

Filters and
Reusable Streams

9 October 1997

Technical Note #5603

LanguageLevel 3

PN LPS5603

Adobe Systems Incorporated

Adobe Systems Europe Limited
Adobe House, Mid New Cultins
Edinburgh EH11 4DU
Scotland, United Kingdom
+44-131-453-2211

Adobe Systems Japan
Yebisu Garden Place Tower
4-20-3 Ebisu, Shibuya-ku
Tokyo 150 Japan
+81-3-5423-8100

Corporate Headquarters
345 Park Avenue
San Jose, CA 95110-2704
(408) 536-6000

Eastern Regional Office
24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120

Adobe

®

 Developers Association

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed

Copyright © 1997 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated.

No part of this publication (whether in hardcopy or electronic form) may be reproduced or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of the publisher.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems
Incorporated unless otherwise stated. The name PostScript also is used as a product trademark for
Adobe Systems’ implementation of the PostScript language interpreter.

Adobe, PostScript, PostScript 3, and the PostScript logo are trademarks of Adobe Systems
Incorporated. Apple and Macintosh are trademarks of Apple Computer, Inc. registered in the U.S. and
other countries. All other trademarks are the property of their respective owners.

Contents

A

dobe S
ystem

s Incorporated

1 Filters and Reusable Streams 11
Overview of Filters 11
General Changes to PostScript Filters 12
The Benefits of Using Filters and Reusable Streams 14

2 ASCII-Based Filters 15
The ASCIIHexEncode and ASCIIHexDecode Filters 15
The ASCII85Encode and ASCII85Decode Filters 17

3 LZW Filters 18

4 RunLength Filters 19

5 CCITTFax Filters 20

6 NullEncode Filter 20

7 DCT Filters 21

8 SubFileDecode Filter 23

9 New Filters for LanguageLevel 3 24
FlateEncode and FlateDecode Filters 24
Reusable Streams and the ReusableStreamDecode Filter 28
GIFDecode Filter 35
PNGDecode Filter 36
iii

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed
iv Contents 9 October 1997

Tables
A
dobe S

ystem
s Incorporated
Table 1 Filters Available in the PostScript Language 12
Table 2 Keys Available in All Encode Filter Dictionaries 13
Table 3 Keys Available in All Decode Filter Dictionaries 13
Table 4 Keys in the LZWDecode Filter Dictionary 18
Table 5 Keys in the FlateEncode Filter Dictionary 25
Table 6 Keys in the FlateDecode Filter Dictionary 26
Table 7 Keys in the ReusableStreamDecode Dictionary 31
v

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed
vi Tables 9 October 1997

Examples
A
dobe S

ystem
s Incorporated
Example 1 Use of the ASCIIHexEncode Filter 16
Example 2 Use of an ASCII85Decode Filter to Decode a PostScript Language Stream

17
Example 3 Use of the ASCII85Decode and RunLengthDecode Filters 19
Example 4 Use of the DCTEncode Filter 21
Example 5 Decoding and Printing a JPEG-compressed File 22
Example 6 Use of the SubFileDecode Filter 23
Example 7 Use of the ReusableStreamDecode Filter 33
vii

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed
viii Figures 9 October 1997

Preface
A
dobe S

ystem
s Incorporated
This Document

This is the original release for Filters and Reusable Streams, a document that
provides a detailed description of the LanguageLevel 3 extensions to filters.

Intended Audience

This document is written for software developers who are interested in
learning about filters and reusable streams or adding these capabilities to an
application that supports PostScript® display or printing devices.

It is assumed that the developer is already familiar with how filters work in
previous levels of the PostScript language.

Organization of This Document

Section 1, “Filters and Reusable Streams,” gives a general overview of filters
in the PostScript language. It also covers some of the changes to filters for
LanguageLevel 3. Finally, it presents some of the major benefits of using
filters and reusable streams in applications.

Section 2, “ASCII-Based Filters,” reviews the ASCIIHex and ASCII85 filters.

Section 3, “LZW Filters,”discusses the changes to the LZWEncode and
LZWDecode filters.

Section 4, “RunLength Filters,” reviews the RunLengthEncode and
RunLengthDecode filters.

Section 5, “CCITTFax Filters,” covers the changes to the filters available for
FAX data.

Section 6, “NullEncode Filter,” reviews this special encoding filter.

Section 7, “DCT Filters,” reviews the filters used for JPEG files.

Section 8, “SubFileDecode Filter,” presents the changes to this decode filter.
ix

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed

Section 9, “New Filters for LanguageLevel 3,” discusses the filters that have
been introduced for LanguageLevel 3, including the FlateEncode and
FlateDecode filters, the GIFDecode filter, the PNGDecode filter, and the
ReusableStreamDecode filter.

Related Publications

Supplement: PostScript Language Reference Manual (LanguageLevel 3
Specification and Adobe PostScript 3™ Version 3010 Supplement), available
from the Adobe Developers Association, describes the formal extensions to
the PostScript language that have occurred since the publication of the
PostScript Language Reference Manual, Second Edition. This supplement
also includes all LanguageLevel 3 extensions available in version 3010.

PostScript Language Reference Manual, Second Edition (Reading, MA:
Addison-Wesley, 1991) is the developer’s reference manual for the PostScript
language. It describes the syntax and semantics of the language, the imaging
model, and the effects of the graphical operators.

C language source code is available for some filters from the Adobe
Developers Association. Although these files were written to accompany the
release of an earlier level of the PostScript language, they should, for the
most part, apply to discussions in this document.

The Bibliography lists some of the many outside sources of information on
filters and filter specifications.

Statement of Liability

THIS PUBLICATION AND THE INFORMATION HEREIN IS FURNISHED
AS IS, IS SUBJECT TO CHANGE WITHOUT NOTICE, AND SHOULD NOT
BE CONSTRUED AS A COMMITMENT BY ADOBE SYSTEMS
INCORPORATED. ADOBE SYSTEMS INCORPORATED ASSUMES NO
RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR
INACCURACIES, MAKES NO WARRANTIES OF ANY KIND (EXPRESS,
IMPLIED, OR STATUTORY) WITH RESPECT TO THIS PUBLICATION,
AND EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF
MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSES, AND
NONINFRINGMENT OF THIRD-PARTY RIGHTS.
x Preface 9 October 1997

Filters and Reusable Streams
A
dobe S

ystem
s Incorporated
1 Filters and Reusable Streams

1.1 Overview of Filters

Many PostScript language operators and programs now produce or consume
data streams that can be encoded in various forms, usually for purposes of
compression and/or for reliable transmission through seven-bit ASCII
networks. Such data sources are defined in terms of filters that perform some
kind of transformation on an incoming or outgoing data stream.

