
Unlock the Business Value of your
Content: Move from Unstructured to
Structured FrameMaker
A Step-By-Step Migration Guide to Structured Content

Bernard Aschwanden
President, Publishing Smarter

Page 3 of 60

Unlock the Business Value of your Content:
Move from Unstructured to Structured FrameMaker

A STEP-BY-STEP MIGRATION GUIDE TO STRUCTURED CONTENT

When a business decides to write content using
Adobe FrameMaker it is done, in part, to free
writers from many of the difficulties associated
with other software. Issues may include:

• Working with large volumes of content

• Managing complex numbering systems

• Meeting online or print design and layout
requirements

• Publishing to Responsive HTML5 (plus apps,
ebooks, and PDF), or

• Other reasons to retire just a word processor
and use a professional communications tool!

Go further! Unlock your content from format and
form. Free yourself to focus entirely on your con-
tent and audience. Define the semantics of your
content and unlock its value in any format, to any
audience, on any device.

This whitepaper explores how you can take the
value of your content and add the functions and
features that structured content delivers. We’ll
provide hands-on exercises to give you basic
instruction on analyzing content and converting
it to structure. Along the way you’ll learn more
about DITA (the Darwin Information Typing
Architecture) as well.

TABLE OF CONTENTS
• Section 1: XML and structured content provides background and conceptual information to help you

understand XML and its value.
• Section 2: Benefits of structured FrameMaker discusses unique benefits of FrameMaker as your XML

tool.
• Section 3: Working in a supported structured authoring environment outlines things to think about

when moving to structured FrameMaker.
• Section 4: Hands-on development wraps it up with a chance to build it all (from scratch!) and con-

tains links to several videos to illustrate the workflow.
• Where to go from here provides more information on what to do after working your way through

this document.

WE WROTE THIS FOR: You! An experienced user of FrameMaker, you are generally comfortable
using the Paragraph, Character, and Table Designers, and are considering a migration to structured
formats such as DITA or other XML standards. Welcome aboard.

CHALLENGE: Developing a structured environment requires the migration of legacy content, while
also learning new tools, and related structural concepts. In many cases there is also a need to
develop supporting content for importing content to (or exporting from) FrameMaker in the native
XML code. Template and format changes, structural needs, and analysis of content all take time. We
wanted to do something to save you some of that time.
Moving to structured content needs hands-on involvement, and with the information in this paper
you'll have a chance to see how it can be done, practice step-by-step examples and decide how your
content can best be migrated to structured formats.

ABOUT US: Publishing Smarter (www.publishingsmarter.com) helps companies communicate. We
develop and implement content strategies This includes creating , managing, and distributing con-
tent from one source to many outputs. We’ve worked with hundreds of companies to help develop
FrameMaker templates, migrate content to structure, analyze content, develop a content strategy,
choose a CCMS, and deliver training.

www.publishingsmarter.com

Overview > Differences between HTML and XML

Page 4 of 60

Overview
Many companies are looking to migrate from
unstructured to structured content. By writing a
(very detailed and lengthy) document such as
this our goals are to explore and discuss:

• Migration to semantically marked up content
(Section 1: XML and structured content)

• Use of Adobe FrameMaker as the tool to do
this (Section 2: Benefits of structured
FrameMaker and Section 3: Working in a sup-
ported structured authoring environment)

• Specific step-by-step hands-on examples so
you can learn about unstructured content
migration to structured content using
FrameMaker. This is explored in Section 4:
Hands-on development

We’ll include examples based on work we have
done with clients, but we’ll also give you enough
guidance that you can get started on your own.
While the samples we include are simple, the

ideas we explore are clear and can be expanded
to your specific content. Having worked with
hundreds of clients in the past 20 years it’s safe to
say that while their content is unique, both
unstructured and structured content should
always be created using best practices. We’ve for-
malized a lot of that thinking into the following
document and hope it’s helpful as you start to
take the journey to structured content.

You can even dive right in and get hands-on
(without ANY background content) by jumping
directly to Section 4: Hands-on development!

