<‘®

Adobe’ PostScript3”

Filters and
Reusable Streams

Adobe® Developers Association

9 October 1997

Technical Note #5603

LanguageLevel 3

Adobe Systems Incorporated

Corporate Headquarters Eastern Regional Office
345 Park Avenue 24 New England

San Jose, CA 95110-2704 Executive Park

(408) 536-6000 Burlington, MA 01803

(617) 273-2120

Adobe Systems Europe Limited Adobe Systems Japan
Adobe House, Mid New Cultins Yebisu Garden Place Tower
Edinburgh EH11 4DU 4-20-3 Ebisu, Shibuya-ku
Scotland, United Kingdom Tokyo 150 Japan
+44-131-453-2211 +81-3-5423-8100

PN LPS5603

Adobe Systems Incorporated

Copyright © 1997 Adobe Systems Incorporated. All rights reserved.
NOTICE: All information contained herein is the property of Adobe Systems Incorporated.

No part of this publication (whether in hardcopy or el ectronic form) may be reproduced or transmitted,
inany form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of the publisher.

PostScript is aregistered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems
Incorporated unless otherwise stated. The name PostScript also is used as a product trademark for
Adobe Systems’ implementation of the PostScript language interpreter.

Adobe, PostScript, PostScript 3, and the PostScript logo are trademarks of Adobe Systems
Incorporated. Apple and Macintosh are trademarks of Apple Computer, Inc. registered inthe U.S. and
other countries. All other trademarks are the property of their respective owners.

© 00 N o 0o b~ W

Contents

Filters and Reusable Streams 11
Overview of Filters 11
General Changes to PostScript Filters 12
The Benefits of Using Filters and Reusable Streams 14

ASCI|-Based Filters 15
The ASCIIHexEncode and ASCIlIHexDecode Filters 15
The ASCII85Encode and ASCII85Decode Filters 17

LZW Filters 18
RunLength Filters 19
CCITTFax Filters 20
NullEncode Filter 20
DCT Filters 21
SubFileDecode Filter 23

New Filters for LanguagelLevel 3 24
FlateEncode and FlateDecode Filters 24
Reusable Streams and the ReusableStreamDecode Filter
GIFDecode Filter 35
PNGDecode Filter 36

28

pajelodioou] SWalsAS agopy

pajelod.iodu| SWalsAS aqopy

9 October 1997

Contents

iv

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7

Tables

Filters Available in the PostScript Language 12
Keys Available in All Encode Filter Dictionaries 13
Keys Available in All Decode Filter Dictionaries 13
Keys in the LZWDecode Filter Dictionary 18

Keys in the FlateEncode Filter Dictionary 25

Keys in the FlateDecode Filter Dictionary 26

Keys in the ReusableStreamDecode Dictionary 31

pajelodioou] SWalsAS agopy

pajelod.iodu| SWalsAS aqopy

9 October 1997

Tables

vi

Example 1
Example 2

Example 3
Example 4
Example 5
Example 6
Example 7

Examples

Use of the ASCIIHexEncode Filter 16

Use of an ASCII85Decode Filter to Decode a PostScript Language Stream
17

Use of the ASCII85Decode and RunLengthDecode Filters 19

Use of the DCTEncode Filter 21

Decoding and Printing a JPEG-compressed File 22

Use of the SubFileDecode Filter 23

Use of the ReusableStreamDecode Filter 33

vii

pajelodioou] SWalsAS agopy

pajelod.iodu| SWalsAS aqopy

9 October 1997

Figures

viii

Preface

This Document

Thisisthe original release for Filters and Reusable Streams, a document that
provides a detailed description of the Languagelevel 3 extensions to filters.

Intended Audience

This document is written for software developers who are interested in
learning about filters and reusabl e streams or adding these capabilitiesto an
application that supports PostScript® display or printing devices.

It is assumed that the developer is already familiar with how filterswork in
previous levels of the PostScript language.

Organization of This Document

Section 1, “Filters and Reusable Streams,” gives ageneral overview of filters
in the PostScript language. It also covers some of the changesto filters for
Languagel evel 3. Finaly, it presents some of the major benefits of using
filters and reusable streamsin applications.

Section 2, “ASCII-Based Filters,” reviews the ASClIHex and ASCII85 filters.

Section 3, “LZW Filters,” discusses the changes to the LZWEncode and
LZWDecode filters.

Section 4, “RunLength Filters,” reviews the RunLengthEncode and
RunLengthDecode filters.

Section 5, “CCITTFax Filters,” covers the changes to the filters available for
FAX data.

Section 6, “NullEncode Filter,” reviews this special encoding filter.
Section 7, “DCT Filters,” reviews the filters used for JPEG files.

Section 8, “ SubFileDecode Filter,” presents the changes to this decode filter.

pajelodioou] SWalsAS agopy

Adobe Systems Incorporated

Section 9, “New Filters for LanguagelLevel 3," discusses the filters that have
been introduced for LanguagelL evel 3, including the FlateEncode and
FlateDecode filters, the GIFDecode filter, the PNGDecode filter, and the
ReusableStreamDecode filter.

Related Publications

Supplement: PostScript Language Reference Manual (Languagelevel 3
Foecification and Adobe PostScript 3™ Version 3010 Supplement), available
from the Adobe Devel opers Association, describes the formal extensions to
the PostScript language that have occurred since the publication of the
PostScript Language Reference Manual, Second Edition. This supplement
also includes all Languagelevel 3 extensions availablein version 3010.

PostScript Language Reference Manual, Second Edition (Reading, MA:
Addison-Wesley, 1991) isthe devel oper’s reference manual for the PostScript
language. It describes the syntax and semantics of the language, the imaging
model, and the effects of the graphical operators.

C language source code is available for some filters from the Adobe
Developers Association. Although these files were written to accompany the
release of an earlier level of the PostScript language, they should, for the
most part, apply to discussionsin this document.

The Bibliography lists some of the many outside sources of information on
filters and filter specifications.

Statement of Liability

THISPUBLICATION AND THE INFORMATION HEREIN ISFURNISHED
ASIS ISSUBJECT TO CHANGE WITHOUT NOTICE, AND SHOULD NOT
BE CONSTRUED ASA COMMITMENT BY ADOBE SYSTEMS
INCORPORATED. ADOBE SYSTEMS INCORPORATED ASSUMESNO
RESPONSBILITY ORLIABILITY FORANY ERRORSOR
INACCURACIES MAKES NO WARRANTIES OF ANY KIND (EXPRESS
IMPLIED, OR STATUTORY) WITH RESPECT TO THISPUBLICATION,
AND EXPRESSLY DISCLAIMSANY AND ALL WARRANTIES OF
MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSES, AND
NONINFRINGMENT OF THIRD-PARTY RIGHTS

9 October 1997

11

Note

Filters and Reusable Streams

Filters and Reusable Streams

Overview of Filters

Many PostScript language operators and programs now produce or consume
data streams that can be encoded in various forms, usually for purposes of
compression and/or for reliable transmission through seven-bit ASCI|
networks. Such data sources are defined in terms of filters that perform some
kind of transformation on an incoming or outgoing data stream.