A filter is in fact a special kind of file object. The semantics of filters expand
the definition of files in the following way: the data target or data source of a
filter can be a string or a procedure, not just a file such as currentfile or a disk
file. In the case of a string, the filter simply writes bytes to, or reads bytes
from, the string.

Filters can be cascaded; that is, a source of data can be decoded, for instance,
in ASCII85 format (see Section 2.2) and then further decompressed through a
Flate filter (see Section 9.1). Example 3 shows how two filters might be used
together.

Filters were introduced in an earlier level of the PostScript language and their
capabilities have now been expanded in LanguageLevel 3. The changes to
filters are covered in the next section.

Note For more information on data compression using PostScript language filters,
see Technical Note #5115, “Supporting Data Compression in PostScript
Level 2 and the filter Operator.”
11

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed

1.2 General Changes to PostScript Filters

Some new filter types have been added to LanguageLevel 3; in addition,
several changes have been made to some of the filters already supported in
the PostScript language. Although some of the filters have not changed at all
for this release of the PostScript language, they are reviewed in this document
for completeness.

Table 1 illustrates the various types of filters available in the PostScript
language and when they were introduced.

Table 1 Filters Available in the PostScript Language

In LanguageLevel 3, all encoding filters, with the exception of the
NullEncode filter, have become optional in PostScript printers. All of the
decoding filters, except for GIFDecode and PNGDecode, are still required.
The GIFDecode and PNGDecode filters are considered optional filters used
only as part of the implementation of web printing. Standard PostScript
language programs should not invoke these two decode filters. The
resourceforall or resourcestatus operators should be used to determine the
list of available filters in a given device. This list of filters can be found in the
implicit resource category called Filter.

Note To ensure portability, PostScript language programs that are page
descriptions should not invoke the optional encode filters.

Encode Filters Decode Filters LanguageLevel

ASCIIHexEncode ASCIIHexDecode 2

ASCII85Encode ASCII85Decode 2

LZWEncode LZWDecode 2

RunLengthEncode RunLengthDecode 2

CCITTFaxEncode CCITTFaxDecode 2

DCTEncode DCTDecode 2

SubFileDecode 2

NullEncode 2

FlateEncode FlateDecode 3

GIFDecode 3

Reusable-
StreamDecode

3

PNGDecode 3
12 Filters and Reusable Streams 9 October 1997

A

dobe S
ystem

s Incorporated

As of LanguageLevel 3, all encode and decode filters now take an optional
dictionary of one or more filter parameters (To be more exact, dictionary
support for filters was added into LanguageLevel 2 after the PostScript
Language Reference Manual, Second Edition was published). Parameters
available to all filter dictionaries are shown in Table 2 and 3 and described
below. Dictionary parameters for specific filters, if available, are discussed in
Sections 2 through 9.

Table 2 Keys Available in All Encode Filter Dictionaries

CloseTarget for encode filters has been added as an optional Boolean key in
the optional encode filter dictionary. If this key is missing, its value defaults
to false. If the value of CloseTarget is true, then whenever the filter is closed,
either explicitly by the closefile operator or implicitly (by the restore
operator, garbage collection, or reaching end of data (EOD)), then, if
applicable, the data target of the filter will also be closed; this may be an
iterative process. If the value of the CloseTarget key is false, no additional
action is taken on the data source or target (this is the default behavior of
LanguageLevel 2 devices).

Table 3 Keys Available in All Decode Filter Dictionaries

CloseSource for decode filters has been added as an optional Boolean key in
the optional decode filter dictionary. Its definition and use is the same as that
for the CloseTarget key, described above.

Note Several new instances of the implicit resource category Filter have been
added in LanguageLevel 3. These new instances are GifDecode,
PNGDecode, FlateEncode, FlateDecode, and ReusableStreamDecode.
For more information, see Section 3.3 of the Supplement: PostScript
Language Reference Manual.

Note There are five new instances of the implicit resource Filter. These are
FlateEncode, FlateDecode, GIFDecode, PNGDecode, and
ReusableStreamDecode. See Section 3.1 of the Supplement: PostScript
Language Reference Manual, for more information.

Key Type

CloseTarget Boolean optional

Key Type

CloseSource Boolean optional
1 Filters and Reusable Streams 13

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed

1.3 The Benefits of Using Filters and Reusable Streams

The following benefits can be achieved from using filters and reusable
streams:

• The GIFDecode and PNGDecode filters enable the PostScript interpreter
to directly extract the image data from GIF format and PNG format
images, respectively. GIF is an image format commonly used for web
content. It is based on LZW compression. PNG is a proposed new
standard, based on Flate compression. Since Flate is an open standard, it
can be assumed that PNG will become one of the standard image formats
for web content.

In addition to decompressing the image content, the GIFDecode and
PNGDecode filters also strip off all the header information, which is more
than is done by the LZW and Flate filters.

• Flate filters discover and exploit many patterns in input data, whether it be
images or text. Because of their cascaded, adaptive Huffman coding,
Flate-encoded output is usually substantially more compact (tighter
compression) than LZW-encoded output given the same input.

• The FlateDecode filter can be used to decompress raster images in the
Portable Network Graphics (PNG) format. The PNG format is an
extensible file format that provides lossless, portable, and well-
compressed storage of raster images. The DEFLATE compressed data
streams within PNG are stored in the zlib format. PNG provides a patent-
free replacement for GIF and can also replace many common uses of
TIFF.
14 Filters and Reusable Streams 9 October 1997

A
dobe S

ystem
s Incorporated
2 ASCII-Based Filters

The ASCII-based filters include the ASCIIHex format and the ASCII85
format. They can encode binary data in either hexadecimal or base-85 format,
and decode these formats back to a standard binary format. They both use
special character sequences to mean end of data (EOD). Binary based filters
usually recognize EOD based on byte counts or based on special end of data
characters.

Note All of the ASCII-based filters accept an optional dictionary that includes the
CloseTarget key for the encode filters and the CloseSource key for the
decode filters.

