_body_info entry holds the AVM2 instructions that are associated with a particular method or
function body. Some of the fields in this entry declare the maximum amount of resources the body will
consume during execution. These declarations allow the AVM2 to anticipate the requirements of the method
without analyzing the method body prior to execution. The declarations also serve as promises about the
resource boundary within which the method has agreed to remain.3

There can be fewer method bodies in the method_body table than than there are method signatures in the
method table—some methods have no bodies. Therefore the method_body contains a reference to the method
it belongs to, and other parts of the abcFile always reference the method table, not the method_body table.

3 Any code loaded from an untrusted source will be examined in order to verify that the code stays within
the declared limits.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 33

method_body_info
{
 u30 method

u30 max_stack
u30 local_count
u30 init_scope_depth
u30 max_scope_depth
u30 code_length
u8 code[code_length]
u30 exception_count
exception_info exception[exception_count]
u30 trait_count
traits_info trait[trait_count]

}

method

The method field is an index into the method array of the abcFile; it identifies the method signature with
which this body is to be associated.

max_stack

The max_stack field is maximum number of evaluation stack slots used at any point during the execution
of this body.

local_count

The local_count field is the index of the highest-numbered local register this method will use, plus one.

init_scope_depth

The init_scope_depth field defines the minimum scope depth, relative to max_scope_depth, that may
be accessed within the method.

max_scope_depth

The max_scope_depth field defines the maximum scope depth that may be accessed within the method.
The difference between max_scope_depth and init_scope_depth determines the size of the local scope
stack.

code_length, code

The value of code_length is the number of bytes in the code array. The code array holds AVM2
instructions for this method body. The AVM2 instruction set is defined in Section 2.5.

exception_count, exception

The value of exception_count is the number of elements in the exception array. The exception array
associates exception handlers with ranges of instructions within the code array (see below).

trait_count

The value of trait_count is the number of elements in the trait array. The trait array contains all
the traits for this method body (see above for more information on traits).

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 34

4.12 Exception

The exception_info entry is used to define the range of ActionScript 3.0 instructions over which a particular
exception handler is engaged.

exception_info
{
 u30 from
 u30 to

u30 target
u30 exc_type
u30 var_name

}

from

The starting position in the code field from which the exception is enabled.

to

The ending position in the code field after which the exception is disabled.

target

The position in the code field to which control should jump if an exception of type exc_type is
encountered while executing instructions that lie within the region [from, to] of the code field.

exc_type

An index into the string array of the constant pool that identifies the name of the type of exception that
is to be monitored during the reign of this handler. A value of zero means the any type (“*”) and implies
that this exception handler will catch any type of exception thrown.

var_name

This index into the string array of the constant pool defines the name of the variable that is to receive
the exception object when the exception is thrown and control is transferred to target location. If the
value is zero then there is no name associated with the exception object.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 35

5 AVM2 instructions

The AVM2 instruction descriptions follow the following format.

instruction name

Operation
Brief description of the instruction.

Format
A description of the instruction with any operands that appear with it in the code.

instruction
operand1
operand2
...

Forms
instruction = opcode

Stack
A description of the stack before and after the instruction is executed. The stack top is on
the right; portions marked ... are not altered by the instruction.

..., value1, value2 => ..., value3

Description
A detailed description of the instruction, including information about the effect on the stack,
information of the operands, result of the instruction, etc.

Runtime exceptions
A description of any errors that may be thrown by this instruction. A number of these
instructions may invoke operations behind the scene. For example, name resolution can fail
to find a name or it can resolve it ambiguously; value conversion can run arbitrary user code
that may fail and therefore throw exceptions. To the program it will appear as if the
instruction threw those exceptions, but they will not be noted in the description of the
instruction.

Notes
Additional information that may be useful.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 36

add

Operation
Add two values.

Format
add

Forms
add = 160 (0xa0)

Stack
…, value1, value2 => …, value3

Description
Pop value1 and value2 off of the stack and add them together as specified in ECMA-262 section
11.6 and as extended in ECMA-357 section 11.4. The algorithm is briefly described below.

1. If value1 and value2 are both Numbers, then set value3 to the result of adding the two
number values. See ECMA-262 section 11.6.3 for a description of adding number values.

2. If value1 or value2 is a String or a Date, convert both values to String using the ToString
algorithm described in ECMA-262 section 9.8. Concatenate the string value of value2 to the
string value of value1 and set value3 to the new concatenated String.

3. If value1 and value2 are both of type XML or XMLList, construct a new XMLList object,
then call [[Append]](value1), and then [[Append]](value2). Set value3 to the new XMLList.
See ECMA-357 section 9.2.1.6 for a description of the [[Append]] method.

4. If none of the above apply, convert value1 and value2 to primitives. This is done by calling
ToPrimitive with no hint. This results in value1_primitive and value2_primitive. If
value1_primitive or value2_primitive is a String then convert both to Strings using the
ToString algorithm (ECMA-262 section 9.8), concatenate the results, and set value3 to the
concatenated String. Otherwise convert both to Numbers using the ToNumber algorithm
(ECMA-262 section 9.3), add the results, and set value3 to the result of the addition.

Push value3 onto the stack.

Notes
For more information, see ECMA-262 section 11.6 (“Additive Operators”) and ECMA-357
section 11.4.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 37

add_i

Operation
Add two integer values.

Format
add_i

Forms
add_i = 197 (0xc5)

Stack
…, value1, value2 => …, value3

Description
Pop value1 and value2 off of the stack and convert them to int values using the ToInt32
algorithm (ECMA-262 section 9.5). Add the two int values and push the result onto the
stack.

astype

Operation
Return the same value, or null if not of the specified type.

Format
astype
index

Forms
astype = 134 (0x86)

Stack
…, value => …, value

Description
index is a u30 that must be an index into the multiname constant pool. The multiname at
index must not be a runtime multiname, and must be the name of a type.

Pop value off of the stack. If value is of the type specified by the multiname, push value back
onto the stack. If value is not of the type specified by the multiname, then push null onto
the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 38

astypelate

Operation
Return the same value, or null if not of the specified type.

Format
astypelate

Forms
astypelate = 135 (0x87)

Stack
…, value, class => …, value

Description
Pop class and value off of the stack. class should be an object of type Class. If value is of the
type specified by class, push value back onto the stack. If value is not of the type specified by
class, then push null onto the stack.

Runtime exceptions
A TypeError is thrown if class is not of type Class.

bitand

 Operation
Bitwise and.

 Format
bitand

 Forms
bitand = 168 (0xa8)

 Stack
…, value1, value2 => …, value3

 Description
Pop value1 and value2 off of the stack. Convert value1 and value2 to integers, as per ECMA-
262 section 11.10, and perform a bitwise and (&) on the two resulting integer values. Push
the result onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 39

bitnot

 Operation
Bitwise not.

 Format
bitnot

 Forms
bitnot = 151 (0x97)

 Stack
…, value => …, ~value

 Description
Pop value off of the stack. Convert value to an integer, as per ECMA-262 section 11.4.8,
and then apply the bitwise complement operator (~) to the integer. Push the result onto the
stack.

bitor

 Operation
Bitwise or.

 Format
bitor

 Forms
bitor = 169 (0xa9)

 Stack
…, value1, value2 => …, value3

 Description
Pop value1 and value2 off of the stack. Convert value1 and value2 to integers, as per ECMA-
262 section 11.10, and perform a bitwise or (|) on the two resulting integer values. Push the
result onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 40

bitxor

 Operation
Bitwise exclusive or.

 Format
bitxor

 Forms
bitxor = 170 (0xaa)

 Stack
…, value1, value2 => …, value3

 Description
Pop value1 and value2 off of the stack. Convert value1 and value2 to integers, as per ECMA-
262 section 11.10, and perform a bitwise exclusive or (^) on the two resulting integer values.
Push the result onto the stack.

call

 Operation
Call a closure.

 Format
call
arg_count

 Forms
call = 65 (0x41)

 Stack
…, function, receiver, arg1, arg2, ..., argn => …, value

 Description
arg_count is a u30 that is the number of arguments present on the stack for the call. function
is the closure that is being called. receiver is the object to use for the “this” value. This will
invoke the [[Call]] property on function with the arguments receiver, arg1, ..., argn. The
result of invoking the [[Call]] property will be pushed onto the stack.

 Runtime exceptions
A TypeError is thrown if function is not a Function.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 41

callmethod

Operation
Call a method identified by index in the object’s method table.

Format
callmethod
index
arg_count

Forms
callmethod = 67 (0x43)

Stack
…, receiver, arg1, arg2, ..., argn => …, value

Description
index is a u30 that is the index of the method to invoke on receiver. arg_count is a u30 that is
the number of arguments present on the stack. receiver is the object to invoke the method
on.