A filter isin fact aspecial kind of file object. The semantics of filters expand
the definition of filesin the following way: the data target or data source of a
filter can be astring or aprocedure, not just afile such ascurrentfile or adisk
file. In the case of a string, the filter ssmply writes bytes to, or reads bytes
from, the string.

Filters can be cascaded; that is, a source of data can be decoded, for instance,
in ASCI185 format (see Section 2.2) and then further decompressed through a
Flate filter (see Section 9.1). Example 3 shows how two filters might be used
together.

Filterswereintroduced in an earlier level of the PostScript language and their
capabilities have now been expanded in Languagel evel 3. The changesto
filters are covered in the next section.

For more information on data compression using PostScript language filters,

see Technical Note #5115, “ Supporting Data Compression in PostScript
Level 2 and the filter Operator.”

11

pajelodioou| SwalsAS agopy

Adobe Systems Incorporated

1.2

Table 1

Note

General Changes to PostScript Filters

Some new filter types have been added to LanguageL evel 3; in addition,
several changes have been made to some of the filters already supported in
the PostScript language. Although some of the filters have not changed at all
for thisrelease of the PostScript language, they are reviewed in this document
for completeness.

Table 1 illustrates the various types of filters available in the PostScript
language and when they were introduced.

Filters Available in the PostScript Language

Encode Filters Decode Filters LanguageLevel
ASCIIHexEncode ASCIlIHexDecode 2
ASCII85Encode ASCII85Decode 2
LZWEncode LZWDecode 2
RunLengthEncode | RunLengthDecode | 2
CCITTFaxEncode CCITTFaxDecode 2
DCTEncode DCTDecode 2
SubFileDecode 2
NullEncode 2
FlateEncode FlateDecode 3
GIFDecode 3
Reusable- 3
StreamDecode
PNGDecode 3

In Languagel evel 3, al encoding filters, with the exception of the
NullEncode filter, have become optional in PostScript printers. All of the
decoding filters, except for GIFDecode and PNGDecode, are till required.
The GIFDecode and PNGDecode filters are considered optional filters used
only as part of the implementation of web printing. Standard PostScript
language programs should not invoke these two decode filters. The
resourceforall or resourcestatus operators should be used to determine the
list of availablefiltersin agiven device. Thislist of filters can be found in the
implicit resource category called Filter.

To ensure portability, PostScript language programs that are page
descriptions should not invoke the optional encode filters.

Filters and Reusable Streams 9 October 1997

Table 2

Table 3

Note

Note

As of Languagelevel 3, all encode and decode filters now take an optional
dictionary of one or more filter parameters (To be more exact, dictionary
support for filters was added into Languagel evel 2 after the PostScript
Language Reference Manual, Second Edition was published). Parameters
available to al filter dictionaries are shown in Table 2 and 3 and described
below. Dictionary parameters for specific filters, if available, are discussed in
Sections 2 through 9.

Keys Available in All Encode Filter Dictionaries

Key Type

CloseTarget Boolean optional

CloseTarget for encode filters has been added as an optional Boolean key in
the optional encode filter dictionary. If thiskey is missing, its value defaults
tofalse. If thevalue of CloseTarget istrue, then whenever thefilter is closed,
either explicitly by the closefile operator or implicitly (by the restore
operator, garbage collection, or reaching end of data (EOD)), then, if
applicable, the datatarget of the filter will also be closed; this may be an
iterative process. If the value of the CloseTarget key isfalse, no additional
action is taken on the data source or target (this is the default behavior of
Languagel evel 2 devices).

Keys Available in All Decode Filter Dictionaries

Key Type

CloseSource Boolean optional

CloseSource for decode filters has been added as an optional Boolean key in
the optional decode filter dictionary. Its definition and use is the same as that
for the CloseTarget key, described above.

Several new instances of the implicit resource category Filter have been
added in Languagelevel 3. These new instances are GifDecode,
PNGDecode, FlateEncode, FlateDecode, and ReusableStreamDecode.
For more information, see Section 3.3 of the Supplement: PostScript
Language Reference Manual.

There are five new instances of the implicit resource Filter. These are
FlateEncode, FlateDecode, GIFDecode, PNGDecode, and
ReusableStreamDecode. See Section 3.1 of the Supplement: PostScript
Language Reference Manual, for more information.

1 Filters and Reusable Streams 13

pajelodioou] SwalsAS agopy

Adobe Systems Incorporated

1.3 The Benefits of Using Filters and Reusable Streams

The following benefits can be achieved from using filters and reusable
streams:

» The GIFDecode and PNGDecode filters enable the PostScript interpreter
to directly extract the image data from GIF format and PNG format
images, respectively. GIF is an image format commonly used for web
content. It isbased on LZW compression. PNG is a proposed new
standard, based on Flate compression. Since Flate is an open standard, it
can be assumed that PNG will become one of the standard image formats
for web content.

In addition to decompressing the image content, the GIFDecode and
PNGDecode filters also strip off al the header information, which ismore
than is done by the LZW and Flate filters.

» Fatefilters discover and exploit many patternsin input data, whether it be
images or text. Because of their cascaded, adaptive Huffman coding,
Flate-encoded output is usualy substantially more compact (tighter
compression) than LZW-encoded output given the same inpuit.

» TheFlateDecode filter can be used to decompress raster imagesin the
Portable Network Graphics (PNG) format. The PNG format isan
extensible file format that provides lossless, portable, and well-
compressed storage of raster images. The DEFLATE compressed data
streams within PNG are stored in the zlib format. PNG provides a patent-
free replacement for GIF and can a so replace many common uses of
TIFF

Filters and Reusable Streams 9 October 1997

2

Note

21

ASCII-Based Filters

The ASCII-based filters include the ASCI1Hex format and the ASCI185
format. They can encode binary datain either hexadecimal or base-85 format,
and decode these formats back to a standard binary format. They both use
specia character sequences to mean end of data (EOD). Binary based filters
usually recognize EOD based on byte counts or based on special end of data
characters.

All of the ASCII-based filters accept an optional dictionary that includes the
CloseTarget key for the encode filters and the CloseSource key for the
decodefilters.