2.1 The ASCIIHexEncode and ASCIIHexDecode Filters

ASCIIHexEncode and ASCIIHexDecode filters are very simple filters whose
most common purpose is in processing image data represented as
hexadecimal quartets (two pairs of ASCII hexadecimal digits). Prior to
LanguageLevel 2, the common technique for reading image or imagemask
data was a procedure containing a readhexstring operator. The common
method for processing an image in this manner used a PostScript language
sequence similar to the following:

width height depth procedure image

where procedure would look something like this:

{currentfile tempstring readhexstring pop}

With the addition of ASCIIHexDecode (and image dictionaries), the
sequence becomes much more simple to state, and more efficient. The image
dictionary can now contain a DataSource key whose value can read as
follows:

/DataSource currentfile /ASCIIHexDecode filter

Such a filter reads ASCII-encoded hexadecimal data, where each byte of
input data specifies a hexadecimal quartet with a value between 0 and 15 (0–
9 and either A–F or a–f).

The EOD symbol for ASCIIHexEncode and ASCIIHexDecode is the >
character.
2 ASCII-Based Filters 15

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
Example 1 creates an 300 by 300 dpi image whose pixels are random shades
of gray. This simple example illustrates how an encoding filter is used to
write data to an output file. The data is generated by a procedure, and the
writestring operator is used to write the string data to the filter. The filter
encodes the data and writes the encoded result to the final target.

Example 1 Use of the ASCIIHexEncode Filter

%!PS
% Define the output file name and a temp string
/data (hex.ps) (w) file def
/junk 1 string def
% stack is the output file
% 300 rows of 300 pixels
% Generate a random number, then use the lower 8 bits
% Write to the filter
/GenData {
 300 {
 300 {
 /s rand def
 junk 0 s 16#FF and put

hex junk writestring
} repeat
} repeat
} def
% the output file is the target
% use ASCIIHexEncode as the filter
data
/ASCIIHexEncode filter
% define the file object
/hex exch def
% generate the data, which is written to the file
% object encoded by the filter
% and written to the output
GenData
% close the filter
hex closefile

Note There are C language source code files available for the ASCIIHexEncode
filter. These files are aschexec.c and protos.h. Although these files were
written to accompany an earlier level of the PostScript language, their
information and use should still apply. Source code can be acquired under
license through the Adobe Developers Association.

Note For more information on the ASCIIHexEncode and ASCIIHexDecode
filters, see Sections 3.8.4 and 3.13 of the PostScript Language Reference
Manual, Second Edition.
16 Filters and Reusable Streams 9 October 1997

A
dobe S

ystem
s Incorporated
2.2 The ASCII85Encode and ASCII85Decode Filters

ASCII85Encode and ASCII85Decode are also simple filters. They have the
advantage of providing a small compression of the data (around 4:5) over and
above a hexadecimal encoded file. Data in this format is encoded in base-85
format so that binary data can be encoded as seven-bit readable ASCII data.
The main advantage of this format is that all the seven-bit ASCII characters
can be safely transmitted over network connections that are not eight-bit
clean (in other words, the data avoids the problem of interference by
operating systems or communication channels that preempt use of control
characters prevalent in eight-bit formats). ASCII85 is the encoding scheme
used by the uuencode and uudecode programs available on UNIX systems.
The EOD symbol for ASCII85Encode and ASCII85Decode is the ~>
sequence of characters (tilde and “greater than” characters).

Example 2 shows the calling sequence to use an ASCII85Decode filter to
decode a PostScript language stream.

Example 2 Use of an ASCII85Decode Filter to Decode a PostScript Language Stream

% A very small code sequence
...
currentfile /ASCII85Decode filter cvx exec
% The stream of data is here...
...

Note There are C language source code files available for the ASCII85Encode
and ASCII85Decode filters. These files are asc85dc.c, asc85ec.c, and
protos.h. Although these files were written to accompany an earlier level of
the PostScript language, their information and use should still apply. Source
code can be acquired under license through the Adobe Developers
Association.

Note For more information on the ASCII85Encode and ASCII85Decode filters,
see Sections 3.8.4 and 3.13 of the PostScript Language Reference Manual,
Second Edition.
2 ASCII-Based Filters 17

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
3 LZW Filters

LZWEncode and LZWDecode are filters for encoding and decoding data
according to the LZW (Lempel-Ziv-Walsh) compression scheme. LZW
filters provide a lossless (no data loss) compression scheme. The syntax for
using the LZWDecode filter is as follows:

target dict /LZWDecode filter

where dict is an optional dictionary.

Two new keys, in addition to CloseSource, have been added to the optional
LZWDecode dictionary for LanguageLevel 3. Both of these keys refer to the
form of the encoded data. They are shown in Table 4.

Table 4 Keys in the LZWDecode Filter Dictionary

UnitSize specifies the size of the units encoded by LZW. The only supported
values are 2, 3, 4, 5, 6, 7, and 8. The default value for UnitSize is 8.

LowBitFirst specifies the endianness of the encoded byte stream. If the value
is true, the encoded data is treated as big-endian. Big-endian means that the
most significant bit or byte of data appears in the data stream before the next
most significant bit or byte. If the value of LowBitFirst is false, the data is
treated as little-endian. Little-endian means that the least significant bit or
byte of data appears in the data stream before the next least significant bit or
byte. The default value for the LowBitFirst key is false.

Note The LZWEncode filter can take an optional dictionary with the CloseTarget
key.

The Flate filters (see Section 9.1), added in LanguageLevel 3, provide a
similar method for data compression and are a patent-free alternative to LZW
filters.

LZW compression has a worst-case expansion of at least a factor of 1.125,
which can increase to a factor of nearly 1.5 in some implementations (plus
the added effects of PNG tags, as with FlateEncode filters).

Note For more information on the LZWEncode and LZWDecode filters, see
Section 3.3 of the Supplement: PostScript Language Reference Manual, or
Sections 3.8.4 and 3.13 of the PostScript Language Reference Manual,
Second Edition.

Key Type

UnitSize integer optional

LowBitFirst boolean optional
18 Filters and Reusable Streams 9 October 1997

A
dobe S

ystem
s Incorporated
4 RunLength Filters

RunLengthEncode and RunLengthDecode filters implement a very simple
run-length encoding technique that provides reasonable compression at a low
cost in performance, although its compression performance is not as good as
either LZW or Flate. RunLength filters implement a lossless (no data loss)
compression scheme that is similar to the Apple Macintosh PackBits routine.
Data in a RunLength encoded file is represented as a sequence of runs. Each
run consists of a length byte, followed by 1 to 128 data bytes. A length byte in
the range of 0 to 127 indicates that the following (length+1) bytes are to be
copied literally; that is, this run of bytes is not compressed. A length byte in
the range 129 to 255 indicates that the following single byte is to be
replicated (257 – length) times (that is, 2 to 128 times). This pair of bytes
indicates a compressed run. A length byte whose value is 128 indicates the
end of data (EOD).