• Section 1: XML and structured content

• Section 2: Benefits of structured FrameMaker

• Section 3: Working in a supported structured
authoring environment

• Section 4: Hands-on development

• Where to go from here

Section 1: XML and structured content
Extensible Markup Language (XML) is a vendor-
neutral, open format managed by the World
Wide Web Consortium (W3C). HTML is also ven-
dor-neutral, but is a pre-defined set of tags that
primarily focus on the display of information on
devices. Both have tags enclosed in angle brack-
ets (such as for bold), are relatively easy to
learn, and generally are stored in a text-only for-
mat.

It is crucial though to recognize that, aside from
their superficial similarities, HTML and XML are

used very differently. HTML is for online display
of content using a fixed set of tags which, by and
large, have no meaning beyond format. XML is
for describing information in a semantic and
meaningful way, and uses an extensible set of
tags which define a logical structure.

• Differences between HTML and XML

• Benefits XML offers

• Next steps

Differences between HTML and XML

XML has core differences with HTML that makes
XML easier for people to understand, and simpler
to work with for computers. The language is
human-friendly; the information semantically
meaningful. You can create your own tag names
if you wish (for example, it may make sense to
organize the bestselling books of all time and
include information about the genre, author,

publish date, title, or numbers sold) to provide
more meaning to the content if and when
manipulated by people. Software can quickly
process XML files. Parsing a plain text file is done
in a split second, and can be done without having
to first deconstruct the parts of a document.

EXAMPLE: Consider the content coded in HTML
and XML seen in Table 1. We’ve made it easier to

Section 1: XML and structured content > Differences between HTML and XML

Page 5 of 60

follow by formatting the tags and the content so
they stand out from each other. It’s easy to see
the HTML structure on the left, but difficult to
extract further meaning from it. If you read the
HTML and focus on the tags, this could be writ-

ten about anything. The sample shows a side-by-
side comparison of HTML and XML using some
work we've done with an online book retailer.
You can see how much more usable the struc-
ture of the XML content on the right is.

Table 1: Comparing HTML and XML content

The HTML example lists each book as a heading
followed by some paragraphs. No specific group-
ing exists at a logical level beyond the <body> of
the content. It’s difficult to uniquely identify the
structure and extrapolate meaning without read-
ing the text inside the markup. Lastly, and per-
haps most importantly, there is virtually no way
to uniquely identify the information by function.
You may identify the <h1> as the title, but the fol-
lowing content is a collection of paragraphs (the
<p> elements), and these are inconsistent in
their content.

If you look carefully you may even catch the
error in the last book element (The Lord of the
Rings). Unlike previous entries someone entered
the year first, and followed it by the number sold

(all others have the numbers sold first, and then
the year second). Even risks associated with
human error can be reduced using XML.

However, it is far simpler to comprehend the
semantic and meaningful structure of human-
readable XML tags. Spacing between the para-
graphs is only added to make it a bit simpler to
compare "apples to apples" in the content.

The other major difference is in the output that
can be generated. Comparing Figure 1 and
Figure 2 shows how HTML, by default, is a linear
product, but that XML can be adapted, re-orga-
nized, or even have some elements excluded.

HTML example XML example

<html>
<head><title>Top Sellers
 </title></head>

<booklist>
<title>Top Sellers</title>
<body>

<body>
<h1>Don Quixote</h1>
<p>Miguel de Cervantes</p>
<p>500 million</p>
<p>1605</p>

<book genre="fiction" published="1605">
<title>Don Quixote</title>
<author>Miguel de Cervantes</author>
<sold>500 million</sold>

</book>

<h1>A Tale of Two Cities</h1>
<p>Charles Dickens</p>
<p>200 million</p>
<p>1859</p>

<book genre="fiction-historic" published="1859">
<title>A Tale of Two Cities</title>
<author>Charles Dickens</author>
<sold>200 million</sold>

</book>

<h1>The Lord of the Rings</h1>
<p>J. R. R. Tolkien</p>
<p>1954-1955</p>
<p>150 million</p>

...
</body>
</html>

<book genre="fantasy" published="1954-1955">
<title>The Lord of the Rings</title>
<author>J. R. R. Tolkien</author>
<sold>150 million</sold>

</book>
...