The ASCIlIHexEncode and ASCIlIHexDecode Filters

ASCIIHexEncode and ASCIIHexDecode filters are very simple filters whose
most common purpose is in processing image data represented as
hexadecimal quartets (two pairs of ASCII hexadecimal digits). Prior to
Languagel evel 2, the common technique for reading image or imagemask
data was a procedure containing areadhexstring operator. The common
method for processing an image in this manner used a PostScript language
sequence similar to the following:

wi dt h hei ght depth procedure inage
where pr ocedur e would look something like this:

{currentfile tenpstring readhexstring pop}

With the addition of ASClIHexDecode (and image dictionaries), the
sequence becomes much more simple to state, and more efficient. The image
dictionary can now contain a DataSource key whose value can read as
follows:

/ Dat aSource currentfile /ASCl| HexDecode filter

Such afilter reads A SClI-encoded hexadecimal data, where each byte of
input data specifies a hexadecimal quartet with a value between 0 and 15 (0—
9 and either A—F or af).

The EOD symbol for ASClIHexEncode and ASCIlIHexDecode isthe >
character.

2 ASCII-Based Filters 15

pajelodioou] SwalsAS agopy

Example 1 creates an 300 by 300 dpi image whose pixels are random shades
of gray. This simple exampleillustrates how an encoding filter is used to
write datato an output file. The datais generated by a procedure, and the
writestring operator is used to write the string data to the filter. The filter
encodes the data and writes the encoded result to the final target.

Example 1 Use of the ASCIIHexEncode Filter

% PS

% Define the output file name and a tenp string
/data (hex.ps) (w) file def

/junk 1 string def

% stack is the output file

% 300 rows of 300 pixels

% CGenerate a random nunber, then use the lower 8 bits
% Wite to the filter

/ GenDat a {
300 {
300 {
/'s rand def
junk 0 s 16#FF and put
hex junk writestring

} repeat
} repeat
} def

% the output file is the target

% use ASCl | HexEncode as the filter
dat a

/ ASCl | HexEncode filter

% define the file object

/ hex exch def

% generate the data, which is witten to the file
% obj ect encoded by the filter

% and witten to the output
CGenDat a

% close the filter

hex cl osefile

Adobe Systems Incorporated

Note Thereare C language source code files available for the ASClIHexEncode
filter. These files are aschexec.c and protos.h. Although these files were
written to accompany an earlier level of the PostScript language, their
information and use should still apply. Source code can be acquired under
license through the Adobe Devel opers Association.

Note For moreinformation on the ASCIlIHexEncode and ASClIHexDecode
filters, see Sections 3.8.4 and 3.13 of the PostScript Language Reference
Manual, Second Edition.

16 Filters and Reusable Streams 9 October 1997

2.2

Example 2

Note

Note

The ASCII85Encode and ASCII85Decode Filters

ASCII85Encode and ASCII85Decode are also simplefilters. They have the
advantage of providing asmall compression of the data (around 4:5) over and
above a hexadecimal encoded file. Datain this format is encoded in base-85
format so that binary data can be encoded as seven-bit readable ASCI| data.
The main advantage of thisformat is that al the seven-bit ASCII characters
can be safely transmitted over network connections that are not eight-bit
clean (in other words, the data avoids the problem of interference by
operating systems or communication channels that preempt use of control
characters prevalent in eight-bit formats). ASCII85 is the encoding scheme
used by the uuencode and uudecode programs available on UNIX systems.
The EOD symbol for ASCII85Encode and ASCII85Decode isthe ~>
sequence of characters (tilde and “ greater than” characters).

Example 2 shows the calling sequence to use an ASCIlI85Decode filter to
decode a PostScript language stream.

Use of an ASCI185Decode Filter to Decode a PostScript Language Stream

% A very small code sequence

currentfile /ASCl | 85Decode filter cvx exec
% The stream of data is here...

There are C language source code files available for the ASCII85Encode
and ASCII85Decode filters. Thesefiles are asc85dc.c, asc85ec.c, and
protos.h. Although these files were written to accompany an earlier level of
the PostScript language, their information and use should still apply. Source
code can be acquired under license through the Adobe Developers
Association.

For more information on the ASCII85Encode and ASCII85Decode filters,

see Sections 3.8.4 and 3.13 of the PostScript Language Reference Manual,
Second Edition.

2 ASCII-Based Filters 17

pajelodioou] SwalsAS agopy

Adobe Systems Incorporated

3

Table 4

Note

Note

LZW Filters

LZWEncode and LZWDecode are filters for encoding and decoding data
according to the LZW (Lempel-Ziv-Walsh) compression scheme. LZW
filters provide alossless (no data loss) compression scheme. The syntax for
using the LZWDecode filter is as follows:

target dict /LZWDecode filter

where dict is an optional dictionary.

Two new keys, in addition to CloseSource, have been added to the optiona
LZwWDecode dictionary for Languagel evel 3. Both of these keys refer to the
form of the encoded data. They are shown in Table 4.

Keys in the LZWDecode Filter Dictionary

Key Type
UnitSize integer optional
LowBitFirst boolean optional

UnitSize specifies the size of the units encoded by LZW. The only supported
valuesare 2, 3,4, 5, 6, 7, and 8. The default value for UnitSize is 8.

LowBitFirst specifies the endianness of the encoded byte stream. If the value
istrue, the encoded datais treated as big-endian. Big-endian means that the
most significant bit or byte of data appears in the data stream before the next
most significant bit or byte. If the value of LowBitFirst isfalse, the datais
treated as little-endian. Little-endian means that the |east significant bit or
byte of data appearsin the data stream before the next least significant bit or
byte. The default value for the LowBitFirst key isfalse.

The LZWEncode filter can take an optional dictionary with the CloseTarget
key.

The Flate filters (see Section 9.1), added in Languagel evel 3, provide a
similar method for data compression and are a patent-free alternative to LZW
filters.

LZW compression has aworst-case expansion of at least afactor of 1.125,
which can increase to afactor of nearly 1.5 in some implementations (plus
the added effects of PNG tags, as with FlateEncode filters).

For more information on the LZWEncode and LZWDecode filters, see
Section 3.3 of the Supplement: PostScript Language Reference Manual, or
Sections 3.8.4 and 3.13 of the PostScript Language Reference Manual,
Second Edition.