Note The RunLength filters now accept an optional dictionary.

Example 3 shows how RunLength compression and ASCII base-85 encoding
are applied to image data.

Example 3 Use of the ASCII85Decode and RunLengthDecode Filters

% A code sample
0 setgray
/rows 150 def
/cols 150 def
/bits 8 def
/mystream currentfile /ASCII85Decode filter
/RunLengthDecode filter def
/beginimage
{

50 70 translate
500 500 scale
cols rows bits [cols 0 0 rows neg 0 rows]
mystream image

} def
beginimage
% image data goes here...

Note There are C language source code files available for RunLengthDecode
filters. These files are runlendc.c, runlenec.c, and protos.h. Although these
files were written to accompany an earlier level of the PostScript language,
their information and use should still apply. Source code can be acquired
under license through the Adobe Developers Association.

Note For more information on the RunLengthEncode and RunLengthDecode
filters, see Sections 3.8.4 and 3.13 of the PostScript Language Reference
Manual, Second Edition.
4 RunLength Filters 19

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
5 CCITTFax Filters

CCITT stands for the Comité Consultatif International Télégraphique et
Téléphonique. This filter type, known as CCITTFaxEncode and
CCITTFaxDecode, is used for encoding and decoding facsimile (FAX) data
according to the CCITT standards. This filter is primarily intended for
encoding and decoding image data, not for communicating with FAX
machines.

Note The CCITTFax filters accept an optional dictionary that includes the
CloseTarget key for the encode filters and the CloseSource key for the
decode filters.

The implementation-defined limit for the value of the Columns key in the
decode dictionary has been increased from 25,000 to 62,000 for
LanguageLevel 3.

Note There are C language source code files available for the CCITTFaxEncode
and CCITTFaxDecode filters. These files are readme.fax, makefile, bitstm.h,
ccmp.h, ccmpcode.h, ccmptab.h, cfaxfilt.h, protos.h, ccmpec.c, ccmpjc.c,
flipbyte.c, revbits.c, and runtab0.c. Although these files were written to
accompany an earlier level of the PostScript language, their information and
use should still apply. Source code can be acquired under license through the
Adobe Developers Association.

Note For more information on the CCITTFaxEncode and CCITTFaxDecode
filters, see Section 3.3 of the Supplement: PostScript Language Reference
Manual, or Sections 3.8.4 and 3.13 of the PostScript Language Reference
Manual, Second Edition. See also Technical Note #5128, “PostScript Level 2
and Fax Modem Printing.”

6 NullEncode Filter

NullEncode performs no data transformation; its output is identical to its
input. Its primary function is to allow an arbitrary output target (file,
procedure, or string) to be treated as an output file.

Note The NullEncode filter accepts an optional dictionary that includes the
CloseTarget key.

Note For more information on the NullEncode filter, see Sections 3.8.4 and 3.13 of
the PostScript Language Reference Manual, Second Edition.
20 Filters and Reusable Streams 9 October 1997

A
dobe S

ystem
s Incorporated
7 DCT Filters

DCT (Discrete Cosine Transform) filters are used for encoding and decoding
grayscale or color image data in JPEG format. On LanguageLevel 3 printers
that support web printing, the DCTDecode filter has been extended to decode
progressive JPEG, a format which is widely used in web images. However,
progressive JPEG is not part of LanguageLevel 3 and should not be used in
LanguageLevel 3 programs; these programs should only use the Baseline
Sequential JPEG variation. Decoding progressive JPEG images requires extra
RAM to hold the complete image raster, typically 05, 1, or 2 times the size of
the image in pixels, depending upon compression parameters. This memory
requirement can be prohibitive for really large images.

Note This encoding scheme is lossy and is not suitable for use with LanguageLevel
3 masked image data, or for image data in general.

Example 4 shows a partial PostScript language program that compresses a
left-to-right, top-to-bottom raster 3-color RGB image using the DCTEncode
filter and writes the compressed image on another file.

Example 4 Use of the DCTEncode Filter

% Open a dictionary that contains optional parameters
jpeg begin
save mark 4 -2 roll
{

/dest exch (w) file def % Open arg2 as output file
/src exch (r) file def % Open arg1 as input file
/Colors 3 def % Setup image-specific parameters
/Columns 512 def
/Rows 512 def
/buf Columns Colors mul string def
/filtdest dest jpeg /DCTEncode filter def
Rows {

filtdest src buf readstring pop writestring
} repeat

filtdest closefile dest closefile
} stopped {handleerror} if cleartomark restore
end % Close optional parameters dictionary
7 DCT Filters 21

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
Example 5 shows a partial PostScript language program that decodes and
prints a JPEG-compressed file. The original photographic image was 24-bit
RGB, 8 bits per component, 525 pixels high, 727 pixels wide, and 150 pixels
per inch.

Example 5 Decoding and Printing a JPEG-compressed File

/DeviceRGB setcolorspace
126 270 translate % Center image on letter paper
349 252 scale % Scale image to original size
% Create a procedure to decode and image the
% DCT-encoded data. Note that ‘exec’ is followed by
% exactly one space character
{

/Data currentfile /DCTDecode filter def
<<

/ImageType 1
/Width 727
/Height 525
/ImageMatrix [727 0 0 -525 -525]
/DataSource Data
/BitsPerComponent 8
/Decode [0 1 0 1 0 1]

>> image
} exec
% Binary JPEG-encoded image data goes here...
showpage

Note For more information on the DCTEncode and DCTDecode filters, see
Sections 3.8.4 and 3.13 of the PostScript Language Reference Manual,
Second Edition. See also Technical Note #5116, “Supporting the DCT Filters
in PostScript Level 2.”