</body>
</booklist>

Section 1: XML and structured content > Differences between HTML and XML

Page 6 of 60

Figure 1: HTML sample of structure with output and hierarchy

The web was driven by HTML code, but that code
has no semantic structure, isn’t database driven,
and is used for just one purpose. However, when
content needs to be created, managed, and pub-
lished from one source, issues arise. One solution
is structured, XML-based content. This follows
rules and looks beyond basic tags like <i> and
 (for italic or bold) and digs into the meaning
of your work using tags such as <wintitle>, <sec-
tion>, <brand>, <stepresult>, or any tag that you
may decide to define. The options (and the bene-
fits) are virtually limitless with XML.

Figure 2 shows that XML content can be trans-
formed and, based on semantic markup, a spe-
cific layout or design applied for a given output.
The logic used to define the order or the format
of content can be driven by the elements <title>,
<author>, or <sold> meaning that books can be
sorted by the number sold, and formatted based
on the element name.

Figure 2: Sample of one (of many possible)
outputs supported by an XML source

Lastly, exploring the content structure, you can
see a clear hierarchy for all booklist information.
Each book has specific information about the
genre or when it was published, as well as the
title, author, and volume sold. The markup tells
the story of the type of information you see.

Figure 3: XML structure sample hierarchy

Looking at the XML example, you can immedi-
ately understand and use the content even if

Section 1: XML and structured content > Differences between HTML and XML

Page 7 of 60

there is no format assigned to it. The semantic
markup tells us, as humans, that this is a list of
books. The genre is identified early, as is the pub-
lish date, and content is organized to simplify
finding the title, author, or how many were sold.
There is also information about the <book> in
attributes (this information is often called meta-
data). The attributes define the specific genre
and the year published. You can quickly create a
list of top-selling authors from this content, or
parse it for all books selling between 10 and 25
million copies, which were published between
1983 and 2004. In short, the content in the XML
file is usable beyond just displaying on the web. It
has meaning.

XML uses well-formed and valid structure

Well-formed, structured content means predict-
able results when software is used to process
files. The processing could be for system-to-sys-
tem communications between devices or ser-
vices (for example, a bank creates an app that
communicates between your phone and a termi-
nal used to pay for goods), or for FrameMaker to
open the document and allow review or edits, or
even for conversion through automated systems
from one source of structured content to another
output (such as automated conversion to PDF or
web and mobile content).

Structure requires well-formed content where all
tags are opened and closed properly. For exam-
ple (remember, we’ve formatted tags and con-
tent to stand out from each other):

• The following sample contains text only and
has clear start and end tags that indicate it is a
paragraph. The paragraph is short, self-con-
tained, and has no additional structure within
it. It properly marks up content and opens and
closes a tag without overlap.

<p>When working with XML it is important to
get to know a bit about the structure, even if
you don’t want to know about all the code and
markup.</p>

• The following sample contains text and has
markup to indicate it is a paragraph. However,
it also contains a window title (the name of a
dialog box) that appears when working.

<p>Structured content is similar to unstruc-
tured content when you work with it. You can
open, edit, and close files. Dialogs such as the
<wintitle>Open</wintitle> may have addi-
tional options to support the XML content
though.</p>

• The following invalid sample has one element
overlapping another element. This is not valid
when working with XML and therefore is very
difficult to even create for a demonstration!

<p>Invalid content exists when one element
has a start or end tag contained within another
element and <i>this must be avoided at all
times.</p></i>

In the last sample the tag <i> is used to indicate
italic content. However, it encapsulates the clos-
ing tag for the paragraph. For the content to be
valid the closing tag (the </p> content) would
have to be moved to the right of the closing tag
for the italic. While HTML may allow this type of
content, structured content that must adhere to
the rules of XML will not. Quality software should
never allow such invalid markup to be created.

XML is a broad standard to encode content.
There are however a range of options on how
that content is encoded. All XML structured con-
tent is tagged with markup. Technically, you can
define your own and we have many clients who
do so. FrameMaker supports many standards
(DITA, S1000D, DocBook, etc) with built-in tem-
plates and functions so you don’t have to do
nearly as much work if you use one of these stan-
dards. To keep things simple (and to allow you
the option of expanding your understanding of
the samples we use) we will work with DITA (a
leading industry standard) throughout our con-
tent. This means all the reading you do will pro-
vide you a better understanding of DITA.

EXAMPLE: Table 2 is a valid structured XML doc-
ument, written to adhere to the DITA standard.
To enhance human readability content that is
part of the written document has one format and
the tagged markup another. Just like our previ-
ous examples of a list of books, this XML content
has meaning based on the tags used.