Filters and Reusable Streams 9 October 1997

Note

Example 3

Note

Note

RunLength Filters

RunLengthEncode and RunLengthDecode filtersimplement avery simple

run-length encoding technique that provides reasonable compression at alow

cost in performance, although its compression performance is not as good as

either LZW or Flate. RunLength filters implement alossless (no dataloss)
compression scheme that is similar to the Apple Macintosh PackBits routine.
Datain a RunLength encoded fileis represented as a sequence of runs. Each
run consists of alength byte, followed by 1 to 128 data bytes. A length bytein
the range of 0 to 127 indicates that the following dength+ 1) bytes are to be
copied literally; that is, this run of bytesis not compressed. A length bytein
the range 129 to 255 indicates that the following single byteisto be
replicated (257 — length) times (that is, 2 to 128 times). This pair of bytes
indicates a compressed run. A length byte whose value is 128 indicates the
end of data (EOD).

The RunLength filters now accept an optional dictionary.

Example 3 shows how RunL ength compression and ASCII base-85 encoding
are applied to image data.

Use of the ASCII85Decode and RunLengthDecode Filters

% A code sanpl e
0 setgray
/rows 150 def
/cols 150 def
/bits 8 def
/mystream currentfile /ASCl | 85Decode filter
/ RunLengt hDecode filter def
/ begi ni mage
{
50 70 transl ate
500 500 scale
cols rows bits [cols O O rows neg O rows]
nystream i nage
} def
begi ni nage
% i mage data goes here..

There are C language source code files available for RunLengthDecode
filters. These files are runlendc.c, runlenec.c, and protos.h. Although these
files were written to accompany an earlier level of the PostScript language,
their information and use should still apply. Source code can be acquired
under license through the Adobe Devel opers Association.

For more information on the RunLengthEncode and RunLengthDecode
filters, see Sections 3.8.4 and 3.13 of the PostScript Language Reference
Manual, Second Edition.

4 RunLength Filters 19

pajelodioou] SwalsAS agopy

Note

Note

Note

Adobe Systems Incorporated

Note

Note

CCITTFax Filters

CCITT stands for the Comité Consultatif International Télégraphique et
Tééphonique. Thisfilter type, known as CCITTFaxEncode and
CCITTFaxDecode, is used for encoding and decoding facsimile (FAX) data
according to the CCITT standards. Thisfilter is primarily intended for
encoding and decoding image data, not for communicating with FAX
machines.

The CCITTFax filters accept an optional dictionary that includes the
CloseTarget key for the encode filters and the CloseSource key for the
decodefilters.

The implementation-defined limit for the value of the Columns key in the
decode dictionary has been increased from 25,000 to 62,000 for
Languagel evel 3.

There are C language source code files available for the CCITTFaxEncode
and CCITTFaxDecode filters. These files are readme.fax, makefile, bitstm.h,
ccmp.h, ccmpcode.h, ccmptab.h, cfaxfilt.h, protos.h, ccmpec.c, ccmpjc.c,
flipbyte.c, revbits.c, and runtab0.c. Although these files were written to
accompany an earlier level of the PostScript language, their information and
use should still apply. Source code can be acquired under license through the
Adobe Developers Association.

For more information on the CCITTFaxEncode and CCITTFaxDecode
filters, see Section 3.3 of the Supplement: PostScript Language Reference
Manual, or Sections 3.8.4 and 3.13 of the PostScript Language Reference
Manual, Second Edition. See also Technical Note #5128, “ PostScript Level 2
and Fax Modem Printing.”

NullEncode Filter

NullEncode performs no data transformation; its output isidentical to its
input. Its primary function isto allow an arbitrary output target (file,
procedure, or string) to be treated as an output file.

The NullEncode filter accepts an optional dictionary that includes the
CloseTarget key.

For more information on the NullEncode filter, see Sections 3.8.4 and 3.13 of
the PostScript Language Reference Manual, Second Edition.

20 Filters and Reusable Streams 9 October 1997

7

Note

Example 4

DCT Filters

DCT (Discrete Cosine Transform) filters are used for encoding and decoding
grayscale or color image datain JPEG format. On Languagelevel 3 printers
that support web printing, the DCTDecode filter has been extended to decode
progressive JPEG, aformat which iswidely used in web images. However,
progressive JPEG is not part of Languagel evel 3 and should not be used in
Languagel evel 3 programs; these programs should only use the Baseline
Sequential JPEG variation. Decoding progressive JPEG images requires extra
RAM to hold the complete image raster, typically 05, 1, or 2 times the size of
the image in pixels, depending upon compression parameters. This memory
reguirement can be prohibitive for really large images.

Thisencoding schemeislossy and is hot suitable for use with Languagelevel
3 masked image data, or for image data in general.

Example 4 shows a partial PostScript language program that compresses a
left-to-right, top-to-bottom raster 3-color RGB image using the DCTEncode
filter and writes the compressed image on ancther file.

Use of the DCTEncode Filter

% OQpen a dictionary that contains optional parameters
j peg begin
save mark 4 -2 roll
{
/dest exch (w) file def % Open arg2 as output file
/src exch (r) file def % Open argl as input file
/Col ors 3 def % Setup i mage-specific paraneters
/ Col ums 512 def
/ Rows 512 def
[buf Columms Col ors mul string def
/filtdest dest jpeg /DCTEncode filter def
Rows {
filtdest src buf readstring pop witestring
} repeat
filtdest closefile dest closefile
} stopped {handleerror} if cleartonmark restore
end % Cl ose optional paraneters dictionary

7 DCT Filters 21

pajelodioou] SwalsAS agopy

Adobe Systems Incorporated

22

Example 5

Note

Note

Example 5 shows a partial PostScript language program that decodes and
prints a JPEG-compressed file. The original photographic image was 24-bit
RGB, 8 bits per component, 525 pixels high, 727 pixelswide, and 150 pixels
per inch.

Decoding and Printing a JPEG-compressed File

/ Devi ceRGB set col or space

126 270 translate % Center inmage on |letter paper
349 252 scale % Scale inage to original size

% Create a procedure to decode and inmage the

% DCT- encoded data. Note that ‘exec’ is followed by
% exact|ly one space character

{
/Data currentfile /DCTDecode filter def
<<
/1 mageType 1
[Wdth 727
/ Hei ght 525
/1 mageMatrix [727 0 O -525 -525]
/ Dat aSour ce Dat a
/ Bi t sPer Component 8
/Decode [0 1 0 1 0 1]
>> | mage
} exec
% Bi nary JPEG encoded i mage data goes here...
showpage

For more information on the DCTEncode and DCTDecode filters, see
Sections 3.8.4 and 3.13 of the PostScript Language Reference Manual,
Second Edition. See also Technical Note #5116, “ Supporting the DCT Filters
in PostScript Level 2.”

For more information on JPEG compression, see Technical Note #5083,
“ JPEG Technical Specification, Revision 9,” and Technical Note #5095,
“ JPEG Source Vendor List.”