The method at position index on the object receiver, is invoked with the arguments receiver,
arg1, ..., argn. The result of the method call is pushed onto the stack.

Runtime exceptions
A TypeError is thrown if receiver is null or undefined.

An ArgumentError is thrown if the number of arguments does not match the expected
number of arguments for the method.

callproperty

Operation
Call a property.

Format
callproperty
index
arg_count

Forms
callproperty = 70 (0x46)

Stack
…, obj, [ns], [name], arg1,...,argn => …, value

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 42

Description
arg_count is a u30 that is the number of arguments present on the stack. The number of
arguments specified by arg_count are popped off the stack and saved.

index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

obj is the object to resolve and call the property on.

The property specified by the multiname at index is resolved on the object obj. The [[Call]]
property is invoked on the value of the resolved property with the arguments obj, arg1, ...,
argn. The result of the call is pushed onto the stack.

Runtime exceptions
A TypeError is thrown if obj is null or undefined or if the property specified by the
multiname is null or undefined.

An ArgumentError is thrown if the number of arguments does not match the expected
number of expected arguments for the method.

callproplex

Operation
Call a property.

Format
callproplex
index
arg_count

Forms
callproplex = 76 (0x4c)

Stack
…, obj, [ns], [name], arg1,...,argn => …, value

Description
arg_count is a u30 that is the number of arguments present on the stack. The number of
arguments specified by arg_count are popped off the stack and saved.

index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

obj is the object to resolve and call the property on.

The property specified by the multiname at index is resolved on the object obj. The [[Call]]
property is invoked on the value of the resolved property with the arguments null, arg1, ...,
argn. The result of the call is pushed onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 43

Runtime exceptions
A TypeError is thrown if obj is null or undefined or if the property specified by the
multiname is null or undefined.

An ArgumentError is thrown if the number of arguments does not match the expected
number of expected arguments for the method.

callpropvoid

Operation
Call a property, discarding the return value.

Format
callpropvoid
index
arg_count

Forms
callproperty = 79 (0x4f)

Stack
…, obj, [ns], [name], arg1,...,argn => …

Description
arg_count is a u30 that is the number of arguments present on the stack. The number of
arguments specified by arg_count are popped off the stack and saved.

index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

obj is the object to resolve and call the property on.

The property specified by the multiname at index is resolved on the object obj. The [[Call]]
property is invoked on the value of the resolved property with the arguments obj, arg1, ...,
argn. The result of the call is discarded.

Runtime exceptions
A TypeError is thrown if obj is null or undefined or if the property specified by the
multiname is null or undefined.

An ArgumentError is thrown if the number of arguments does not match the expected
number of expected arguments for the method.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 44

callstatic

Operation
Call a method identified by index in the abcFile method table.

Format
callstatic
index
arg_count

Forms
callstatic = 68 (0x44)

Stack
…, receiver, arg1, arg2, ..., argn => …, value

Description
index is a u30 that is the index of the method_info of the method to invoke. arg_count is a
u30 that is the number of arguments present on the stack. receiver is the object to invoke the
method on.

The method at position index is invoked with the arguments receiver, arg1, ..., argn. The
receiver will be used as the “this” value for the method. The result of the method is pushed
onto the stack.

Runtime exceptions
A TypeError is thrown if receiver is null or undefined.

An ArgumentError is thrown if the number of arguments does not match the expected
number of arguments for the method.

callsuper

Operation
Call a method on a base class.

Format
callsuper
index
arg_count

Forms
callsuper = 69 (0x45)

Stack
…, receiver, [ns], [name], arg1,...,argn => …, value

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 45

Description
arg_count is a u30 that is the number of arguments present on the stack. The number of
arguments specified by arg_count are popped off the stack and saved.

index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

receiver is the object to invoke the method on.

The base class of receiver is determined and the method indicated by the multiname is
resolved in the declared traits of the base class. The method is invoked with the arguments
receiver, arg1, ..., argn. The receiver will be used as the “this” value for the method. The result
of the method call is pushed onto the stack.

Runtime exceptions
A TypeError is thrown if receiver is null or undefined.

An ArgumentError is thrown if the number of arguments does not match the expected
number of arguments for the method.

callsupervoid

Operation
Call a method on a base class, discarding the return value.

Format
callsupervoid
index
arg_count

Forms
callsuper = 78 (0x4e)

Stack
…, receiver, [ns], [name], arg1, …, argn => …

Description
arg_count is a u30 that is the number of arguments present on the stack. The number of
arguments specified by arg_count are popped off the stack and saved.

index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

receiver is the object to invoke the method on.

The base class of receiver is determined and the method indicated by the multiname is
resolved in the declared traits of the base class. The method is invoked with the arguments
receiver, arg1, ..., argn. The first argument will be used as the “this” value for the method.
The result of the method is discarded.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 46

Runtime exceptions
A TypeError is thrown if receiver is null or undefined.

An ArgumentError is thrown if the number of arguments does not match the expected
number of arguments for the method.

checkfilter

Operation
Check to make sure an object can have a filter operation performed on it.

Format
checkfilter

Forms
checkfilter = 120 (0x78)

Stack
…, value => …, value

Description
This instruction checks that the top value of the stack can have a filter operation performed
on it. If value is of type XML or XMLList then nothing happens. If value is of any other type
a TypeError is thrown.

 Runtime exceptions
A TypeError is thrown if value is not of type XML or XMLList.

coerce

Operation
Coerce a value to a specified type

Format
coerce
index

Forms
coerce = 128 (0x80)

Stack
…, value => …, coercedvalue

Description
index is a u30 that must be an index into the multiname constant pool. The multiname at
index must not be a runtime multiname.

The type specified by the multiname is resolved, and value is coerced to that type. The
resulting value is pushed onto the stack. If any of value’s base classes, or implemented

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 47

interfaces matches the type specified by the multiname, then the conversion succeeds and the
result is pushed onto the stack.

Runtime exceptions
A TypeError is thrown if value cannot be coerced to the specified type.

coerce_a

Operation
Coerce a value to the any type.

Format
coerce_a

Forms
coerce_a = 130 (0x82)

Stack
…, value => …, value

Description
Indicates to the verifier that the value on the stack is of the any type (*). Does nothing to value.

coerce_s

Operation
Coerce a value to a string.

Format
coerce_s

Forms
coerce_s = 133 (0x85)

Stack
…, value => …, stringvalue

Description
value is popped off of the stack and coerced to a String. If value is null or undefined, then
stringvalue is set to null. Otherwise stringvalue is set to the result of the ToString algorithm,
as specified in ECMA-262 section 9.8. stringvalue is pushed onto the stack.

Notes
This opcode is very similar to the convert_s opcode. The difference is that convert_s will
convert a null or undefined value to the string "null" or "undefined" whereas coerce_s
will convert those values to the null value.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 48

construct

Operation
Construct an instance.

Format
construct
arg_count

Forms
construct = 66 (0x42)

Stack
…, object, arg1, arg2, ..., argn => …, value

Description
arg_count is a u30 that is the number of arguments present on the stack. object is the
function that is being constructed. This will invoke the [[Construct]] property on object with
the given arguments. The new instance generated by invoking [[Construct]] will be pushed
onto the stack.

Runtime exceptions
A TypeError is thrown if object does not implement the [[Construct]] property.

constructprop

Operation
Construct a property.

Format
constructprop
index
arg_count

Forms
constructprop = 74 (0x4a)

Stack
…, obj, [ns], [name], arg1,...,argn => …, value

Description
arg_count is a u30 that is the number of arguments present on the stack. The number of
arguments specified by arg_count are popped off the stack and saved.

index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

obj is the object to resolve the multiname in.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 49

The property specified by the multiname at index is resolved on the object obj. The
[[Construct]] property is invoked on the value of the resolved property with the arguments
obj, arg1, ..., argn. The new instance generated by invoking [[Construct]] will be pushed
onto the stack.

Runtime exceptions
A TypeError is thrown if obj is null or undefined.

A TypeError is thrown if the property specified by the multiname does not implement the
[[Construct]] property.

An ArgumentError is thrown if the number of arguments does not match the expected
number of expected arguments for the constructor.

constructsuper

Operation
Construct an instance of the base class.

Format
constructsuper
arg_count

Forms
construct = 73 (0x49)

Stack
…, object, arg1, arg2, ..., argn => …

Description
arg_count is a u30 that is the number of arguments present on the stack. This will invoke the
constructor on the base class of object with the given arguments.

Runtime exceptions
A TypeError is thrown if object is null or undefined.

convert_b

Operation
Convert a value to a Boolean.