Note For more information on JPEG compression, see Technical Note #5083,
“JPEG Technical Specification, Revision 9,” and Technical Note #5095,
“JPEG Source Vendor List.”
22 Filters and Reusable Streams 9 October 1997

A
dobe S

ystem
s Incorporated
8 SubFileDecode Filter

The SubFileDecode filter is an input source only filter. Its primary use is to
break an arbitrary input stream into separate chunks. The ability to break the
input file into chunks is based on being able to recognize specific end of data
(EOD) strings. The syntax of the SubFileDecode filter has been changed in
LanguageLevel 3 to the following:

source count string /SubFileDecode filter

This syntax has been extended to allow the following:

source << /EODCount count /EODString string>> /SubFileDecode

filter

If this filter will be used in combination with the ReusableStreamDecode
filter, then the second form of syntax must be used.

Note The SubFileDecode filter accepts an optional dictionary that includes the
CloseSource key.

Example 6 demonstrates how a SubFileDecode filter is used to read
PostScript language code from the standard input file up to a specific marker,
place the input into a file object, and execute the file object. The PostScript
code to draw the first rectangle is defined in the subfile. The second rectangle
is defined simply as PostScript code in the standard input file.

Example 6 Use of the SubFileDecode Filter

%!PS
currentfile 0 (%%EndOfExample) /SubFileDecode filter
/inch {72 mul} def
Define a rectangle, set the color space and fill.
1 inch 6 inch moveto 6.5 inch 0 rlineto
0 4 inch rlineto -6.5 inch 0 rlineto closepath
/DeviceRGB setcolorspace 1.0 0.0 1.0 setcolor fill
% End of the subfile marker
%%EndOfExample
% Define the stream data and run the program
/data exch def
data cvx exec
% Create and show a separate rectangle
1 inch 1 inch moveto 6.5 inch 0 rlineto
0 4 inch rlineto -6.5 inch 0 rlineto closepath
/DeviceRGB setcolorspace 0.0 1.0 1.0 setcolor fill
showpage

Note For more information on the SubFileDecode filter, see Section 3.3 of the
Supplement: PostScript Language Reference Manual, or Sections 3.8.4 and
3.13 of the PostScript Language Reference Manual, Second Edition.
8 SubFileDecode Filter 23

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
9 New Filters for LanguageLevel 3

There are four new filters in LanguageLevel 3. They are the Flate filters, the
ReusableStreamDecode filter, the GIFDecode filter, and the PNGDecode
filter. In principle, reusable streams are a different kind of file object, but they
are classified with filters. The GIF and PNG decode filters are considered
optional filters and are only used on LanguageLevel 3 printers that support
web printing.

9.1 FlateEncode and FlateDecode Filters

Flate filters are based on the DEFLATE compression scheme created by Jean-
Loup Gailly and Mark Adler and described by Peter Deutsch in InterNic RFC
1950 (ZLIB Compressed Data Format Specification version 3.3) and InterNic
RFC 1951 (DEFLATE Compressed Data Format Specification version 1.3).
The DEFLATE compression format is based on a hybrid combination of the
LZ77 (Lempel-Ziv 1977) algorithm and Huffman encoding; it specifies a
lossless, compressed data format. The zlib specification named above
describes a header which indicates the compression method. For the flate
filter, this number is eight, which indicates DEFLATE.

The FlateDecode filter decodes data that is encoded with the zlib/DEFLATE
compression scheme (as is done with ZIP files). This format has an end of
data (EOD) marker. The FlateDecode filter is used with the filter operator as
follows:

source dictionary /FlateDecode filter

The FlateEncode filter is used with the filter operator as follows:

target dictionary /FlateEncode filter

The FlateEncode filter encodes binary or ASCII data, optionally after pre-
transformation by a predictor function, and always produces binary data.
24 Filters and Reusable Streams 9 October 1997

A
dobe S

ystem
s Incorporated
Table 5 shows the keys used in the optional dictionary for a FlateEncode
filter.

Table 5 Keys in the FlateEncode Filter Dictionary

If the value of CloseTarget is true, the output stream is closed when the data
target is closed. The default value of this key is false.

Effort controls the memory used for Flate compression and the execution
speed of the compression. Supported values for this key are –1 to 9, inclusive.
A value of 0 compresses rapidly, but not tightly using little auxiliary memory
(this means that fast execution is possible, but the compression factor will not
be as good as with a higher value. A higher value means better compression,
but slower execution and greater RAM usage.). A value of 9 compresses
slowly but as tightly as possible, using as much auxiliary memory as is
necessary. The default value for this key is –1, which means to map it to a
value in the range [0,9] that is a reasonable default for this implementation
(that is, a value that is based on available RAM).

Columns specifies the number of samples in a sampled row. The value of this
key only has an effect on the filter if the value of Predictor is greater than 1.
See the description of the Predictor key, below. The default value for
Columns is 1.

The Colors key specifies the number of interleaved color components in a
sample. The default value of this key is 1. Again, this key only has an effect
on the filter if the value of Predictor is greater than 1.

BitsPerComponent specifies the number of bits used to represent each color
component. The only supported values for this key are 1, 2, 4, 8, and 16. The
default value is 8.

Note Image data defined with 16 bits per component may not be used directly as
input to the image operator.

Key Type

CloseTarget Boolean optional

Effort integer optional

Predictor integer optional

Columns integer optional

Colors integer optional

BitsPerComponent integer optional
9 New Filters for LanguageLevel 3 25

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
Table 6 shows the keys used in the dictionary for a FlateDecode filter.

The Predictor key is discussed below.

Table 6 Keys in the FlateDecode Filter Dictionary

If the value of CloseSource is true, the output stream is closed when the data
source is closed. The default value for this key is false.

The Columns, Colors, and BitsPerComponent keys are defined the same as
for the Flate encode filter.

Predictor Functions

Like the LZW encode filter, the Flate encode filter compresses more
compactly if its input data is highly predictable. One way of increasing the
predictability of many continuous-tone sampled images is to replace each
pixel with the difference between that pixel and some predictor function
applied to earlier neighboring pixels. If the predictor function works well, the
post-prediction data will cluster toward zero.

Two predictor function groups are supported. The first is the TIFF group,
which consists of the single function that is Predictor 2 in the TIFF standard.
TIFF Predictor 2 predicts that each color component of a pixel will be the
same as the corresponding color component of the pixel immediately to the
left.

The Predictor key in the Flate filter dictionary selects the predictor
function.To select the TIFF Predictor 2 predictor function, the value of the
Predictor key should be 2.

