

ColdFusion 2016 API Manager

Performance Analysis

API Manager – an overview
API Manager is an all new API management solution introduced with Adobe ColdFusion (2016 release).
The API Manager can be used as a platform to publish and manage APIs based not only on ColdFusion,
but also on other platforms or languages. The API Manager can:

• Authenticate an API via OAuth2, basicAuth, or apiKeys
• Enforce rate and throttle limits on API calls with SLAs
• Manage the life cycle and versioning of an API
• Monitor API usage statistics across applications and user profiles
• Cache API response to reduce load on server

The API Manager includes some additional capabilities, such as:

• Publishing a traditional SOAP based web service as a RESTful API.
• Proxy for traditional web services (SOAP PROXY)

The performance improvement results in the document are for representative purposes only. Adobe has
conducted extensive internal tests to produce the results. However, actual improvement may differ for
individual applications.

Executive Summary
The API Manager (APIM) is a highly scalable and efficient platform.

In our tests, when using a lightweight web-service, a single node of API Manager served 500 concurrent
users at the rate of 22,000 requests per second, with a latency of less than 14 milliseconds. A single
node of API Manager, can therefore, serve close to 2 billion requests per day. A cluster of API Manager
Nodes can handle an even higher volume of traffic or it can lower the latency.

This whitepaper presents the results of API Manager’s performance and scalability testing on this
platform. The paper also presents the configuration settings that you can tune to achieve optimal
performance.

Broadly, the test results are from a study that was conducted on the following configurations:

- Single node configuration: A single instance of API Manager, set up with a single instance of the
back-end application server hosting the web-services.

- Cluster configuration: A cluster of three API Manager Instances arbitrated by a load balancer,
set-up with three application server instances behind another load balancer.

Types of web services tested
This whitepaper discusses the performance of the following types of web services. These web services
do not perform any CPU or file I/O intensive operations:

1. HTTP GET – A simple RESTful web service that serves pain text data.
2. HTTP POST – A service that takes JSON data in the request payload.
3. SOAP Proxy – A simple traditional web service that provides document-literal WSDL and takes a

SOAP 1.2 message.
4. SOAP to REST - A simple traditional web service that provides document literal WSDL and takes a

SOAP 1.2 message. The API Manager converts the SOAP service to a RESTful API.

Each web service has been tested with small and large payload size, with different number of concurrent
users.

Performance Parameters measured
One of the principal design goals of API Manager is to maintain the lowest possible latency, so that the
response time for the end user is largely unaffected due to API being served through this platform.

The tests used a wide range of the following parameters to gather the performance statistics:

1. Payload size
2. Number of concurrent users

The following metrics were collected as a result of the performance tests:

1. Throughput – The number of requests the application can handle over time. For example, 5000
requests/second

2. Average Response Time (ART) – The time a request is dispatched from the client to the time a
response is received by the client. It is measured in milliseconds. For example, 25ms.

3. Latency – The difference in ART when a web service call is made directly to the end-point as
compared to when it is routed through the API Manager. It is measured in milliseconds.

Test configurations
To find how the API Manager performed, we calculated the latency it introduced. We compared the ART
of the baseline web service with the ART when APIM is put between the client and the web-service.

The metrics were collected for the following two configurations:

• The Web-Service Baseline, where the request is sent from the client directly to the back-end
web service.

• The APIM gateway, where the load is injected to the back-end web-service through the APIM
gateway. The Data Store and the Analytics Server are hosted on separate machines.

 * Analytics server

** Data Store

We used Apache Tomcat as the endpoint where the web-services were deployed. Apache JMeter was
used to send HTTP requests to the API Manager. The API Manager processes and dispatches the
requests to Tomcat, where the services are hosted.

Single Node configuration

HTTP GET API
The test results below are from an HTTP GET web service that returns a simple text value. The tables
below show the results for a payload size of 102 bytes and a comparatively larger payload of 5KB.

Users APIM Throughput ART APIM Latency

100 22284 4 2
300 22097 13 8
500 21986 22 13

1000 21367 45 27
Performance measurement for GET - small payload (102 bytes)

Users APIM Throughput ART APIM Latency

100 14589 6 4
300 12973 22 11
500 12747 38 18.7

1000 11345 85 40.7
Performance measurement for GET- large payload (5KB)

AS * DS **

As seen in the table and the graph, at lower load, latency introduced by API Manager is negligible.
Tomcat’s ART and the latency introduced by API Manager increases linearly with the number of
concurrent users.