Format
convert_b

Forms
convert_b = 118 (0x76)

Stack
…, value => …, booleanvalue

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 50

Description
value is popped off of the stack and converted to a Boolean. The result, booleanvalue, is
pushed onto the stack. This uses the ToBoolean algorithm, as described in ECMA-262
section 9.2, to perform the conversion.

convert_i

Operation
Convert a value to an integer.

Format
convert_i

Forms
convert_i = 115 (0x73)

Stack
…, value => …, intvalue

Description
value is popped off of the stack and converted to an integer. The result, intvalue, is pushed
onto the stack. This uses the ToInt32 algorithm, as described in ECMA-262 section 9.5, to
perform the conversion.

convert_d

Operation
Convert a value to a double.

Format
convert_d

Forms
convert_d = 117 (0x75)

Stack
…, value => …, doublevalue

Description
value is popped off of the stack and converted to a double. The result, doublevalue, is pushed
onto the stack. This uses the ToNumber algorithm, as described in ECMA-262 section 9.3,
to perform the conversion.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 51

convert_o

Operation
Convert a value to an Object.

Format
convert_o

Forms
convert_o = 119 (0x77)

Stack
…, value => …, value

Description
If value is an Object then nothing happens. Otherwise an exception is thrown.

Runtime exceptions
A TypeError is thrown if value is null or undefined.

convert_u

Operation
Convert a value to an unsigned integer.

Format
convert_u

Forms
convert_u = 116 (0x74)

Stack
…, value => …, uintvalue

Description
value is popped off of the stack and converted to an unsigned integer. The result, uintvalue,
is pushed onto the stack. This uses the ToUint32 algorithm, as described in ECMA-262
section 9.6

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 52

convert_s

Operation
Convert a value to a string.

Format
convert_s

Forms
convert_s = 112 (0x70)

Stack
…, value => …, stringvalue

Description
value is popped off of the stack and converted to a string. The result, stringvalue, is pushed
onto the stack. This uses the ToString algorithm, as described in ECMA-262 section 9.8

Notes
This is very similar to the coerce_s opcode. The difference is that coerce_s will not
convert a null or undefined value to the string "null" or "undefined" whereas
convert_s will.

debug

Operation
Debugging info.

Format
debug
debug_type
index
reg
extra

Forms
debug = 239 (0xef)

Stack
… => …

Description
debug_type is an unsigned byte. If the value of debug_type is DI_LOCAL (1), then this is
debugging information for a local register.

index is a u30 that must be an index into the string constant pool. The string at index is the
name to use for this register.

reg is an unsigned byte and is the index of the register that this is debugging information for.

extra is a u30 that is currently unused.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 53

When debug_type has a value of 1, this tells the debugger the name to display for the register
specified by reg. If the debugger is not running, then this instruction does nothing.

debugfile

Operation
Debugging line number info.

Format
debugfile
index

Forms
debug = 241 (0xf1)

Stack
… => …

Description
index is a u30 that must be an index into the string constant pool

If the debugger is running, then this instruction sets the current file name in the debugger to
the string at position index of the string constant pool. This lets the debugger know which
instructions are associated with each source file. The debugger will treat all instructions as
occurring in the same file until a new debugfile opcode is encountered.

This instruction must occur before any debugline opcodes.

debugline

Operation
Debugging line number info.

Format
debugline
linenum

Forms
debug = 240 (0xf0)

Stack
… => …

Description
linenum is a u30 that indicates the current line number the debugger should be using for the
code currently executing.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 54

If the debugger is running, then this instruction sets the current line number in the
debugger. This lets the debugger know which instructions are associated with each line in a
source file. The debugger will treat all instructions as occurring on the same line until a new
debugline opcode is encountered.

declocal

Operation
Decrement a local register value.

Format
declocal
index

Forms
declocal = 148 (0x94)

Stack
… => …

Description
index is a u30 that must be an index of a local register. The value of the local register at index
is converted to a Number using the ToNumber algorithm (ECMA-262 section 9.3) and
then 1 is subtracted from the Number value. The local register at index is then set to the
result.

declocal_i

Operation
Decrement a local register value.

Format
declocal_i
index

Forms
declocal_i = 195 (0xc3)

Stack
… => …

Description
index is a u30 that must be an index of a local register. The value of the local register at index
is converted to an int using the ToInt32 algorithm (ECMA-262 section 9.5) and then 1 is
subtracted the int value. The local register at index is then set to the result.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 55

decrement

Operation
Decrement a value.

Format
decrement

Forms
decrement = 147 (0x93)

Stack
…, value => …, decrementedvalue

Description
Pop value off of the stack. Convert value to a Number using the ToNumber algorithm
(ECMA-262 section 9.3) and then subtract 1 from the Number value. Push the result onto
the stack.

decrement_i

Operation
Decrement an integer value.

Format
decrement_i

Forms
decrement_i = 193 (0xc1)

Stack
…, value => …, dencrementedvalue

Description
Pop value off of the stack. Convert value to an int using the ToInt32 algorithm (ECMA-262
section 9.5) and then subtract 1 from the int value. Push the result onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 56

deleteproperty

Operation
Delete a property.

Format
deleteproperty
index

Forms
deleteproperty = 106 (0x6a)

Stack
…, object, [ns], [name] => …, value

Description
index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

This will invoke the [[Delete]] method on object with the name specified by the multiname.
If object is not dynamic or the property is a fixed property then nothing happens, and false
is pushed onto the stack. If object is dynamic and the property is not a fixed property, it is
removed from object and true is pushed onto the stack.

Runtime exceptions
A ReferenceError is thrown if object is null or undefined.

divide

Operation
Divide two values.

Format
divide

Forms
divide = 163 (0xa3)

Stack
…, value1, value2 => …, value3

Description
Pop value1 and value2 off of the stack, convert value1 and value2 to Number to create
value1_number and value2_number. Divide value1_number by value2_number and push the
result onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 57

dup

Operation
Duplicates the top value on the stack.

Format
dup

Forms
dup = 42 (0x2a)

Stack
…, value => …, value, value

Description
Duplicates the top value of the stack, and then pushes the duplicated value onto the stack.

dxns

Operation
Sets the default XML namespace.

Format
dxns
index

Forms
dxns = 6 (0x06)

Stack
… => …

Description
index is a u30 that must be an index into the string constant pool. The string at index is used
as the uri for the default XML namespace for this method.

Runtime exceptions
A VerifyError is thrown if dxns is used in a method that does not have the SETS_DXNS flag
set.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 58

dxnslate

Operation
Sets the default XML namespace with a value determined at runtime.

Format
dxns

Forms
dxnslate = 7 (0x07)

Stack
…, value => …

Description
The top value on the stack is popped, converted to a string, and that string is used as the uri
for the default XML namespace for this method.

Runtime exceptions
A VerifyError is thrown if dxnslate is used in a method that does not have the SETS_DXNS
flag set.

equals

Operation
Compare two values.

Format
equals

Forms
equals = 171 (0xab)

Stack
…, value1, value2 => …, result

Description
Pop value1 and value2 off of the stack. Compare the two values using the abstract equality
comparison algorithm, as described in ECMA-262 section 11.9.3 and extended in ECMA-
347 section 11.5.1. Push the resulting Boolean value onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 59

esc_xattr

Operation
Escape an xml attribute.

Format
esc_xattr

Forms
esc_xattr = 114 (0x72)

Stack
…, value => …, stringvalue

Description
value is popped off of the stack and converted to a string. The result, stringvalue, is pushed
onto the stack. This uses the EscapeAttributeValue algorithm as described in the E4X
specification, ECMA-357 section 10.2.1.2, to perform the conversion.

esc_xelem

Operation
Escape an xml element.

Format
esc_xelem

Forms
esc_xelem = 113 (0x71)

Stack
…, value => …, stringvalue

Description
value is popped off of the stack and converted to a string. The result, stringvalue, is pushed
onto the stack. This uses the ToXmlString algorithm as described in the E4X specification,
ECMA-357 section 10.2, to perform the conversion.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 60

findproperty

Operation
Search the scope stack for a property.

Format
findproperty
index

Forms
findproperty = 94 (0x5e)

Stack
…, [ns], [name] => …, obj

Description
index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

This searches the scope stack, and then the saved scope in the current method closure, for a
property with the name specified by the multiname at index.

If any of the objects searched is a with scope, its declared and dynamic properties will be
searched for a match. Otherwise only the declared traits of a scope will be searched. The
global object will have its declared traits, dynamic properties, and prototype chain searched.

If the property is resolved then the object it was resolved in is pushed onto the stack. If the
property is unresolved in all objects on the scope stack then the global object is pushed onto
the stack.

Notes
Functions save the scope stack when they are created, and this saved scope stack is searched if
no match is found in the current scope stack.

Objects for the with statement are pushed onto the scope stack with the pushwith
instruction.

findpropstrict

Operation
Find a property.