Key Type

CloseSource Boolean optional

Predictor integer optional

Columns integer optional

Colors integer optional

BitsPerComponent integer optional
26 Filters and Reusable Streams 9 October 1997

A
dobe S

ystem
s Incorporated
The second group of predictor functions is the PNG group, which consists of
the filters or predictors of the World Wide Web Consortium (W3C) Portable
Network Graphics (PNG) recommendation. There are five basic PNG
predictor algorithms, and a sixth one that is a hybrid of the first five. These
can be set in the Flate filter dictionary as follows:

• A Predictor key value of 10 uses no PNG prediction. That is the value is
set to None.

• A Predictor key value of 11 uses Sub prediction, which means to predict
the same value as the pixel to the left.

• A Predictor key value of 12 uses Up prediction, which means to predict
the same value as the pixel above.

• A Predictor key value of 13 uses Average prediction, which means to
predict the average of the value of the pixel above and the pixel to the left.

• A Predictor key value of 14 uses Paeth prediction, which means to predict
a value that is a non-linear function of the pixel above, the pixel to the left,
and the pixel to the upper left.

• A Predictor key value of 15 uses the Optimum prediction, which is the
hybrid of the first five algorithms.

The default value for the Predictor key is 1, which means that no prediction
at all is made.

The TIFF and PNG predictor groups have some similarities. Both assume
that image data is presented in order, from top row to bottom row, and from
left to right within a row. Both assume that a row occupies a whole number of
bytes, rounded upward as necessary. Both assume that pixels and their color
components are packed into bytes from high- to low-order bits (big-endian).
Both assume that all color components of pixels outside the image are 0;
these pixels are necessary for predictions near the boundaries of images.

The two predictor groups also have several significant differences. The post-
prediction data for each PNG-predicted row begins with an explicit algorithm
tag, so different rows can be predicted with different algorithms to improve
compression. TIFF 2 prediction has no tags, so the same algorithm applies to
all rows of data. The TIFF function group predicts each color component
from the prior instance of that color component without regard to the width of
the color component or the number of colors. The PNG function group
predicts each byte from the corresponding byte of the prior pixel (Sub
algorithm) and/or the same pixel on the prior line (Up algorithm) and/or the
prior pixel on the prior line (Average algorithm). This happens regardless of
9 New Filters for LanguageLevel 3 27

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
whether there are multiple color components in a byte, or whether a single
color component spans multiple bytes. This approach can result in
significantly better compression speed but with somewhat less compression.

Comparison of LZW and Flate Encoding

Flate encoding, like LZW encoding, discovers and exploits many patterns in
its input data, whether it be text or images. Because of its cascaded adaptive
Huffman coding, Flate-encoded output is usually substantially more compact
than LZW-encoded output for the same input.

Flate and LZW decoding speeds are comparable, but the Flate encoding
speed is considerably slower than LZW encoding. In most cases, the Flate
and LZW encode filters compress their inputs substantially. In the worst case,
the FlateEncode filter expands its input by no more than a factor of 1.003,
plus the added effects of algorithm tags added by PNG predictors and the
added effects of any explicit flushfile operations. LZW compression has a
worst-case expansion of at least a factor of 1.125, which can increase to a
factor of nearly 1.5 in some implementations (plus the added effects of PNG
tags).

Note For more information on the FlateEncode and FlateDecode filters, see
Sections 3.3 of the Supplement: PostScript Language Reference Manual.

9.2 Reusable Streams and the ReusableStreamDecode Filter

Most PostScript language streams are consumed in a serial order, and once
consumed, they cannot be read again. In LanguageLevel 2, in order to
randomly or repeatedly access a stream of data, the data must be read into a
string or written to a file on a storage device such as a hard disk. Although a
string is repositionable to accommodate these actions, its size is limited to
64Kb (in previous levels of the PostScript language, it was possible to
implement an “in-memory” file out of an array of strings, although this
method was never recommended). In LanguageLevel 3, a new type of stream,
called a reusable stream, has been introduced to work around the limitations
of using streams or strings. Reusable streams do not impose a size limitation
on storage; the amount of data that can be stored is limited only by the
amount of storage (VM) available on the printer/device.

Reusable streams provide a new kind of file object that can be positioned to
arbitrary points in the data stream, and whose contents can be read more than
once. This functionality can be used to handle such cases as image data that is
replicated multiple times on a page or image data in forms, and function data
or mesh data used in Shading dictionaries for PatternType 2 patterns.

Note See Technical Note #5600, “Smooth Shading,” for more information on
Shading dictionaries and PatternType 2 pattern dictionaries.
28 Filters and Reusable Streams 9 October 1997

A
dobe S

ystem
s Incorporated
Reusable streams differ from other types of file objects in the following ways:

• When an EOD or EOF is encountered in a reusable stream, the file is not
closed; the file must be closed explicitly.

• Reusable streams automatically use a special device, %ram%, as the
underlying file in which the data is stored for random access.

Note See Section 10.5 of the Supplement: PostScript Language Reference Manual,
for more information on ramdisks and the %ram% device.

A reusable stream can be created using the filter operator and the new decode
filter called ReusableStreamDecode. The ReusableStreamDecode filter
can be used in one of two ways. Both methods return a file object on the
operand stack.

One way, and probably the simplest, is to specify just a data source. The
syntax of this method is as follows:

source /ReusableStreamDecode filter

An example use this method would be to read image data from currentfile
and then create a file object that can be randomly accessed and repositioned.
The code for this would look like the following:

currentfile /ASCIIHexDecode filter

/ReusableStreamDecode filter

...image data follows the filter operation...

/data exch def

In this particular example, the ASCIIHexDecode filter senses its EOD
because of the > marker at the end of the data. In cases where the end data is
not so readily identifiable, the input file should be filtered through a
SubFileDecode filter prior to the reusable stream filter.

The second method involves an optional dictionary argument in addition to
the data source. The syntax is as follows:

source dictionary ReusableStreamDecode filter

The example use of ReusableStreamDecode above could be rewritten for this
second method as follows:

currentfile << /Filter /ASCIIHexDecode >>

/ReusableStreamDecode filter
9 New Filters for LanguageLevel 3 29

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
The use of the filter operator has some unusual side effects, and the resulting
fileobj has some unusual attributes. When filter is executed, the data from
source may or may not be immediately buffered in virtual memory (VM) or
written to disk, depending on a variety of factors, including the following:

• The nature of source – whether it is currentfile, a disk file, a string, a
procedure, or a filtered file.

• The availability of system disk storage.

• The availability of VM, constrained by the ramdisk LogicalSize
parameter.

• The set of Filters specified in dictionary.

• Implementation and system memory management details.