HTTP POST API
The test results below are from an HTTP POST web-service that accepts JSON data in the form of request
payload. The tables below show the results for a payload size of 102 bytes and a comparatively larger
payload of 5KB

Users APIM Throughput ART APIM Latency

100 20750 4 2
300 20495 14 8
500 20351 24 14

1000 19576 49.7 27.7
Performance measurement for small POST payload (102 bytes)

0

20

40

60

80

100

100 300 500 1000

AR
T

Concurrent Users

ART vs. Concurrent Users

Small Payload ART
Large Payload ART

0

10

20

30

40

50

100 300 500 1000

La
te

nc
y

Concurrent Users

Latency vs. Concurrent Users

Small Payload Latency
Large Payload Latency

Users APIM Throughput ART APIM Latency

100 11827 8 4
300 10688 27 13
500 10563 46 25.3

1000 9164 107 49
Performance measurement for large POST payload (5KB)

As seen in the data above, the latency introduced by API Manager is low for a small number of
concurrent users. It increases linearly with the number of concurrent users.

0

20

40

60

80

100

120

100 300 500 1000

AR
T

Concurrent Users

ART vs. Concurrent Users

Small Payload ART
Large Payload ART

0

10

20

30

40

50

60

100 300 500 1000

La
te

nc
y

Concurrent Users

Latency vs. Concurrent Users

Small Payload latency
Large Payload Latency

SOAP Proxy
The test results below are from an SOAP web-service for which API Manager acted as a proxy. The
service accepts JSON data in the form of a request payload. The tables below show the results for a
payload size of 102 bytes and 5KB.

Users APIM Throughput ART APIM Latency

100 19699 4 2
300 19728.5 14 8
500 19470.4 25 15

1000 18522.7 52 30
Performance measurement for small SOAP proxy payload (102 bytes)

Performance measurement for large SOAP proxy payload (5KB)

As seen in the data above, the latency introduced by API Manager is low for a small number of
concurrent users. It increases linearly with the number of concurrent users. In case of larger payload the
increase is bit steep for both ART and latency.

0

10

20

30

40

50

60

100 300 500 1000

Ti
m

e
in

 m
ill

ise
co

nd
s

Concurrent Users

Latency & ART vs. Concurrent Users

ART
Latency

Users APIM Throughput ART APIM Latency

100 11967 8 5
300 10860 27 15
500 10434 46 25

1000 9357 101 56

SOAP to REST Conversion
The test results below are from an SOAP web-service that was transformed to a REST web-service by API
Manager. It accepts JSON data in the form of request payload. The result below is for a payload size of
102 bytes and a comparatively larger payload of 5KB.

Users APIM Throughput ART APIM Latency

100 16911 5 3
300 16881 17 11
500 16720 29 19

1000 15794 62 40
Performance measurement for small SOAP to REST payload (102 bytes)

Users APIM Throughput ART APIM Latency

100 10416 9 6
300 9922 29 17
500 9728 50 29

1000 8972 107.6 63
Performance measurement for large SOAP to REST payload (5Kb)

As seen in the data above, the latency introduced by API Manager is low for a small number of
concurrent users. It increases linearly with the number of concurrent users. In case of SOAP to REST the
heavy lifting is done by API manager but the results are close to SOAP proxy.

0
10
20
30
40
50
60
70

100 300 500 1000

Ti
m

e
in

 m
ill

ise
co

nd
s

Concurrent Users

Latency & ART vs. Concurrent Users

ART

Latency

Testing scalability in a clustered configuration
A single-node API Manager scales really well, but we also see that the throughput decreases and the
ART increases with an increase in the number of concurrent users. To maintain a high level of
throughput and to keep ART at acceptable levels, in cases where a very high number of concurrent users
are expected, a cluster of APIM instances can be deployed. The test results below establish how well API
Manager can scale up in a horizontal cluster, to meet the demands of higher volumes of traffic.

The Cluster Test Environment
The clustered configuration comprises of the following components at different levels:

- Three instances of Apache Tomcat on separate machines, load balanced by a web-services ELB.
The back-end web-services are hosted on these server instances.

- Three nodes of API Manager on separate machines, load balanced by a Gateway ELB. These
instances share the Data Store and the Analytic Server which are hosted on separate machines.

- A distributed set of three slave JMeter servers, managed by a single JMeter master controller on
separate machines.

The APIs are registered in the API Manager with the web-services load balancer as the endpoint, so that
the requests from API Manager instances are load balanced evenly across all Tomcat instances. The API
Manager instances are in turn load balanced by a gateway load balancer which distributes the load from
the JMeter servers evenly across all instances.