Format
findpropstrict
index

Forms
findpropstrict = 93 (0x5d)

Stack
…, [ns], [name] => …, obj

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 61

Description
index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

This searches the scope stack, and then the saved scope in the method closure, for a property
with the name specified by the multiname at index.

If any of the objects searched is a with scope, its declared and dynamic properties will be
searched for a match. Otherwise only the declared traits of a scope will be searched. The
global object will have its declared traits, dynamic properties, and prototype chain searched.

If the property is resolved then the object it was resolved in is pushed onto the stack. If the
property is unresolved in all objects on the scope stack then an exception is thrown.

Runtime exceptions
A ReferenceError is thrown if the property is not resolved in any object on the scope stack.

Notes
Functions save the scope stack when they are created, and this saved scope stack is searched if
no match is found in the current scope stack.

Objects for the with statement are pushed onto the scope stack with the pushwith
instruction.

getdescendants

Operation
Get descendants.

Format
getdescendants
index

Forms
getdescendants = 89 (0x59)

Stack
…, obj, [ns], [name] => …, value

Description
index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

obj is the object to find the descendants in. This will invoke the [[Descendants]] property on
obj with the multiname specified by index. For a description of the [[Descendants]] operator,
see the E4X spec (ECMA-357) sections 9.1.1.8 (for the XML type) and 9.2.1.8 (for the
XMLList type).

Runtime exceptions
A TypeError is thrown if obj is not of type XML or XMLList.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 62

getglobalscope

Operation
Gets the global scope.

Format
getglobalscope

Forms
getglobalscope = 100 (0x64)

Stack
… => …, obj

Description
Gets the global scope object from the scope stack, and pushes it onto the stack. The global
scope object is the object at the bottom of the scope stack.

getglobalslot

Operation
Get the value of a slot on the global scope.

Format
getglobalslot
slotindex

Forms
getglobalslot = 110 (0x6e)

Stack
… => …, value

Description
slotindex is a u30 that must be an index of a slot on the global scope. The slotindex must be
greater than 0 and less than or equal to the total number of slots the global scope has.

This will retrieve the value stored in the slot at slotindex of the global scope. This value is
pushed onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 63

getlex

Operation
Find and get a property.

Format
getlex
index

Forms
getlex = 96 (0x60)

Stack
… => …, obj

Description
index is a u30 that must be an index into the multiname constant pool. The multiname at
index must not be a runtime multiname, so there are never any optional namespace or name
values on the stack.

This is the equivalent of doing a findpropstict followed by a getproperty. It will find the
object on the scope stack that contains the property, and then will get the value from that
object. See “Resolving multinames” on page 10.

Runtime exceptions
A ReferenceError is thrown if the property is unresolved in all of the objects on the scope
stack.

getlocal

Operation
Get a local register.

Format
getlocal
index

Forms
getlocal = 98 (0x62)

Stack
… => …, value

Description
index is a u30 that must be an index of a local register. The value of that register is pushed
onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 64

getlocal_<n>

Operation
Get a local register.

Format
getlocal_<n>

Forms
getlocal_0 = 208 (0xd0)
getlocal_1 = 209 (0xd1)
getlocal_2 = 210 (0xd2)
getlocal_3 = 211 (0xd3)

Stack
… => …, value

Description
<n> is the index of a local register. The value of that register is pushed onto the stack.

getproperty

Operation
Get a property.

Format
getproperty
index

Forms
getproperty = 102 (0x66)

Stack
…, object, [ns], [name] => …, value

Description
index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

The property with the name specified by the multiname will be resolved in object, and the
value of that property will be pushed onto the stack. If the property is unresolved,
undefined is pushed onto the stack. See “Resolving multinames” on page 10.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 65

getscopeobject

Operation
Get a scope object.

Format
getscopeobject
index

Forms
getscopeobject = 101 (0x65)

Stack
… => …, scope

Description
index is an unsigned byte that specifies the index of the scope object to retrieve from the local
scope stack. index must be less than the current depth of the scope stack. The scope at that
index is retrieved and pushed onto the stack. The scope at the top of the stack is at index
scope_depth-1, and the scope at the bottom of the stack is index 0.

Notes
The indexing of elements on the local scope stack is the reverse of the indexing of elements
on the local operand stack.

getslot

Operation
Get the value of a slot.

Format
getslot
slotindex

Forms
getslot = 108 (0x6c)

Stack
…, obj => …, value

Description
slotindex is a u30 that must be an index of a slot on obj. slotindex must be less than the total
number of slots obj has.

This will retrieve the value stored in the slot at slotindex on obj. This value is pushed onto the
stack.

Runtime exceptions
A TypeError is thrown if obj is null or undefined.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 66

getsuper

Operation
Gets a property from a base class.

Format
getsuper
index

Forms
getsuper = 4 (0x04)

Stack
…, obj, [ns], [name] => …, value

Description
index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime

Once the multiname is constructed, the base class of obj is determined and the multiname is
resolved in the declared traits of the base class. The value of the resolved property is pushed
onto the stack. See “Resolving multinames” on page 10.

Runtime exceptions
A TypeError is thrown if obj is null or undefined.

A ReferenceError is thrown if the property is unresolved, or if the property is write-only.

greaterequals

Operation
Determine if one value is greater than or equal to another.

Format
greaterthan

Forms
greaterthan = 175 (0xaf)

Stack
…, value1, value2 => …, result

Description
Pop value1 and value2 off of the stack. Compute value1 < value2 using the Abstract
Relational Comparison Algorithm, as described in ECMA-262 section 11.8.5. If the result of
the comparison is false, push true onto the stack. Otherwise push false onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 67

greaterthan

Operation
Determine if one value is greater than another.

Format
greaterthan

Forms
greaterthan = 175 (0xaf)

Stack
…, value1, value2 => …, result

Description
Pop value1 and value2 off of the stack. Compute value2 < value1 using the Abstract
Relational Comparison Algorithm as described in ECMA-262 section 11.8.5. If the result of
the comparison is true, push true onto the stack. Otherwise push false onto the stack.

hasnext

Operation
Determine if the given object has any more properties.

Format
hasnext

Forms
hasnext = 31(0x1f)

Stack
…, obj, cur_index => …, next_index

Description
cur_index and obj are popped off of the stack. cur_index must be of type int. Get the index of
the next property after the property at cur_index. If there are no more properties, then the
result is 0. The result is pushed onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 68

hasnext2

Operation
Determine if the given object has any more properties.

Format
hasnext2
object_reg
index_reg

Forms
hasnext2 = 50 (0x32)

Stack
…, => …, value

Description
object_reg and index_reg are uints that must be indexes to a local register. The value of the
register at position object_reg is the object that is being enumerated and is assigned to obj.
The value of the register at position index_reg must be of type int, and that value is assigned
to cur_index.

Get the index of the next property after the property located at index cur_index on object
obj. If there are no more properties on obj, then obj is set to the next object on the prototype
chain of obj, and cur_index is set to the first index of that object. If there are no more objects
on the prototype chain and there are no more properties on obj, then obj is set to null, and
cur_index is set to 0.

The register at position object_reg is set to the value of obj, and the register at position
index_reg is set to the value of cur_index.

If index is not 0, then push true. Otherwise push false.

Notes
hasnext2 works by reference. Each time it is executed it changes the values of local registers
rather than simply returning a new value. This is because the object being enumerated can
change when it is necessary to walk up the prototype chain to find more properties. This is
different from how hasnext works, though the two may seem similar due to the similar
names.

ifeq

Operation
Branch if the first value is equal to the second value.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 69

Format
ifeq
offset

Forms
ifeq = 19 (0x13)

Stack
…, value1, value2 => …

Description
offset is an s24 that is the number of bytes to jump if value1 is equal to value2.

Compute value1 == value2 using the abstract equality comparison algorithm in ECMA-262
section 11.9.3 and ECMA-347 section 11.5.1. If the result of the comparison is true, jump
the number of bytes indicated by offset. Otherwise continue executing code from this point.

iffalse

Operation
Branch if false.

Format
iffalse
offset

Forms
iffalse = 18 (0x12)

Stack
…, value => …

Description
offset is an s24 that is the number of bytes to jump.

Pop value off the stack and convert it to a Boolean. If the converted value is false, jump the
number of bytes indicated by offset. Otherwise continue executing code from this point.

ifge

Operation
Branch if the first value is greater than or equal to the second value.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 70

Format
ifge
offset

Forms
ifge = 24 (0x18)

Stack
…, value1, value2 => …

Description
offset is an s24 that is the number of bytes to jump if value1 is greater than or equal to value2.