If source is derived from currentfile, or from a PostScript procedure, the data
will always be read at the time the filter operator is executed. currentfile data
should typically be filtered through a SubFileDecode filter. If source is a
string, or if source is derived from a disk-based file, that string or file should
be treated as read-only; writing into this string or file will have unpredictable
consequences for the data read from fileobj. However, such strings may be
undefined, although they will not be garbage collected until they are no
longer needed. Also, in many file systems, such files may be deleted,
although their disk space will be freed only when it is no longer needed.

When the reusable stream filter has read all of the data, it leaves a file object
on the operand stack. Unlike other filtered files, this file object can be re-
positioned just like a random-access file. Bytes of the file are indexed from 0
up to (length -1). The file object is not closed automatically.

The file object has a length value. The length of the file object can be
obtained with the following code:

data flushfile % set file to EOF

data fileposition
30 Filters and Reusable Streams 9 October 1997

A
dobe S

ystem
s Incorporated
Here are the file operations that can be performed on the file object that is
returned as a result of a ReusableStreamDecode filter:

• closefile: closes the file object. The file object is also closed when it is
destroyed by the restore operator or garbage collection. Any associated
temporary file created on a file system will be deleted when the file object
is closed.

• bytesavailable: returns the file object size minus the current file position.
If the file is currently positioned at EOF, 0 is returned.

• flushfile: sets the file position to EOF.

• resetfile: resets the file position to 0. This is a convenience operator for
the more lengthy, but explicit call:

0 setfileposition

• setfileposition: sets the file object position to any value between 0 and
length. Note that setting the file position to length effectively sets it to
EOF. A file position less than 0 or greater than length returns an error.

• fileposition: returns the current position of the file object. The result is
always in the range 0 through length, where a position of length means the
file is at EOF.

Table 7 lists the keys available in the optional ReusableStreamDecode
dictionary. Explanations of each key are given below.

Table 7 Keys in the ReusableStreamDecode Dictionary

Filter specifies any filter that is to be applied before delivering data to the
reader. The value of the key can be either the name of a single decode filter,
or it can be an array of decode filter names. Multiple filters are applied to the
incoming data in the order in which they are specified in the array. For
example, data compressed using the LZWEncode and then the
ASCII85Encode filters are then decoded by providing the following array:

[/ASCII85Decode /LZWDecode]

Key Type

Filter name or array optional

DecodeParams array of variable optional

Intent integer optional

AsyncRead boolean optional

CloseSource boolean optional
9 New Filters for LanguageLevel 3 31

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
DecodeParams specifies the parameters associated with each of the filters
listed in the Filter array. If Filter contains no elements or is missing, then
DecodeParams is not needed. If Filter contains one element (that is, its type
is name), then DecodeParams will either contain one dictionary or a null
object. If the Filter array contains more than one element, DecodeParams is
an array. Each element (parameter) of the array must have a one-to-one
correspondence with the elements of the Filter array. The value of each
element (parameter) is either a dictionary object or a null object.

Note The DCTDecode and SubFileDecode filters require a dictionary object.

The value of the Intent key specifies a hint at the intended purpose of the
reusable data. If the value is recognized, it may help optimize the data storage
or caching strategy used. The currently supported values for the Intent key
are as follows:

• 0: specifies image data (the default value)

• 1: specifies image mask data

• 2: specifies sequentially-accessed table look-up data, such as threshold
arrays

• 3: specifies randomly-accessed table look-up data, such as functions, CID
fonts, and color rendering dictionaries

Note If the value of Intent is not recognized, it is ignored.

If the value of the AsyncRead key is false, the file position of the input
stream (source) is advanced to end of file (EOF) or end of data (EOD). This
key only affects disk files.

If the value of the CloseSource key is true, the input stream (source) is
closed when the reusable stream is closed.
32 Filters and Reusable Streams 9 October 1997

A
dobe S

ystem
s Incorporated
Example 7 shows a typical use of a reusable stream for a masked image.

Example 7 Use of the ReusableStreamDecode Filter

%!PS-Adobe-3.0
% From MASKIM33.PS
% This example illustrates Type 3 Masked Images with
% Type 3 interleave. In order to use the image data
% and mask data twice, reusable streams or needed.
% Note that the common practice is to actually have
% only the mask data in a reusable stream.
currentfile /ASCIIHexDecode filter /ReusableStreamDecode
filter
...% Mask data goes here
>
/maskstream exch def
currentfile /ASCIIHexDecode filter /ReusableStreamDecode
filter
% Image data goes here
>
/datastream exch def
/inch {72 mul} def
/DeviceRGB setcolorspace
% Create the image data dictionary
/ImageDataDictionary 8 dict def
ImageDataDictionary begin
 /ImageType 1 def
 /Width 317 def
 /Height 299 def
 /BitsPerComponent 8 def
 /DataSource datastream def
 /MultipleDataSources false def
 /ImageMatrix [317 0 0 299 0 0] def
 /Decode [0 1 0 1 0 1] def
end
% Create the mask data dictionary
/ImageMaskDictionary 8 dict def
ImageMaskDictionary begin
 /ImageType 1 def
 /Width 317 def
 /Height 299 def
 /BitsPerComponent 1 def
 /DataSource maskstream def
 /MultipleDataSources false def
 /ImageMatrix [317 0 0 299 0 0] def
 /Decode [0 1] def
end
% code continued on the next page
9 New Filters for LanguageLevel 3 33

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
% Now create the masked image dictionary
/MaskedImageDictionary 7 dict def
MaskedImageDictionary begin
 /ImageType 3 def
 /InterleaveType 3 def
 /MaskDict ImageMaskDictionary def
 /DataDict ImageDataDictionary def
end
% Draw the masked image in the first location
gsave
 2.05 inch 5.5 inch translate
 4.4 inch 4.15 inch scale

% Rewind the reusable mask and data streams
 maskstream resetfile
 datastream resetfile
 MaskedImageDictionary image
grestore
% Draw the masked image in the second location
gsave
 2.05 inch 0.5 inch translate
 4.4 inch 4.15 inch scale
 maskstream resetfile
 datastream resetfile
 ImageMaskDictionary /Decode [1 0] put
 MaskedImageDictionary image
grestore
showpage

Note For more information on the ReusableStreamDecode filter, see Sections 3.3
of the Supplement: PostScript Language Reference Manual.
34 Filters and Reusable Streams 9 October 1997

A
dobe S

ystem
s Incorporated
9.3 GIFDecode Filter

The GIFDecode filter decodes image data that is stored in the GIF (Graphics
Interchange Format). The filter deciphers all the header information
associated with that format and delivers the image data, either in RGB or
indexed format. The main function of the GIFDecode filter is to assist in the
HTML to PostScript translation available in web-ready LanguageLevel 3
printers (a web-ready printer is one that can readily handle the display or
printing of web-based material).