A graphical representation of the configuration used for scalability testing is shown below.

Client

Gateway Load Balancer

API Manager 1 API Manager 2 API Manager 3

Web services load balancer

Tomcat 1 Tomcat 2 Tomcat 3

DS ** ES *

 * Anayltics server
** Data Store

Cluster Test results
The tables below represent the cumulative statistics from the three-node cluster configuration. The
latency shown is the difference in ART when the Tomcat cluster was hit directly as compared to when it
was hit via the APIM gateway.

Again, the statistics were collected for a small and a large payload size.

HTTP GET API

Users APIM Throughput ART Latency

300 56573 5 3
900 54643 15 8

1500 57994 25 13
3000 54594 51.6 26.3

Performance measurement for small GET payload (102 bytes)

Users APIM Throughput ART Latency

300 45995 6 3
900 51595 16 6

1500 53237 27 9.3
3000 50060 58 20.7

Performance measurement for large GET payload (5KB)

0

10

20

30

40

50

60

70

300 900 1500 3000

Av
er

ag
e

Re
sp

on
se

 T
im

e

ART vs Concurrent Users

Low Payload ART
Large Payload ART

A three-node API Manager cluster handles GET requests from 1500 concurrent users, with a latency of
13ms. To put this in perspective, a single-node APIM can handle 1000 users with a latency of 27ms.

HTTP POST API

Users APIM
Throughput

ART Latency

300 61732 4 2
900 64853 13.3 7.3

1500 64696 22.3 11.3
3000 66446 44 22

Performance Measurement for small POST payload (102 bytes)

Users APIM
Throughput

ART Latency

300 49255 5.3 1
900 45970 18 2

1500 44908 32 5
3000 41266 69 18.7

Performance measurement for large POST payload (5KB)

A three-node API Manager cluster handles POST requests from 1500 concurrent users, with a latency of
just 11ms. To put this in perspective, a single-node APIM can handle 1000 users with a latency of 28ms.

0

5

10

15

20

25

30

300 900 1500 3000

La
te

nc
y

Latency vs Concurrent Users

Low Payload Latency
Large Payload Latency

SOAP Proxy

Users APIM Throughput ART APIM Latency

300 54073 5 3
900 54539 16 11

1500 54532 26.3 14.3
3000 54823 52 26

Performance measurement for small SOAP Proxy payload (150 bytes)

Users APIM Throughput ART APIM Latency

300 40319 7 3
900 40244 21 7

1500 38750 37 12.3
3000 35876 79 39

Performance measurement for large SOAP Proxy payload (5 KB)

While a single node API Manager can service SOAP requests for 500 concurrent users at a throughput of
just under 19,500 requests per second, a three-node API Manager cluster delivers a throughput of
almost 55,000 requests for 1,500 users.

SOAP to REST Conversion

Users APIM Throughput ART APIM Latency

300 49336 5 3
900 59529 14 7

1500 60605 23.5 11
3000 53253 54.7 28.7

Performance measurement for small SOAP to REST payload (102 bytes)

Users APIM Throughput ART APIM Latency

300 33661 8 4
900 34576 25 11

1500 34520 41 16.3
3000 27122 98.5 58.5

Performance measurement for large SOAP to REST payload (5KB)

While a single-node API Manager can service SOAP-based REST requests for 500 concurrent users at a
throughput of just under 17000 requests per second, a three-node API Manager cluster does the same
at a throughput of over 60000 requests for three times the number of users.

As observed in the single node configuration statistics, the throughput increases with an increase in the
number of concurrent users. If the number of concurrent users are higher than what can be handled
efficiently by a single node of API Manager, a cluster of API Managers can be used to maintain high
throughput.

Determining Number of Cluster Nodes
Use a cluster for two reasons:

1. Maintain low latency
2. Have more throughput

Based on latency (GET)
For 1000 concurrent users, the latency introduced by a single-node API Manager is 27ms. Using a three-
node cluster under similar conditions, lowers the latency to under 10ms.

Based on throughput (GET)
A single-node API Manager delivers a throughput of over 22,000 requests per second. A three-node
cluster can boost it to around 55000 requests per second.

Performance Tuning Guidelines
This section describes the configuration settings and the parameters that can be tuned to achieve an
optimal performance from API Manager. The settings can be segregated into the following components:

• API Manager
• Data Store
• Analytics Server
• OS

API Manager – core server tuning
These are general guidelines to get the best performance. These settings can be tuned by monitoring
the CPU usage, throughput, and CPU-run queue with tools such as the vmstat on Linux or the
Performance Monitor on Windows.