Compute value1 < value2 using the abstract relational comparison algorithm in ECMA-262
section 11.8.5. If the result of the comparison is false, jump the number of bytes indicated
by offset. Otherwise continue executing code from this point.

ifgt

Operation
Branch if the first value is greater than the second value.

Format
ifgt
offset

Forms
ifgt = 23 (0x17)

Stack
…, value1, value2 => …

Description
offset is an s24 that is the number of bytes to jump if value1 is greater than or equal to value2.

Compute value2 < value1 using the abstract relational comparison algorithm in ECMA-262
section 11.8.5. If the result of the comparison is true, jump the number of bytes indicated
by offset. Otherwise continue executing code from this point.

ifle

Operation
Branch if the first value is less than or equal to the second value.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 71

Format
ifle
offset

Forms
ifle = 22 (0x16)

Stack
…, value1, value2 => …

Description
offset is an s24 that is the number of bytes to jump if value1 is less than or equal to value2.

Compute value2 < value1 using the abstract relational comparison algorithm in ECMA-262
section 11.8.5. If the result of the comparison is false, jump the number of bytes indicated
by offset. Otherwise continue executing code from this point.

iflt

Operation
Branch if the first value is less than the second value.

Format
iflt
offset

Forms
iflt = 21 (0x15)

Stack
…, value1, value2 => …

Description
offset is an s24 that is the number of bytes to jump if value1 is less than value2.

Compute value1 < value2 using the abstract relational comparison algorithm in ECMA-262
section 11.8.5. If the result of the comparison is true, jump the number of bytes indicated
by offset. Otherwise continue executing code from this point.

ifnge

Operation
Branch if the first value is not greater than or equal to the second value.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 72

Format
ifnge
offset

Forms
ifnge = 15 (0x0f)

Stack
…, value1, value2 => …

Description
offset is an s24 that is the number of bytes to jump if value1 is not greater than or equal to
value2.

Compute value1 < value2 using the abstract relational comparison algorithm in ECMA-262
section 11.8.5. If the result of the comparison is not false, jump the number of bytes
indicated by offset. Otherwise continue executing code from this point.

Notes
This appears to have the same effect as iflt, however, their handling of NaN is different. If
either of the compared values is NaN then the comparison value1 < value2 will return
undefined. In that case ifnge will branch (undefined is not false), but iflt will not
branch.

ifngt

Operation
Branch if the first value is not greater than the second value.

Format
ifngt
offset

Forms
ifngt = 14 (0x0e)

Stack
…, value1, value2 => …

Description
offset is an s24 that is the number of bytes to jump if value1 is not greater than or value2.

Compute value2 < value1 using the abstract relational comparison algorithm in ECMA-262
section 11.8.5. If the result of the comparison is not true, jump the number of bytes
indicated by offset. Otherwise continue executing code from this point.

Notes
This appears to have the same effect as ifle, however, their handling of NaN is different. If
either of the compared values is NaN then the comparison value2 < value1 will return

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 73

undefined. In that case ifngt will branch (undefined is not true), but ifle will not
branch.

ifnle

Operation
Branch if the first value is not less than or equal to the second value.

Format
ifnle
offset

Forms
ifnle = 13 (0x0d)

Stack
…, value1, value2 => …

Description
offset is an s24 that is the number of bytes to jump if value1 is not less than or equal to
value2.

Compute value2 < value1 using the abstract relational comparison algorithm in ECMA-262
section 11.8.5. If the result of the comparison is true, jump the number of bytes indicated
by offset. Otherwise continue executing code from this point.

Notes
This appears to have the same effect as ifgt, however, their handling of NaN is different. If
either of the compared values is NaN then the comparison value2 < value1 will return
undefined. In that case ifnle will branch (undefined is not false), but ifgt will not
branch.

ifnlt

Operation
Branch if the first value is not less than the second value.

Format
ifnlt
offset

Forms
ifnlt = 12 (0x0c)

Stack
…, value1, value2 => …

Description
offset is an s24 that is the number of bytes to jump if value1 is not less than value2.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 74

Compute value1 < value2 using the abstract relational comparison algorithm in ECMA-262
section 11.8.5. If the result of the comparison is false, then jump the number of bytes
indicated by offset. Otherwise continue executing code from this point.

Notes
This appears to have the same effect as ifge, however, their handling of NaN is different. If
either of the compared values is NaN then the comparison value1 < value2 will return
undefined. In that case ifnlt will branch (undefined is not true), but ifge will not
branch.

ifne

Operation
Branch if the first value is not equal to the second value.

Format
ifne
offset

Forms
ifne = 20 (0x14)

Stack
…, value1, value2 => …

Description
offset is an s24 that is the number of bytes to jump if value1 is not equal to value2.

Compute value1 == value2 using the abstract equality comparison algorithm in ECMA-262
section 11.9.3 and ECMA-347 Section 11.5.1. If the result of the comparison is false,
jump the number of bytes indicated by offset. Otherwise continue executing code from this
point.

ifstricteq

Operation
Branch if the first value is equal to the second value.

Format
ifstricteq
offset

Forms
ifstricteq = 24 (0x19)

Stack
…, value1, value2 => …

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 75

Description
offset is an s24 that is the number of bytes to jump if value1 is equal to value2.

Compute value1 === value2 using the strict equality comparison algorithm in ECMA-262
section 11.9.6. If the result of the comparison is true, jump the number of bytes indicated
by offset. Otherwise continue executing code from this point.

ifstrictne

Operation
Branch if the first value is not equal to the second value.

Format
ifstrictne
offset

Forms
ifstrictne = 25 (0x1a)

Stack
…, value1, value2 => …

Description
offset is an s24 that is the number of bytes to jump if value1 is not equal to value2.

Compute value1 === value2 using the strict equality comparison algorithm in ECMA-262
section 11.9.6. If the result of the comparison is false, jump the number of bytes indicated
by offset. Otherwise continue executing code from this point.

iftrue

Operation
Branch if true.

Format
iftrue
offset

Forms
iftrue = 17 (0x11)

Stack
…, value => …

Description
offset is an s24 that is the number of bytes to jump.

Pop value off the stack and convert it to a Boolean. If the converted value is true, jump the
number of bytes indicated by offset. Otherwise continue executing code from this point.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 76

in

Operation
Determine whether an object has a named property.

Format
in

Forms
in = 180 (0xb4)

Stack
…, name, obj => …, result

Description
name is converted to a String, and is looked up in obj. If no property is found, then the
prototype chain is searched by calling [[HasProperty]] on the prototype of obj. If the
property is found result is true. Otherwise result is false. Push result onto the stack.

inclocal

Operation
Increment a local register value.

Format
inclocal
index

Forms
inclocal = 146 (0x92)

Stack
… => …

Description
index is a u30 that must be an index of a local register. The value of the local register at index
is converted to a Number using the ToNumber algorithm (ECMA-262 section 9.3) and
then 1 is added to the Number value. The local register at index is then set to the result.

inclocal_i

Operation
Increment a local register value.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 77

Format
inclocal_i
index

Forms
inclocal_i = 194 (0xc2)

Stack
… => …

Description
index is a u30 that must be an index of a local register. The value of the local register at index
is converted to an int using the ToInt32 algorithm (ECMA-262 section 9.5) and then 1 is
added to the int value. The local register at index is then set to the result.

increment

Operation
Increment a value.

Format
increment

Forms
increment = 145 (0x91)

Stack
…, value => …, incrementedvalue

Description
Pop value off of the stack. Convert value to a Number using the ToNumber algorithm
(ECMA-262 section 9.3) and then add 1 to the Number value. Push the result onto the
stack.

increment_i

Operation
Increment an integer value.

Format
increment_i

Forms
increment_i = 192 (0xc0)

Stack
…, value => …, incrementedvalue

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 78

Description
Pop value off of the stack. Convert value to an int using the ToInt32 algorithm (ECMA-262
section 9.5) and then add 1 to the int value. Push the result onto the stack.

initproperty

Operation
Initialize a property.

Format
initproperty
index

Forms
initproperty = 104 (0x68)

Stack
…, object, [ns], [name], value => …

Description
value is the value that the property will be set to. value is popped off the stack and saved.

index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

The property with the name specified by the multiname will be resolved in object, and will be
set to value. This is used to initialize properties in the initializer method. When used in an
initializer method it is able to set the value of const properties.

Runtime exceptions
A TypeError is thrown if object is null or undefined.

A ReferenceError is thrown if the property is not found and object is not dynamic, or if the
instruction is used to set a const property outside an initializer method.

instanceof

Operation
Check the prototype chain of an object for the existence of a type.

Format
instanceof

Forms
instanceof = 177 (0xb1)

Stack
…, value, type => …, result

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 79

Description
Pop value and type off of the stack. If value is null result is false. Walk up the prototype
chain of value looking for type. If type is present anywhere on the prototype, result is true. If
type is not found on the prototype chain, result is false. Push result onto the stack. See
ECMA-262 section 11.8.6 for a further description.