Filters and Reusable Streams 9 October 1997

8

Note

Example 6

Note

SubFileDecode Filter

The SubFileDecode filter is an input source only filter. Its primary useisto
break an arbitrary input stream into separate chunks. The ability to break the
input file into chunks is based on being able to recognize specific end of data
(EOD) strings. The syntax of the SubFileDecode filter has been changed in
Languagelevel 3 to the following:

source count string /SubFil eDecode filter
This syntax has been extended to allow the following:

sour ce <</ EODCount count /EODStri ng string>>/ SubFi | eDecode
filter

If thisfilter will be used in combination with the ReusableStreamDecode
filter, then the second form of syntax must be used.

The SubFileDecode filter accepts an optional dictionary that includes the
CloseSource key.

Example 6 demonstrates how a SubFileDecode filter is used to read
PostScript language code from the standard input file up to a specific marker,
place the input into afile object, and execute the file object. The PostScript
code to draw thefirst rectangle is defined in the subfile. The second rectangle
is defined simply as PostScript code in the standard input file.

Use of the SubFileDecode Filter

% PS

currentfile 0 (9%ENdO Exanpl e) / SubFil eDecode filter
finch {72 mul} def

Define a rectangle, set the color space and fill.
1 inch 6 inch noveto 6.5 inch O rlineto

0 4 inch rlineto -6.5 inch O rlineto closepath

/ Devi ceRGB setcol orspace 1.0 0.0 1.0 setcolor fil
% End of the subfile marker

%WENAO Exanpl e

% Define the stream data and run the program

/data exch def

data cvx exec

% Create and show a separate rectangl e

1 inch 1 inch nmoveto 6.5 inch O rlineto

0 4inchrlineto -6.5 inch O rlineto closepath

/ Devi ceRGB setcol orspace 0.0 1.0 1.0 setcolor fill
showpage

For more information on the SubFileDecode filter, see Section 3.3 of the
Supplement: PostScript Language Reference Manual, or Sections 3.8.4 and
3.13 of the PostScript Language Reference Manual, Second Edition.

8 SubFileDecode Filter 23

pajelodioou] SwalsAS agopy

Adobe Systems Incorporated

24

9

9.1

New Filters for LanguageLevel 3

There are four new filtersin Languagel evel 3. They are the Flate filters, the
ReusableStreamDecode filter, the GIFDecode filter, and the PNGDecode
filter. In principle, reusable streams are adifferent kind of file object, but they
are classified with filters. The GIF and PNG decode filters are considered
optional filters and are only used on Languagel evel 3 printers that support
web printing.

FlateEncode and FlateDecode Filters

Flatefilters are based on the DEFL ATE compression scheme created by Jean-
Loup Gailly and Mark Adler and described by Peter Deutsch in InterNic RFC
1950 (ZL1B Compressed Data Format Specification version 3.3) and InterNic
RFC 1951 (DEFLATE Compressed Data Format Specification version 1.3).
The DEFLATE compression format is based on a hybrid combination of the
LZ77 (Lempel-Ziv 1977) agorithm and Huffman encoding; it specifiesa
lossless, compressed data format. The zlib specification named above
describes a header which indicates the compression method. For the flate
filter, this number is eight, which indicates DEFLATE.

The FlateDecode filter decodes datathat is encoded with the zlib/DEFLATE
compression scheme (as is done with ZIP files). This format has an end of
data (EOD) marker. The FlateDecode filter is used with thefilter operator as
follows:

source dictionary /Fl ateDecode filter
The FlateEncode filter is used with the filter operator as follows:
target dictionary /Fl ateEncode filter

The FlateEncode filter encodes binary or ASCII data, optionally after pre-
transformation by a predictor function, and always produces binary data.

Filters and Reusable Streams 9 October 1997

Table 5

Note

Table 5 shows the keys used in the optional dictionary for aFlateEncode
filter.

Keys in the FlateEncode Filter Dictionary

Key Type

CloseTarget Boolean optional
Effort integer optional
Predictor integer optional
Columns integer optional
Colors integer optional
BitsPerComponent | integer optional

If the value of CloseTarget istrue, the output stream is closed when the data
target is closed. The default value of thiskey isfalse.

Effort controls the memory used for Flate compression and the execution
speed of the compression. Supported valuesfor thiskey are—11t0 9, inclusive.
A value of 0 compresses rapidly, but not tightly using little auxiliary memory
(this means that fast execution is possible, but the compression factor will not
be as good as with a higher value. A higher value means better compression,
but slower execution and greater RAM usage.). A vaue of 9 compresses
slowly but as tightly as possible, using as much auxiliary memory asis
necessary. The default value for this key is—1, which meansto map it to a
value in the range [0,9] that is a reasonable default for thisimplementation
(that is, avalue that is based on available RAM).

Columns specifies the number of samplesin asampled row. Thevalue of this
key only has an effect on the filter if the value of Predictor is greater than 1.
See the description of the Predictor key, below. The default value for
Columns is 1.

The Colors key specifies the number of interleaved color componentsin a
sample. The default value of thiskey is 1. Again, this key only has an effect
on thefilter if the value of Predictor is greater than 1.

BitsPerComponent specifies the number of bits used to represent each color
component. The only supported values for thiskey are 1, 2, 4, 8, and 16. The
default valueis 8.

Image data defined with 16 bits per component may not be used directly as
input to the image operator.

9 New Filters for LanguagelLevel 3 25

pajelodioou] SwalsAS agopy

Adobe Systems Incorporated

Table 6 shows the keys used in the dictionary for a FlateDecode filter.
The Predictor key is discussed below.

Keysin the FlateDecode Filter Dictionary

Key Type

CloseSource Boolean optional
Predictor integer optional
Columns integer optional
Colors integer optional
BitsPerComponent | integer optional

If thevalue of CloseSource istrue, the output stream is closed when the data
sourceis closed. The default value for this key isfalse.

The Columns, Colors, and BitsPerComponent keys are defined the same as
for the Flate encode filter.

Predictor Functions

Like the LZW encode filter, the Flate encode filter compresses more
compactly if itsinput datais highly predictable. One way of increasing the
predictability of many continuous-tone sampled images isto replace each
pixel with the difference between that pixel and some predictor function
applied to earlier neighboring pixels. If the predictor function works well, the
post-prediction datawill cluster toward zero.

Two predictor function groups are supported. The first is the TIFF group,
which consists of the single function that is Predictor 2 in the TIFF standard.
TIFF Predictor 2 predicts that each color component of a pixel will be the
same as the corresponding color component of the pixel immediately to the
left.

The Predictor key in the Flate filter dictionary selects the predictor
function.To select the TIFF Predictor 2 predictor function, the value of the
Predictor key should be 2.