Acceptor and Worker threads
These settings are in the config.xml file in the <APIM_HOME>\conf\ directory. The optimal value for
these settings depend on the number of CPU cores in the host machine.

The Acceptor thread count determines the number of non-blocking threads that accept a request and
pass it on to a worker thread for processing. The recommended value for acceptor thread is two per
core. For example, if the machine has four cores, then the acceptor thread count should be set to eight.

The Worker thread count determines the number of core threads that process a request. A reasonable
value of this count is 16 per core.

JVM Heap Size

The max (Xmx) and min (Xms) JVM heap size, can be set in the jvm.config file in Windows, or the start.sh
script in non-Windows platforms, in the <APIM_root>/bin directory. To prevent the heap from resizing
during runtime, keep the max and the min size, the same.

Data Store connection pooling
This setting is present in the pooling.properties file at the <APIM_HOME>\conf directory. The ideal value
for the connection pool size depends on the number of worker threads. For best results, set maxTotal,
minIdle, and maxIdle to the same value as the number of worker threads. Every runtime request
processed by the API Manager makes a call to the Data Store to check and enforce the rate limit set in
the SLA plan. If the Data Store connection pool is small, then the runtime requests will have to wait till a
connection is available from the pool to move forward.

HTTP Connection Pooling
The HTTP connection pooling properties can be found in the config.xml file at <APIM_HOME>\conf
directory. The max-connections and max-default-connections-per-route should be set to a value greater
than or equal to the number of worker threads. Every runtime call processed by the API Manager will
use a connection form the HTTP connection pool (unless the response is cached by API Manager).

If the response time for the endpoint web-service is high increase the timeout for the following settings
in the same configuration file.

connection-request-timeout : The timeout for a connection request from the HTTP connection pool.
connect-timeout : The timeout for connecting to the web-services-endpoint.
socket-timeout: The timeout for inactive period between data packets in a socket connection.

Asynchronous Logging
The log level used for API Manager is INFO by default. INFO level messages are logged only for the
internal server, but not for all the requests processed by API Manager, to avoid impacting the server
performance.

The messages logged by APIM, either have ERROR priority (if an error occurs in runtime) or DEBUG
priority (if debugging is enabled. By default, it is not.) So in the runtime flow, no messages are logged, if
there are no issues. API Manager uses synchronous logging by default. If API Manager encounters a lot
of errors in runtime, its performance may be impacted.

As a precaution, you can make logging asynchronous, thus avoiding the costly file I/O operations in the
runtime flow. To enable asynchronous logging, add the following system property to the JVM
arguments, in the jvm.config in Windows, or the start.sh script, in a non-Windows OS.

-DLog4jContextSelector=org.apache.logging.log4j.core.async.AsyncLoggerContextSelector

Analytic Server client tuning
This component of the API Manager is an indexing-heavy application. It collects the metrics for each
request, indexes it and stores it for record keeping.

API Manager sends data to the Analytics sever in batches of bulk requests. Each bulk request can
contain multiple metrics documents. The manner in which this bulk request is dispatched can be
controlled by four key settings that you can configure in the “Analytics Server Settings” section in the
API Manager Admin portal. These configurable settings are:

Flush Interval – The frequency at which bulk request is made to the Analytics server. The default value is
one second. On a low load system, this value can be increased. The drawback of increasing the flush
interval is the result displayed in the Analytics dashboard will be less real-time.

Maximum Actions per Bulk Request – The number of requests processed for which a bulk request is
made to the Analytics server. The default value is 1000 actions per bulk request. This means that
whenever, 1000 requests are received by the API Manager, a bulk request is dispatched to the Analytics
server.

Maximum Volume per Bulk Request – This setting determines the physical size of the bulk request that
is dispatched to the Analytics server. The default value is 5 MB. When the cumulative size of the
documents reach 5 MB, a bulk request is dispatched.

Maximum Concurrent Bulk Requests – The number of simultaneous bulk requests that can be made to
the Analytics server. The default value is one. That means only one bulk request can be made to the
Analytics server at a given time. In our test environment, we had increased it to 15 without any issues.

Data Store Tuning
The Data Store uses Redis as the underlying server. Redis is a single-threaded server. Therefore, using a
CPU with high clock speed and large cache is advised as opposed to using a multi-core processor.

In a multi-core CPU-based machine, it is recommended that you isolate and dedicate a core to the Redis
process, so that the system does not schedule any system tasks on that core. On a Linux based system,
use the isolcpus option, in the bootloader, to isolate a core and taskset command, to bind it to the redis
process.