Runtime exceptions
A TypeError is thrown if type is not an Object.

istype

Operation
Check whether an Object is of a certain type.

Format
istype
index

Forms
istype = 178 (0xb2)

Stack
…, value => …, result

Description
index is a u30 that must be an index into the multiname constant pool. The multiname at
index must not be a runtime multiname.

Resolve the type specified by the multiname. Let indexType refer to that type. Compute the
type of value, and let valueType refer to that type. If valueType is the same as indexType, result
is true. If indexType is a base type of valueType, or an implemented interface of valueType,
then result is true. Otherwise result is set to false. Push result onto the stack.

istypelate

Operation
Check whether an Object is of a certain type.

Format
istypelate

Forms
istypelate = 179 (0xb3)

Stack
…, value, type => …, result

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 80

Description
Compute the type of value, and let valueType refer to that type. If valueType is the same as
type, result is true. If type is a base type of valueType, or an implemented interface of
valueType, then result is true. Otherwise result is set to false. Push result onto the stack.

Runtime exceptions
A TypeError is thrown if type is not a Class.

jump

Operation
Unconditional branch.

Format
jump
offset

Forms
jump = 16 (0x10)

Stack
… => …

Description
offset is an s24 that is the number of bytes to jump. Jump the number of bytes indicated by
offset and resume execution there.

kill

Operation
Kills a local register.

Format
kill
index

Forms
kill = 8 (0x08)

Stack
… => …

Description
index is a u30 that must be an index of a local register. The local register at index is killed. It
is killed by setting its value to undefined.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 81

Notes
This is usually used so that different jumps to the same location will have the same types in
the local registers. The verifier ensures that all paths to a location have compatible values in
the local registers, if not a VerifyError occurs. This can be used to kill temporary values that
were stored in local registers before a jump so that no VerifyError occurs.

label

Operation
Do nothing.

Format
label

Forms
label = 9 (0x09)

Stack
… => …

Description
Do nothing. Used to indicate that this location is the target of a branch.

Notes
This is usually used to indicate the target of a backwards branch. The label opcode will
prevent the verifier from thinking that the code after the label is unreachable.

lessequals

Operation
Determine if one value is less than or equal to another.

Format
lessequals

Forms
lessequals = 174 (0xae)

Stack
…, value1, value2 => …, result

Description
Pop value1 and value2 off of the stack. Compute value2 < value1 using the Abstract
Relational Comparison Algorithm as described in ECMA-262 section 11.8.5. If the result of
the comparison is false, push true onto the stack. Otherwise push false onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 82

lessthan

Operation
Determine if one value is less than another.

Format
lessthan

Forms
lessthan = 173 (0xad)

Stack
…, value1, value2 => …, result

Description
Pop value1 and value2 off of the stack. Compute value1 < value2 using the Abstract
Relational Comparison Algorithm as described in ECMA-262 section 11.8.5. If the result of
the comparison is true, then push true onto the stack. Otherwise push false onto the
stack.

lookupswitch

Operation
Jump to different locations based on an index.

Format
lookupswitch
default_offset
case_count
case_offsets...

Forms
lookupswitch = 27(0x1b)

Stack
…, index => …

Description
default_offset is an s24 that is the offset to jump, in bytes, for the default case. case_offsets are
each an s24 that is the offset to jump for a particular index. There are case_count+1 case
offsets. case_count is a u30.

index is popped off of the stack and must be of type int. If index is less than zero or greater
than case_count, the target is calculated by adding default_offset to the base location.
Otherwise the target is calculated by adding the case_offset at position index to the base
location. Execution continues from the target location.

The base location is the address of the lookupswitch instruction itself.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 83

Notes
Other control flow instructions take the base location to be the address of the following
instruction.

lshift

Operation
Bitwise left shift.

Format
lshift

Forms
lshift = 165 (0xa5)

Stack
…, value1, value2 => …, value3

Description
Pop value1 and value2 off of the stack; convert value1 to an int to create value1_int ; and
convert value2 to a uint to create value2_uint. Left shift value1_int by the result of
value2_uint & 0x1F (leaving only the 5 least significant bits of value2_uint), and push the
result onto the stack. See ECMA-262 section 11.7.1.

modulo

Operation
Perform modulo division on two values.

Format
modulo

Forms
modulo = 164 (0xa4)

Stack
…, value1, value2 => …, value3

Description
Pop value1 and value2 off of the stack, convert value1 and value2 to Number to create
value1_number and value2_number. Perform value1_number mod value2_number and push
the result onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 84

multiply

Operation
Multiply two values.

Format
multiply

Forms
multiply = 162 (0xa2)

Stack
…, value1, value2 => …, value3

Description
Pop value1 and value2 off of the stack, convert value1 and value2 to Number to create
value1_number and value2_number. Multiply value1_number by value2_number and push
the result onto the stack.

multiply_i

Operation
Multiply two integer values.

Format
multiply_i

Forms
multiply_i = 199 (0xc7)

Stack
…, value1, value2 => …, value3

Description
Pop value1 and value2 off of the stack, convert value1 and value2 to int to create value1_int
and value2_int. Multiply value1_int by value2_int and push the result onto the stack.

negate

Operation
Negate a value.

Format
negate

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 85

Forms
negate = 144 (0x90)

Stack
…, value => …, -value

Description
Pop value off of the stack. Convert value to a Number using the ToNumber algorithm
(ECMA-262 section 9.3) and then negate the Number value. Push the result onto the stack.

negate_i

Operation
Negate an integer value.

Format
negate_i

Forms
negate_i = 196 (0xc4)

Stack
…, value => …, -value

Description
Pop value off of the stack. Convert value to an int using the ToInt32 algorithm (ECMA-262
section 9.5) and then negate the int value. Push the result onto the stack.

newactivation

Operation
Create a new activation object.

Format
newactivation

Forms
newactivation = 87 (0x57)

Stack
… => …, newactivation

Description
Creates a new activation object, newactivation, and pushes it onto the stack. Can only be
used in methods that have the NEED_ACTIVATION flag set in their MethodInfo entry.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 86

newarray

Operation
Create a new array.

Format
newobject
arg_count

Forms
newobject = 86 (0x56)

Stack
…, value1, value2, ..., valueN => …, newarray

Description
arg_count is a u30 that is the number of entries that will be created in the new array. There
will be a total of arg_count values on the stack.

A new value of type Array is created and assigned to newarray. The values on the stack will
be assigned to the entries of the array, so newarray[0] = value1, newarray[1] = value2,,
newarray[N-1] = valueN. newarray is then pushed onto the stack.

newcatch

Operation
Create a new catch scope.

Format
newcatch
index

Forms
newcatch = 90 (0x5a)

Stack
… => …, catchscope

Description
index is a u30 that must be an index of an exception_info structure for this method.

This instruction creates a new object to serve as the scope object for the catch block for the
exception referenced by index. This new scope is pushed onto the operand stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 87

newclass

Operation
Create a new class.

Format
newclass
index

Forms
newclass = 88 (0x58)

Stack
…, basetype => …, newclass

Description
index is a u30 that is an index of the ClassInfo that is to be created. basetype must be the
base class of the class being created, or null if there is no base class.

The class that is represented by the ClassInfo at position index of the ClassInfo entries is
created with the given basetype as the base class. This will run the static initializer function
for the class. The new class object, newclass, will be pushed onto the stack.

When this instruction is executed, the scope stack must contain all the scopes of all base
classes, as the scope stack is saved by the created ClassClosure.

newfunction

Operation
Create a new function object.

Format
newfunction
index

Forms
newfunction = 64 (0x40)

Stack
… => …, function_obj

Description
index is a u30 that must be an index of a method_info. A new function object is created
from that method_info and pushed onto the stack. For a description of creating a new
function object, see ECMA-262 section 13.2.

When creating the new function object the scope stack used is the current scope stack when
this instruction is executed, and the body is the method_body entry that references the
specified method_info entry.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 88

newobject

Operation
Create a new object.

Format
newobject
arg_count

Forms
newobject = 85 (0x55)

Stack
…, name1, value1, name2, value2,...,nameN, valueN => …, newobj

Description
arg_count is a u30 that is the number of properties that will be created in newobj. There will
be a total of arg_count name values on the stack, which will be of type String (name1 to
nameN). There will be an equal number of values on the stack, which can be of any type,
and will be the initial values for the properties

A new value of type Object is created and assigned to newobj. The properties specified on the
stack will be dynamically added to newobj. The names of the properties will be name1,
name2,..., nameN and these properties will be set to the corresponding values (value1,
value2,..., valueN). newobj is then pushed onto the stack.

nextname

Operation
Get the name of the next property when iterating over an object.