GIF supports a number of features that make using this filter for inlined
images in a PostScript language document undesirable:

• GIF supports interlaced images. The problem with interlaced images is
that the scan lines do not appear in either top-down or bottom-up order;
the scan lines are out of order. The GIFDecode filter, however, delivers the
scan lines in the order in which they are encountered in the GIF file, and,
for interlaced images, this filter is unsuitable as an input source to the
image operator.

• GIF files can contain multiple images (usually for animation purposes).
The GIFDecode filter delivers data only for the first image in a multi-
image file. Attempts to read beyond the end of the first image result in an
EOF condition on the filter stream.

• The GIFDecode filter does not do exactly what its name implies. GIF is
not just a data encoding representation like LZW; it is also an image data
format. In order to make use of a GIF image, the user must extract the
image parameters from the file (the methods of which are not provided
with the filter). The user must also deal with out-of-order data for
interlaced GIF images.

Note The GIFDecode filter accepts an optional dictionary that includes the
CloseSource key.

Note The GIFDecode filter is considered an optional filter used only as part of the
implementation of web printing. PostScript language programs should not
invoke this decode filter.
9 New Filters for LanguageLevel 3 35

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
9.4 PNGDecode Filter

The PNGDecode filter has been created for use on web-ready
LanguageLevel 3 printers. The purpose of this filter is to aid in the printing of
PNG images. PNG images may need to be printed because they are
referenced in an HTML file, or because the user submitted a URL that
directly references a PNG image.

Similar to GIFDecode, the PNGDecode filter does not do exactly what the
name implies. The user must be able to handle image parameters, out-of-
order data, and data buffering, as explained above for GIFDecode.

Note The PNGDecode filter accept an optional dictionary that includes the
CloseSource key.

Note The PNGDecode filter is considered an optional filter used only as part of
the implementation of web printing. PostScript language programs should
not invoke this decode filter.
36 Filters and Reusable Streams 9 October 1997

Appendix A
Bibliography of Outside
Sources
A
dobe S

ystem
s Incorporated
While this in not an exhaustive list of references for filters, it will give the
reader some sources for types of filters covered in this document.

For a complete specification on DEFLATE and zlib, see the documentation
section of the official zlib web site at http://quest.jpl.nasa.gov/Zlib.

For complete documenation on the PNG format, see the PNG web site at
http://quest.jpl.nasa.gov/PNG.

For information on the DEFLATE Compressed Data Format, see the
specification by Peter Deutsch on the web site at
http://www.internic.net/rfc/rfc1951.txt.

Graphics International Format, Version 89a, © 1990 by CompuServe
Incorporated, Columbus, Ohio, provides information on GIF images.
37

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
38 Appendix A: Bibliography of Outside Sources 9 October 1997

Index
A
dobe S

ystem
s Incorporated
A

ASCII85Decode 17
ASCII85Encode 17, 31
ASCIIHexDecode 15, 29
ASCIIHexEncode 15
AsyncRead 32

B

Baseline Sequential JPEG 21
Big-Endian 18, 27
BitsPerComponent 25, 26
bytesavailable 31

C

CCITT 20
CCITTFaxDecode 20
CCITTFaxEncode 20
closefile 13, 31
CloseSource 13, 15, 18, 20, 23,

 26, 32, 35, 36
CloseTarget 13, 15, 18, 20, 25, 35
Colors 25, 26
Columns 20, 25, 26
currentfile 11, 29, 30

D

DataSource 15
DCT 21
DCTDecode 21
DCTEncode 21
DecodeParams 32
DEFLATE 14, 24

E

Effort 25

Endianness 18

F

FAX ix, 20
fileposition 31
Filter 12, 13, 31, 32
filter 24, 29, 30
Filters 30
Flate 14, 18, 19, 24
FlateDecode x, 14, 24, 26
FlateEncode x, 18, 24, 28
flushfile 28, 31

G

GIF 14, 35
GIFDecode x, 12, 14, 24, 35, 36

H

HTML 35, 36

I

image 15, 25, 35
imagemask 15
Intent 32

J

JPEG ix, 21

L

LanguageLevel 2 13, 15, 28
LanguageLevel 3 ix, x, 11, 12, 13,

 18, 20, 21, 23, 24, 28
Little-Endian 18
LogicalSize 30
39

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
LowBitFirst 18
LZW 14, 18, 19, 28, 35
LZWDecode ix, 18
LZWEncode ix, 18, 31

N

NullEncode 12

P

PatternType 2 28
PNG 14, 18, 27, 36
PNGDecode x, 12, 14, 24, 36
Predictor 25, 26, 27
Predictor Function 26
Progressive JPEG 21

R

readhexstring 15
resetfile 31
resourceforall 12
resourcestatus 12
restore 13, 31
ReusableStreamDecode x, 23, 24,

 29, 31
RunLengthDecode ix, 19
RunLengthEncode ix, 19

S

setfileposition 31
Shading 28
SubFileDecode 23, 29, 30

T

TIFF 14, 26, 27

U

UnitSize 18
UNIX 17
URL 36
uudecode 17
uuencode 17

W

writestring 16

Z

ZIP 24
zlib 14, 24
40 Index 9 October 1997

	Tables
	Examples
	Filters and Reusable Streams
	1 Filters and Reusable Streams
	1.1 Overview of Filters
	1.2 General Changes to PostScript Filters
	1.3 The Benefits of Using Filters and Reusable Str...

	2 ASCII-Based Filters
	2.1 The ASCIIHexEncode and ASCIIHexDecode Filters
	2.2 The ASCII85Encode and ASCII85Decode Filters

	3 LZW Filters
	4 RunLength Filters
	5 CCITTFax Filters
	6 NullEncode Filter
	7 DCT Filters
	8 SubFileDecode Filter
	9 New Filters for LanguageLevel 3
	9.1 FlateEncode and FlateDecode Filters
	9.2 Reusable Streams and the ReusableStreamDecode ...
	9.3 GIFDecode Filter
	9.4 PNGDecode Filter

	Index