If the Data Store is hosted a remote machine, ensure ample network bandwidth. If a high volume of
traffic is expected, use a high bandwidth NIC card (10 Gbit/s or above) or use multiple NIC cards with
TCP/IP bonding.

For details on the factors affecting the performance of Redis, refer - http://redis.io/topics/benchmarks

Analytic Server Tuning
The Analytics server uses Elasticsearch as the underlying indexing and search server. Since Analytics
Server performs file I/O intensive operations, the use of SSD drives is recommended.

The refresh interval is one of the key parameters in tuning the Analytics server. The API Manager uses a
refresh interval of 60 seconds by default. This can be configured in the APIM administrator portal. A
higher refresh interval translates to better indexing performance. The trade-off here is that the analytics
data will be searchable only after the refresh interval time. If refresh interval is set to 60 seconds, then
even after a request is served by API Manager, the data will be visible in Analytics dashboard only after a
minute.

You should allocate an optimal heap size to the Analytic server, based on the availability of memory and
other processes on the machine and disable swapping between main memory and secondary storage, in
the host system.

You can set the JVM heap size for Analytics server by using the following environment variable:
export ES_HEAP_SIZE=30g

To prevent swapping, use the following system command on Linux:
sudo swapoff –a

You can also enable mockall by using the following setting in the elasticsearch.yml file at
<APIM_root>\database\analytics\config directory.

bootstrap.mlockall: true

This enables JVM to lock its memory to prevent it from being swapped by the OS.

http://redis.io/topics/benchmarks

For further details on sizing the JVM heap, refer:
https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html

For optimizing the Elasticsearch indexing, refer:
https://www.elastic.co/guide/en/elasticsearch/guide/current/indexing-performance.html

OS Tuning

To set the number of open file descriptors for system users, configure the following options in the
/etc/security/limits.conf file

* soft nofile <no_of_files>
* hard nofile <no_of_files>

Alternatively, use the ulimit command as follows:

ulimit –n <no_of_files>

To set the maximum number of processes available to a user, configure the following options in the
/etc/security/limits.conf file

* soft nproc <no_of_files>
* hard nproc <no_of_files>

Alternatively, use the ulimit command as follows:

ulimit –u <no_of_files>

If the changes are done in the config file, reload the file using the sysctl command as follows:

sysctl –p <config_file>

Increase the port range and decrease the TCP connection timeout by using the following directives in
the /etc/sysctl.conf file:

net.ipv4.ip_local_port_range = 1024 65535
net.ipv4.tcp_fin_timeout = 30

https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/indexing-performance.html

Test Environment Specifications
All the components in our performance testing were hosted on c3.8xlarge type HVM AWS instances. The
following specifications were common to these instances.

 RHEL 7.2 64-bit
 32-core CPU (2.8 GHz)
 60 GB RAM
 ESB storage.
 10 Gbps NIC

Apache Tomcat 8.0.24 was used to host the back-end web-services. A distributed set of Apache JMeter
2.13 servers were used as the load testing tool.
The AWS Elastic Load Balancers were pre-warmed before use.

Conclusion
The API Manager is designed to be an ideal solution to add value to APIs, with minimal performance
overhead.

	ColdFusion 2016 API Manager
	Performance Analysis
	API Manager – an overview
	The performance improvement results in the document are for representative purposes only. Adobe has conducted extensive internal tests to produce the results. However, actual improvement may differ for individual applications.
	Executive Summary
	Types of web services tested
	Performance Parameters measured
	Test configurations
	Single Node configuration
	HTTP GET API
	HTTP POST API
	SOAP Proxy
	SOAP to REST Conversion

	Testing scalability in a clustered configuration
	The Cluster Test Environment
	Cluster Test results
	HTTP GET API
	HTTP POST API
	SOAP Proxy
	SOAP to REST Conversion
	Determining Number of Cluster Nodes
	Based on latency (GET)
	Based on throughput (GET)

	Performance Tuning Guidelines
	API Manager – core server tuning
	Acceptor and Worker threads
	Data Store connection pooling
	HTTP Connection Pooling
	Asynchronous Logging
	Analytic Server client tuning

	Data Store Tuning
	Analytic Server Tuning
	OS Tuning

	To set the number of open file descriptors for system users, configure the following options in the /etc/security/limits.conf file
	To set the maximum number of processes available to a user, configure the following options in the /etc/security/limits.conf file
	Test Environment Specifications
	Conclusion