Format
nextname

Forms
nextname = 30(0x1e)

Stack
…, obj, index => …, name

Description
index and obj are popped off of the stack. index must be a value of type int. Gets the name of
the property that is at position index + 1 on the object obj, and pushes it onto the stack.

Notes
index will usually be the result of executing hasnext on obj.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 89

nextvalue

Operation
Get the name of the next property when iterating over an object.

Format
nextvalue

Forms
nextvalue = 35(0x23)

Stack
…, obj, index => …, value

Description
index and obj are popped off of the stack. index must be of type int. Get the value of the
property that is at position index + 1 on the object obj, and pushes it onto the stack.

Notes
Index will usually be the result of executing hasnext on obj.

nop

Operation
Do nothing.

Format
nop

Forms
nop = 2 (0x02)

Stack
… => …

Description
Do nothing.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 90

not

Operation
Boolean negation.

Format
not

Forms
not = 150 (0x96)

Stack
…, value => …, !value

Description
Pop value off of the stack. Convert value to a Boolean using the ToBoolean algorithm
(ECMA-262 section 9.2) and then negate the Boolean value. Push the result onto the stack.

pop

Operation
Pop the top value from the stack.

Format
pop

Forms
pop = 41 (0x29)

Stack
…, value => …

Description
Pops the top value from the stack and discards it.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 91

popscope

Operation
Pop a scope off of the scope stack

Format
popscope

Forms
popscope = 29(0x1d)

Stack
… => …

Description
Pop the top scope off of the scope stack and discards it.

pushbyte

Operation
Push a byte value.

Format
pushbyte
byte_value

Forms
pushbyte = 36 (0x24)

Stack
… => …, value

Description
byte_value is an unsigned byte. The byte_value is promoted to an int, and the result is pushed
onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 92

pushdouble

Operation
Push a double value onto the stack.

Format
pushdouble
index

Forms
pushdouble = 46 (0x2f)

Stack
… => …, value

Description
index is a u30 that must be an index into the double constant pool. The double value at
index in the double constant pool is pushed onto the stack.

pushfalse

Operation
Push false.

Format
pushfalse

Forms
pushfalse = 39 (0x27)

Stack
… => …, false

Description
Push the false value onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 93

pushint

Operation
Push an int value onto the stack.

Format
pushint
index

Forms
pushint = 45 (0x2d)

Stack
… => …, value

Description
index is a u30 that must be an index into the integer constant pool. The int value at index in
the integer constant pool is pushed onto the stack.

pushnamespace

Operation
Push a namespace.

Format
pushnamespace
index

Forms
pushnamespace = 49 (0x31)

Stack
… => …, namespace

Description
index is a u30 that must be an index into the namespace constant pool. The namespace value
at index in the namespace constant pool is pushed onto the stack.

pushnan

Operation
Push NaN.

Format
pushnan

Forms
pushnan = 40 (0x28)

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 94

Stack
… => …, NaN

Description
Push the value NaN onto the stack.

pushnull

Operation
Push null.

Format
pushnull

Forms
pushnull = 32 (0x20)

Stack
… => …, null

Description
Push the null value onto the stack.

pushscope

Operation
Push an object onto the scope stack.

Format
pushscope

Forms
pushscope = 48 (0x30)

Stack
…, value => …

Description
Pop value off of the stack. Push value onto the scope stack.

Runtime exceptions
A TypeError is thrown if value is null or undefined.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 95

pushshort

Operation
Push a short value.

Format
pushshort
value

Forms
pushshort = 37 (0x25)

Stack
… => …, value

Description
value is a u30. The value is pushed onto the stack.

pushstring

Operation
Push a string value onto the stack.

Format
pushstring
index

Forms
pushstring = 44 (0x2c)

Stack
… => …, value

Description
index is a u30 that must be an index into the string constant pool. The string value at index
in the string constant pool is pushed onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 96

pushtrue

Operation
Push true.

Format
pushtrue

Forms
pushtrue = 38 (0x26)

Stack
… => …, true

Description
Push the true value onto the stack.

pushuint

Operation
Push an unsigned int value onto the stack.

Format
pushuint
index

Forms
pushuint = 46 (0x2e)

Stack
… => …, value

Description
index is a u30 that must be an index into the unsigned integer constant pool. The value at
index in the unsigned integer constant pool is pushed onto the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 97

pushundefined

Operation
Push undefined.

Format
pushundefined

Forms
pushundefined = 33 (0x21)

Stack
… => …, undefined

Description
Push the undefined value onto the stack.

pushwith

Operation
Push a with scope onto the scope stack

Format
pushwith

Forms
pushwith = 28(0x1c)

Stack
…, scope_obj => …

Description
scope_obj is popped off of the stack, and the object is pushed onto the scope stack. scope_obj can be of
any type.

Runtime exceptions
A TypeError is thrown if scope_obj is null or undefined.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 98

returnvalue

Operation
Return a value from a method.

Format
returnvalue

Forms
returnvalue = 72 (0x48)

Stack
…, return_value => …

Description
Return from the currently executing method. This returns the top value on the stack.
return_value is popped off of the stack, and coerced to the expected return type of the
method. The coerced value is what is actually returned from the method.

Runtime exceptions
A TypeError is thrown if return_value cannot be coerced to the expected return type of the
executing method.

returnvoid

Operation
Return from a method.

Format
returnvoid

Forms
returnvoid = 71 (0x47)

Stack
… => …

Description
Return from the currently executing method. This returns the value undefined. If the
method has a return type, then undefined is coerced to that type and then returned.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 99

rshift

Operation
Signed bitwise right shift.

Format
rshift

Forms
rshift = 166 (0xa6)

Stack
…, value1, value2 => …, value3

Description
Pop value1 and value2 off of the stack, convert value1 to an int to create value1_int and
convert value2 to a uint to create value2_uint. Right shift value1_int by the result of
value2_uint & 0x1F (leaving only the 5 least significant bits of value2_uint), and push the
result onto the stack. The right shift is sign extended, resulting in a signed 32-bit integer. See
ECMA-262 section 11.7.2

setlocal

Operation
Set a local register.

Format
setlocal
index

Forms
setlocal = 99 (0x63)

Stack
…, value => …

Description
index is a u30 that must be an index of a local register. The register at index is set to value,
and value is popped off the stack.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 100

setlocal_<n>

Operation
Set a local register.

Format
setlocal_<n>

Forms
setlocal_0 = 212 (0xd4)
setlocal_1 = 213 (0xd5)
setlocal_2 = 214 (0xd6)
setlocal_3 = 215 (0xd7)

Stack
…, value => …

Description
<n> is an index of a local register. The register at that index is set to value, and value is
popped off the stack.

setglobalslot

Operation
Set the value of a slot on the global scope.

Format
setglobalslot
slotindex

Forms
setglobalslot = 111 (0x6f)

Stack
…, value => …

Description
slotindex is a u30 that must be an index of a slot on the global scope. The slotindex must be
greater than zero and less than or equal to the total number of slots the global scope has.

This instruction will set the value of the slot at slotindex of the global scope to value. value is
first coerced to the type of the slot indicated by slotindex.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 101

setproperty

Operation
Set a property.

Format
setproperty
index

Forms
setproperty = 97 (0x61)

Stack
…, obj, [ns], [name], value => …

Description
value is the value that the property will be set to. value is popped off the stack and saved.

index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

The property with the name specified by the multiname will be resolved in obj, and will be
set to value. If the property is not found in obj, and obj is dynamic then the property will be
created and set to value. See “Resolving multinames” on page 10.

Runtime exceptions
A TypeError is thrown if obj is null or undefined.

A ReferenceError is thrown if the property is const, or if the property is unresolved and obj is
not dynamic.

setslot

Operation
Set the value of a slot.

Format
setslot
slotindex

Forms
setslot = 109 (0x6d)

Stack
…, obj, value => …

Description
slotindex is a u30 that must be an index of a slot on obj. slotindex must be greater than 0 and
less than or equal to the total number of slots obj has.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 102

This will set the value stored in the slot at slotindex on obj to value. value is first coerced to
the type of the slot at slotindex.

Runtime exceptions
A TypeError is thrown if obj is null or undefined.

setsuper

Operation
Sets a property in a base class.

Format
setsuper
index

Forms
setsuper = 5 (0x05)

Stack
…, obj, [ns], [name], value => …

Description
value is the value that the property will be set to. value is popped off the stack and saved.

index is a u30 that must be an index into the multiname constant pool. If the multiname at
that index is a runtime multiname the name and/or namespace will also appear on the stack
so that the multiname can be constructed correctly at runtime.

Once the multiname is constructed the base class of obj is determined and the multiname is
resolved in the declared traits of the base class. The property is then set to value. See
“Resolving multinames” on page 10.