Filters and Reusable Streams 9 October 1997

The second group of predictor functionsisthe PNG group, which consists of
the filters or predictors of the World Wide Web Consortium (W3C) Portable
Network Graphics (PNG) recommendation. There are five basic PNG
predictor algorithms, and a sixth one that is a hybrid of the first five. These
can be set in the Flate filter dictionary as follows:

* A Predictor key value of 10 uses no PNG prediction. That isthe valueis
set to None.

» A Predictor key value of 11 uses Sub prediction, which means to predict
the same value as the pixel to the left.

» A Predictor key value of 12 uses Up prediction, which means to predict
the same value as the pixel above.

» A Predictor key value of 13 uses Average prediction, which means to
predict the average of the value of the pixel above and the pixel to the left.

* A Predictor key value of 14 uses Paeth prediction, which meansto predict
avauethat isanon-linear function of the pixel above, the pixel to the | eft,
and the pixel to the upper |€eft.

» A Predictor key value of 15 uses the Optimum prediction, which is the
hybrid of thefirst five algorithms.

The default value for the Predictor key is 1, which means that no prediction
at all ismade.

The TIFF and PNG predictor groups have some similarities. Both assume
that image datais presented in order, from top row to bottom row, and from
left to right within arow. Both assume that arow occupies awhole number of
bytes, rounded upward as necessary. Both assume that pixels and their color
components are packed into bytes from high- to low-order bits (big-endian).
Both assume that all color components of pixels outside the image are 0;
these pixels are necessary for predictions near the boundaries of images.

The two predictor groups also have several significant differences. The post-
prediction datafor each PNG-predicted row begins with an explicit algorithm
tag, so different rows can be predicted with different algorithms to improve
compression. TIFF 2 prediction has no tags, so the same algorithm appliesto
all rows of data. The TIFF function group predicts each color component
from the prior instance of that color component without regard to the width of
the color component or the number of colors. The PNG function group
predicts each byte from the corresponding byte of the prior pixel (Sub
algorithm) and/or the same pixel on the prior line (Up agorithm) and/or the
prior pixel on the prior line (Average algorithm). This happens regardless of

9 New Filters for LanguagelLevel 3 27

pajelodioou] SwalsAS agopy

Adobe Systems Incorporated

Note

9.2

Note

whether there are multiple color components in a byte, or whether asingle
color component spans multiple bytes. This approach can result in
significantly better compression speed but with somewhat |ess compression.

Comparison of LZW and Flate Encoding

Flate encoding, like LZW encoding, discovers and exploits many patternsin
itsinput data, whether it be text or images. Because of its cascaded adaptive
Huffman coding, Flate-encoded output is usually substantially more compact
than LZW-encoded output for the same input.

Flate and LZW decoding speeds are comparable, but the Flate encoding
speed is considerably slower than LZW encoding. In most cases, the Flate
and LZW encode filters compress their inputs substantially. In the worst case,
the FlateEncode filter expandsits input by no more than a factor of 1.003,
plus the added effects of algorithm tags added by PNG predictors and the
added effects of any explicit flushfile operations. LZW compression has a
worst-case expansion of at least afactor of 1.125, which can increaseto a
factor of nearly 1.5 in some implementations (plus the added effects of PNG

tags).

For more information on the FlateEncode and FlateDecode filters, see
Sections 3.3 of the Supplement: PostScript Language Reference Manual.

Reusable Streams and the ReusableStreamDecode Filter

Most PostScript language streams are consumed in a serial order, and once
consumed, they cannot be read again. In Languagelevel 2, in order to
randomly or repeatedly access a stream of data, the data must be read into a
string or written to afile on a storage device such as a hard disk. Although a
string is repositionable to accommodate these actions, its sizeis limited to
64Kb (in previous levels of the PostScript language, it was possible to
implement an “in-memory” file out of an array of strings, although this
method was never recommended). In Languagel evel 3, anew type of stream,
called a reusable stream, has been introduced to work around the limitations
of using streams or strings. Reusable streams do not impose a size limitation
on storage; the amount of data that can be stored is limited only by the
amount of storage (VM) available on the printer/device.

Reusable streams provide a new kind of file object that can be positioned to
arbitrary pointsin the data stream, and whose contents can be read more than
once. Thisfunctionality can be used to handle such cases asimage datathat is
replicated multiple times on a page or image datain forms, and function data
or mesh data used in Shading dictionaries for PatternType 2 patterns.

See Technical Note #5600, “ Smooth Shading,” for more information on
Shading dictionaries and PatternType 2 pattern dictionaries.

Filters and Reusable Streams 9 October 1997

Note

Reusabl e streams differ from other types of file objectsin the following ways:

* When an EOD or EOF is encountered in a reusable stream, the file is not
closed; the file must be closed explicitly.

» Reusable streams automatically use a specia device, %ram%, as the
underlying file in which the datais stored for random access.

See Section 10.5 of the Supplement: PostScript Language Reference Manual,
for more information on ramdisks and the %ram%o device.

A reusable stream can be created using thefilter operator and the new decode
filter called ReusableStreamDecode. The ReusableStreamDecode filter
can be used in one of two ways. Both methods return afile object on the
operand stack.

One way, and probably the simplest, isto specify just adata source. The
syntax of this method is as follows:

source / Reusabl eStreanDecode filter

An example use this method would be to read image data from currentfile
and then create afile object that can be randomly accessed and repositioned.
The code for this would look like the following:

currentfile /ASCl | HexDecode filter

/ Reusabl eStreanDecode filter

...image data follows the filter operation...
/data exch def

In this particular example, the ASCIIHexDecode filter sensesits EOD
because of the > marker at the end of the data. In cases where the end datais
not so readily identifiable, the input file should be filtered through a
SubFileDecode filter prior to the reusable stream filter.

The second method involves an optional dictionary argument in addition to
the data source. The syntax is as follows:

source dictionary Reusabl eStreanDecode filter

The example use of ReusableStreamDecode above could be rewritten for this
second method as follows:

currentfile << /Filter /ASCl| HexDecode >>
/ Reusabl eSt reanDecode filter

9 New Filters for LanguagelLevel 3 29

pajelodioou] SwalsAS agopy

Adobe Systems Incorporated

30

The use of the filter operator has some unusua side effects, and the resulting
fil eobj hassome unusual attributes. When filter is executed, the datafrom
sour ce may or may not be immediately buffered in virtual memory (VM) or
written to disk, depending on avariety of factors, including the following:

» The nature of source —whether it iscurrentfile, adisk file, astring, a
procedure, or afiltered file.

» Theavailability of system disk storage.

» Theavailability of VM, constrained by the ramdisk LogicalSize
parameter.

» Theset of Filters specified indi cti onary.
* Implementation and system memory management details.