Runtime exceptions
A TypeError is thrown if obj is null or undefined.

A ReferenceError is thrown if the property is unresolved, or if the property is read-only.

strictequals

Operation
Compare two values strictly.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 103

Format
strictequals

Forms
strictequals = 172 (0xac)

Stack
…, value1, value2 => …, result

Description
Pop value1 and value2 off of the stack. Compare the two values using the Strict Equality
Comparison Algorithm as described in ECMA-262 section 11.9.6. Push the resulting
Boolean value onto the stack.

subtract

Operation
subtract one value from another.

Format
subtract

Forms
subtract = 161 (0xa1)

Stack
…, value1, value2 => …, value3

Description
Pop value1 and value2 off of the stack and convert value1 and value2 to Number to create
value1_number and value2_number. Subtract value2_number from value1_number. Push the
result onto the stack.

Notes
For more information, see ECMA-262 section 11.6 (“Additive Operators”).

subtract_i

Operation
Subtract an integer value from another integer value.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 104

Format
subtract_i

Forms
subtract_i = 198 (0xc6)

Stack
…, value1, value2 => …, value3

Description
Pop value1 and value2 off of the stack and convert value1 and value2 to int to create
value1_int and value2_int. Subtract value2_int from value1_int. Push the result onto the
stack.

swap

Operation
Swap the top two operands on the stack

Format
swap

Forms
swap = 43(0x2b)

Stack
…, value1, value2 => …, value2, value1

Description
Swap the top two values on the stack. Pop value2 and value1. Push value2, then push value1.

throw

Operation
Throws an exception.

Format
throw

Forms
throw = 3 (0x03)

Stack
…, value => …

Description
The top value of the stack is popped off the stack and then thrown. The thrown value can be
of any type.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 105

When a throw is executed, the current method’s exception handler table is searched for an
exception handler. An exception handler matches if its range of offsets includes the offset of
this instruction, and if its type matches the type of the thrown object, or is a base class of the
type thrown. The first handler that matches is the one used.

If a handler is found then the stack is cleared, the exception object is pushed onto the stack,
and then execution resumes at the instruction offset specified by the handler.

If a handler is not found, then the method exits, and the exception is rethrown in the
invoking method, at which point it is searched for an exception handler as described here.

typeof

Operation
Get the type name of a value.

Format
typeof

Forms
typeof = 149 (0x95)

Stack
…, value => …, typename

Description
Pop a value off of the stack. Determine its type name according to the type of value:

1. undefined = "undefined"

2. null = "object"

3. Boolean = "Boolean"

4. Number | int | uint = "number"

5. String = "string"

6. Function = "function"

7. XML | XMLList = "xml"

8. Object = "object"

Push typename onto the stack.

urshift

Operation
Unsigned bitwise right shift.

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 106

Format
urshift

Forms
urshift = 167 (0xa7)

Stack
…, value1, value2 => …, value3

Description
Pop value1 and value2 off of the stack, convert value1 to an int to create value1_int and
convert value2 to a uint to create value2_uint. Right shift value1_int by the result of
value2_uint & 0x1F (leaving only the 5 least significant bits of value2_uint), and push the
result onto the stack. The right shift is unsigned and fills in missing bits with 0, resulting in
an unsigned 32-bit integer. See ECMA-262 section 11.7.3

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 107

6 Hints for compiler writers

The following techniques may be useful to compiler writers targeting the AVM2.

6.1 Reestablishing the scope stack following an exception

When an exception handler is entered, the scope stack established in the catching method has been cleared (see
the description of throw in the previous chapter). This is not always desired; a try..catch statement inside a
with statement requires the extended scope of the with to still be established. The way to work around the
clearing of the scope stack is for the exception handler to reestablish the scope stack by pushing the correct set
of objects onto it before executing the body of the handler. That is, in this code:

 with (x) {
 try {
 ...
 }
 catch (e) {
 return y
 }
 }

the body of the catch clause needs to look something like this, assuming x is in local 0:

 getlocal_0
 pushwith

... ; set up catch scope
 findproperty “y”
 getproperty “y”
 returnvalue

6.2 In-line subroutines for handling “finally”

A finally clause on a try block must be visited when control flows out of the try block (or out of the
associated catch clause). It is possible to expand the body of the finally clause in-line everywhere it needs to
be visited, but this tends to greatly increase the amount of compiled code in the program. A more reasonable
approach is to expand the finally clause once and visit it by means of the jump instruction. To have this
“subroutine” return to the point from which it was “called”, the “caller” stores a value identifying itself in a
local variable. The finally clause returns to this location by means of a lookupswitch instruction:

Adobe ActionScript Virtual Machine 2 (AVM2) Overview 108

 pushshort 0
 setlocal_0
 jump L1
R1 ... ; Code following subroutine call
 ...
 pushshort 1
 setlocal_0
 jump L1
R2 ... ; Code following subroutine call
 ...
L1 ; Subroutine. Return “address” in local 0

... ; Body of subroutine
 getlocal_0
 lookupswitch
 0 -> R1
 1 -> R2

(This only highlights the fact that lookupswitch is a computed goto.)

6.3 Creating an environment for nested functions

ActionScript functions that are passed around as values close over their environment, including the
environment’s local variables, when they are created. Since the local registers of an activation are not captured
when the newfunction instruction is executed, the environment for non-leaf functions must be stored in
activation objects that can be captured properly. The newactivation instruction creates such an activation.
Given the source code:

 function f(x) {
 return function () { return x }
 }

a suitable translation is along the lines of

 newactivation ; create a new activation record
 dup ; and save a copy
 pushscope ; and extend the current scope
 getlocal_o ; get x parameter
 setproperty “x” ; store x in the activation
 newfunction <inner> ; create a new function
 returnvalue

where <inner> is just a reference to the method body for the nested function. Note that newfunction
captures the contents of the scope stack, but not the local registers or the operand stack.

6.4 Optimizing method dispatch

The instructions callmethod and callstatic can be used to optimize method dispatch. They require that
the method properties of the receiver object be laid out in a particular order; the compiler provides explicit non-
zero offsets for the methods in the trait_method structure in the abcFile. The call instructions then call
directly through the method table offsets, avoiding the name lookup. The verifier needs to be able to determine
that the receiver object is of a type that has a method table that has a method at that offset. Usually this means
that the receiver object can only be read by the bytecode from type-annotated locations, or that the call
instruction must be preceded by a coerce instruction.

	1 Introduction
	1.1 Concepts

	2 The structure of the ActionScript Virtual Machine
	2.1 Constant values
	2.2 Virtual machine overview
	2.3 Names
	2.3.1 QName (Qualified Name)
	2.3.2 RTQName (Runtime Qualified Name)
	2.3.3 RTQNameL (Runtime Qualified Name Late)
	2.3.4 Multiname (Multiple Namespace Name)
	2.3.5 MultinameL (Multiple Namespace Name Late)
	2.3.6 Resolving multinames

	2.4 Method invocation notes
	2.5 Instruction set summary
	2.5.1 Load and store instructions
	2.5.2 Arithmetic instructions
	2.5.3 Bit manipulation instructions
	2.5.4 Type conversion instructions
	2.5.5 Object creation and manipulation instructions
	2.5.6 Stack management instructions
	2.5.7 Control transfer instructions
	2.5.8 Function invocation and return instructions
	2.5.9 Exception instructions
	2.5.10 Debugging instructions

	3 Loading, linking, verification, and execution
	3.1 Overview
	3.2 Loading and linking
	3.3 Execution
	3.3.1 Program invocation and exit
	3.3.2 Class initialization
	3.3.3 Method entry
	3.3.4 Execution mechanics
	3.3.5 Calling and returning
	3.3.6 Exception handling

	3.4 Verification

	4 The ActionScript Byte Code (abc) format
	4.1 Primitive data types
	4.2 abcFile
	4.3 Constant pool
	4.4 String
	4.4.1 Namespace
	4.4.2 Namespace set
	4.4.3 Multiname

	4.5 Method signature
	4.5.1 Optional parameters
	4.5.2 Parameter names

	4.6 metadata_info
	4.7 Instance
	4.8 Trait
	4.8.1 Summary of trait types
	4.8.2 Slot and const traits
	4.8.3 Class traits
	4.8.4 Function traits
	4.8.5 Method, getter, and setter traits
	4.8.6 Trait attributes

	4.9 Class
	4.10 Script
	4.11 Method body
	4.12 Exception

	5 AVM2 instructions
	6 Hints for compiler writers
	6.1 Reestablishing the scope stack following an exception
	6.2 In-line subroutines for handling “finally”
	6.3 Creating an environment for nested functions
	6.4 Optimizing method dispatch