If sourceisderived from currentfile, or from a PostScript procedure, the data
will alwaysberead at the timethefilter operator is executed. currentfile data
should typically befiltered through a SubFileDecode filter. If sourceisa
string, or if sourceis derived from a disk-based file, that string or file should
be treated as read-only; writing into this string or file will have unpredictable
consequences for the data read from fileobj. However, such strings may be
undefined, although they will not be garbage collected until they are no
longer needed. Also, in many file systems, such files may be deleted,
although their disk space will be freed only when it is no longer needed.

When the reusabl e stream filter has read all of the data, it leaves afile object
on the operand stack. Unlike other filtered files, thisfile object can bere-
positioned just like arandom-access file. Bytes of the file are indexed from O
up to (length -1). Thefile object is not closed automatically.

The file object has alength value. The length of the file object can be
obtained with the following code:

data flushfile %set file to EOF
data fil eposition

Filters and Reusable Streams 9 October 1997

Table 7

Here are the file operations that can be performed on the file object that is
returned as aresult of a ReusableStreamDecode filter:

» closefile: closesthe file object. The file object is also closed when itis
destroyed by therestore operator or garbage collection. Any associated
temporary file created on afile system will be deleted when the file object
isclosed.

* bytesavailable: returns the file object size minus the current file position.
If thefileis currently positioned at EOF, O is returned.

 flushfile: setsthefile position to EOF.

* resetfile: resetsthe file position to 0. Thisis a convenience operator for
the more lengthy, but explicit call:

0 setfileposition

 setfileposition: setsthe file object position to any value between 0 and
length. Note that setting the file position to length effectively setsit to
EOF. A file position less than O or greater than length returns an error.

« fileposition: returns the current position of the file object. Theresult is
alwaysin the range O through length, where a position of length means the
fileisat EOF.

Table 7 lists the keys available in the optional ReusableStreamDecode
dictionary. Explanations of each key are given below.

Keys in the ReusableStreamDecode Dictionary

Key Type

Filter name or array optional

DecodeParams | array of variable | optional

Intent integer optional
AsyncRead boolean optional
CloseSource boolean optional

Filter specifies any filter that is to be applied before delivering datato the
reader. The value of the key can be either the name of a single decode filter,
or it can be an array of decode filter names. Multiple filters are applied to the
incoming data in the order in which they are specified in the array. For
example, data compressed using the LZWEncode and then the
ASCII85ENncode filters are then decoded by providing the following array:

[/ ASCI | 85Decode / LZWDecode]

9 New Filters for LanguagelLevel 3 31

pajelodioou] SwalsAS agopy

Adobe Systems Incorporated

32

Note

Note

DecodeParams specifies the parameters associated with each of thefilters
listed in the Filter array. If Filter contains no elements or is missing, then
DecodeParams isnot needed. If Filter contains one element (that is, itstype
isname), then DecodeParams will either contain one dictionary or anull
object. If the Filter array contains more than one el ement, DecodeParams is
an array. Each element (parameter) of the array must have a one-to-one
correspondence with the elements of the Filter array. The value of each
element (parameter) is either a dictionary object or anull object.

The DCTDecode and SubFileDecode filters require a dictionary object.

The value of the Intent key specifies a hint at the intended purpose of the
reusable data. If the valueis recognized, it may help optimize the data storage
or caching strategy used. The currently supported values for the Intent key
are asfollows:

» 0: specifiesimage data (the default value)
» 1: specifiesimage mask data

» 2: specifies sequentially-accessed table look-up data, such as threshold
arrays

» 3: specifies randomly-accessed table look-up data, such as functions, CID
fonts, and color rendering dictionaries

If the value of Intent is not recognized, it is ignored.

If the value of the AsyncRead key is false, the file position of the input
stream (source) is advanced to end of file (EOF) or end of data (EOD). This
key only affects disk files.

If the value of the CloseSource key istrue, the input stream (source) is
closed when the reusable stream is closed.

Filters and Reusable Streams 9 October 1997

Example 7

Example 7 shows atypical use of areusable stream for a masked image.

Use of the ReusableStreamDecode Filter

% PS- Adobe-3.0
% Fr om MASKI MB3. PS
% This exanple illustrates Type 3 Masked | nmages with
% Type 3 interleave. In order to use the inmage data
% and mask data tw ce, reusable streans or needed.
% Note that the common practice is to actually have
%only the mask data in a reusable stream
currentfile /ASCH | HexDecode filter /Reusabl eStreanDecode
filter
... % Mask data goes here
>
/ maskstream exch def
currentfile /ASCl | HexDecode filter /Reusabl eStreanDecode
filter
% | mage data goes here
>
/ dat ast r eam exch def
finch {72 mul} def
/ Devi ceRGB set col or space
% Create the image data dictionary
/1 mageDat aDi cti onary 8 dict def
| mageDat aDi cti onary begin
/1 mageType 1 def
/Wdth 317 def
/ Hei ght 299 def
/ Bi t sPer Component 8 def
/ Dat aSour ce dat astream def
/Mul tipl eDat aSour ces fal se def
/1 mageMatrix [317 0 0 299 0 0] def
/Decode [0 1 0 1 0 1] def
end
% Create the mask data dictionary
/1 mageMaskDi ctionary 8 dict def
| mmgeMaskDi cti onary begin
/1 mageType 1 def
/Wdth 317 def
/ Hei ght 299 def
/ Bi t sPer Conponent 1 def
/ Dat aSour ce maskstream def
/Mul tipl eDat aSour ces fal se def
/1 mageMatrix [317 0 0 299 0 0] def
/ Decode [0 1] def
end
% code continued on the next page

9 New Filters for LanguagelLevel 3 33

pajelodioou] SwalsAS agopy

% Now create the nmasked i nmage dictionary
/ Maskedl mageDi ctionary 7 dict def
Maskedl mageDi cti onary begin
/1 mageType 3 def
/I nterl eaveType 3 def
/ MaskDi ct | mageMaskDi ctionary def
/ Dat aDi ct | mageDat aDi ctionary def
end
% Draw t he masked image in the first |location
gsave
2.05 inch 5.5 inch translate
4.4 inch 4.15 inch scale
% Rewi nd the reusabl e nask and data streans
maskstreamresetfile
datastreamresetfile
Maskedl mageDi cti onary i mage
grestore
% Draw t he masked inage in the second | ocation
gsave
2.05 inch 0.5 inch translate
4.4 inch 4.15 inch scale
maskstreamresetfile
datastreamresetfile
| mmgeMaskDi cti onary /Decode [1 0] put
Maskedl mageDi cti onary i mage
grestore
showpage

Note For moreinformation on the ReusableStreamDecode filter, see Sections 3.3
of the Supplement: PostScript Language Reference Manual.

Adobe Systems Incorporated

34 Filters and Reusable Streams 9 October 1997

9.3

Note

Note

GIFDecode Filter

The GIFDecode filter decodes image data that is stored in the GIF (Graphics
Interchange Format). The filter deciphers all the header information
associated with that format and delivers the image data, either in RGB or
indexed format. The main function of the GIFDecode filter isto assist in the
HTML to PostScript trandation available in web-ready LanguagelL evel 3
printers (aweb-ready printer is one that can readily handle the display or
printing of web-based material).

GIF supports a number of features that make using thisfilter for inlined
images in a PostScript language document undesirable:

» GIF supportsinterlaced images. The problem with interlaced imagesis
that the scan lines do not appear in either top-down or bottom-up order;
the scan lines are out of order. The GIFDecode filter, however, deliversthe
scan linesin the order in which they are encountered in the GIF file, and,
for interlaced images, thisfilter is unsuitable as an input source to the
image operator.

» GIFfiles can contain multiple images (usually for animation purposes).
The GIFDecode filter delivers data only for the first image in amulti-
image file. Attempts to read beyond the end of the first image result in an
EOF condition on the filter stream.

» The GIFDecode filter does not do exactly what its name implies. GIF is
not just a data encoding representation like LZW; it is also an image data
format. In order to make use of a GIF image, the user must extract the
image parameters from the file (the methods of which are not provided
with the filter). The user must also deal with out-of-order data for
interlaced GIF images.

The GIFDecode filter accepts an optional dictionary that includes the
CloseSource key.

The GIFDecode filter is considered an optional filter used only as part of the

implementation of web printing. PostScript language programs should not
invoke this decode filter.

9 New Filters for LanguagelLevel 3 35

pajelodioou] SwalsAS agopy

Adobe Systems Incorporated

36

9.4

Note

Note

PNGDecode Filter

The PNGDecode filter has been created for use on web-ready
Languagel evel 3 printers. The purpose of thisfilter isto aid in the printing of
PNG images. PNG images may need to be printed because they are
referenced in an HTML file, or because the user submitted a URL that
directly references a PNG image.

Similar to GIFDecode, the PNGDecode filter does not do exactly what the
name implies. The user must be able to handle image parameters, out-of-
order data, and data buffering, as explained above for GIFDecode.

The PNGDecode filter accept an optional dictionary that includes the
CloseSource key.

The PNGDecode filter is considered an optional filter used only as part of
the implementation of web printing. PostScript language programs should
not invoke this decode filter.

Filters and Reusable Streams 9 October 1997

Appendix A

Bibliography of Outside
sSources

While thisin not an exhaustive list of referencesfor filters, it will give the
reader some sources for types of filters covered in this document.

For a complete specification on DEFLATE and zlib, see the documentation
section of the official zlib web site at http://quest.jpl.nasa.gov/Zlib.

For complete documenation on the PNG format, see the PNG web site at
http://quest.jpl.nasa.gov/PNG.

For information on the DEFLATE Compressed Data Format, see the
specification by Peter Deutsch on the web site at
http://www.internic.net/rfc/rfc1951.txt.

Graphics International Format, Version 89a, © 1990 by CompuServe
Incorporated, Columbus, Ohio, provides information on GIF images.

37

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

38

Appendix A: Bibliography of Outside Sources

9 October 1997

Index

A

ASCIlI85Decode 17
ASCII85Encode 17, 31
ASCIlIHexDecode 15, 29
ASCIIHexEncode 15
AsyncRead 32

B

Baseline Sequential JPEG 21
Big-Endian 18, 27
BitsPerComponent 25, 26
bytesavailable 31

C

CCITT 20
CCITTFaxDecode 20
CCITTFaxEncode 20
closefile 13, 31

CloseSource 13, 15, 18, 20, 23,

26, 32, 35, 36

CloseTarget 13, 15, 18, 20, 25, 35

Colors 25, 26
Columns 20, 25, 26
currentfile 11, 29, 30

D

DataSource 15
DCT 21
DCTDecode 21
DCTEncode 21
DecodeParams 32
DEFLATE 14, 24

E
Effort 25

Endianness 18

F
FAX ix, 20
fileposition 31

Filter 12, 13, 31, 32
filter 24, 29, 30

Filters 30

Flate 14, 18, 19, 24
FlateDecode x, 14, 24, 26
FlateEncode x, 18, 24, 28
flushfile 28, 31

G
GIF 14, 35

GIFDecode x, 12, 14, 24, 35, 36

H
HTML 35, 36

image 15, 25, 35
imagemask 15
Intent 32

J
JPEG ix, 21

L

LanguagelLevel 2 13, 15, 28

Languagelevel 3 ix, x, 11, 12, 13,

18, 20, 21, 23, 24, 28
Little-Endian 18
LogicalSize 30

pajelodioou] SWalsAS agopy

Adobe Systems Incorporated

LowBitFirst 18 Z
LZW 14, 18, 19, 28, 35

LZWDecode ix, 18 Zl_P 24
LZWEncode ix, 18, 31 zlib 14, 24
N

NullEncode 12

P

PatternType2 28

PNG 14, 18, 27, 36
PNGDecode x, 12, 14, 24, 36
Predictor 25, 26, 27

Predictor Function 26
Progressive JPEG 21

R

readhexstring 15

resetfile 31

resourceforall 12

resourcestatus 12

restore 13, 31

ReusableStreamDecode x, 23, 24,
29, 31

RunLengthDecode ix, 19

RunLengthEncode ix, 19

S

setfileposition 31
Shading 28
SubFileDecode 23, 29, 30

T
TIFF 14, 26, 27
)

UnitSize 18
UNIX 17

URL 36
uudecode 17
uuencode 17
W

writestring 16

40 Index

9 October 1997

	Tables
	Examples
	Filters and Reusable Streams
	1 Filters and Reusable Streams
	1.1 Overview of Filters
	1.2 General Changes to PostScript Filters
	1.3 The Benefits of Using Filters and Reusable Str...

	2 ASCII-Based Filters
	2.1 The ASCIIHexEncode and ASCIIHexDecode Filters
	2.2 The ASCII85Encode and ASCII85Decode Filters

	3 LZW Filters
	4 RunLength Filters
	5 CCITTFax Filters
	6 NullEncode Filter
	7 DCT Filters
	8 SubFileDecode Filter
	9 New Filters for LanguageLevel 3
	9.1 FlateEncode and FlateDecode Filters
	9.2 Reusable Streams and the ReusableStreamDecode ...
	9.3 GIFDecode Filter
	9.4 PNGDecode Filter

	Index