Section 1: XML and structured content > Differences between HTML and XML

Page 8 of 60

Table 2: Sample of valid DITA XML content

Structured content gives you a view of the docu-
ment that is based on the hierarchy and function
of the content. This is a quick and easy way to see
the relationships among the tags.

DITA and its relationship to XML

DITA (the Darwin Information Typing Architec-
ture) is based on XML, and is one way to encode
content. This could be seen as similar to the idea
that there are standards for cell phones to con-
nect with towers, but a company that makes a
specific phone decides how to interpret the stan-

dard to make their phone work with the net-
work.

DITA organizes information into maps (similar to
the idea of a FrameMaker book) and topics. Top-
ics are smaller than chapters—usually made up
of a mix of how-to information (task), technical
information (reference), and overview or ‘what
is’-type of information (concept). Other topic
types available and a full and rich discussion
about DITA can be found in numerous online
forums, books, and conferences.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE concept PUBLIC "-//OASIS//DTD DITA Concept//EN" "concept.dtd">
<concept id="unlock-content">

<title>Unlock your content</title>
<shortdesc>Content has business value. That value is in the ability of people to learn what you
offer, how you perform services, how they can perform tasks, understand concepts and ideas, find
technical reference, or otherwise learn more about what your business does and offers.</short-
desc>
<conbody>

<p>FrameMaker releases content from difficulties associated with other tools. This may include:

large volumes of content,

complex numbered systems,</
li>
design and layout require-
ments, or
other reasons to put aside a
word processor and use a profes-
sional communications tool.

</p>
<section id="unstructured">

<title>Unstructured content
</title>
<p>More content needed here.</p>

</section>
<section id="structured">

<title>Structured content
</title>
<p>More content needed here.</p>

</section>
</conbody>

</concept>

Figure 4: XML structure in a tree view

Section 1: XML and structured content > Differences between HTML and XML

Page 9 of 60

Capturing information hierarchy

Structured content is about the purpose of infor-
mation, not its physical appearance. This adds
value to content through the context of informa-
tion, and the classification of the information.
Word processing workflows expect part of the
value of the information to be implied through
the visual appearance. Not so with structure.
Instead, the writer focuses on content hierarchy .

In structured content the relationships between
elements matter. Content is not just paragraphs
with arbitrary format assigned to them. The logic
of the hierarchy makes it easier to identify infor-
mation and define where it is within a document.
This allows the format to be defined dynamically
and ensures a logical structure that can be
enforced and acted upon.

Figure 5: Comparing formatted content and logical structure

EXAMPLE: The text and visual format of Figure 5
could be represented on the right as a collection
of paragraphs formatted as headings, body con-
tent, steps, table components, and so on.

In the structure view on the left the same docu-
ment can be seen as a collection of semantically
organized parts instead of as a flat list of para-
graphs and tables. There are two clearly defined
tasks with title and task body components. The
task body contains steps, and each step in turn
has logical parts. Each part of the structure
serves a specific function and can be expanded
or collapsed for viewing or reorganization,

defined as required or optional, and dynamically
formatted based on the unique template used
and the hierarchy of content.

Embedding metadata in XML

Metadata is information about information.
Sounds a bit odd, right? Metadata provides more
detail about an element as you’ll see in a
moment. Any element has the potential for
optional attributes which allow you to store
more information.

The following two elements could be part of the
same document but targeted to specific readers

Section 1: XML and structured content > Benefits XML offers

Page 10 of 60

and may only appear in the output if a specific
audience is reading the content:

• <p audience="novice"> (the element p is writ-
ten for for an audience who is novice)

• <p audience="expert"> (the p has an attribute
to describe the audience as expert)

Let’s look at a few more elements with attributes
and values used to define metadata:

• <section product="fm" version="2020"> (sec-
tion has 2 attributes for a product and version)

• <example product="fm"> (this example is
specific to just the product FrameMaker)

• <step platform="iOS"> (only applies to iOS)

• <book genre="fiction" published="1605"> (a
book of fiction written a very long time ago)

• <map id="id_123" audience="pro" prod-
uct="fm" version="2019"> (a map that guides
the expert user through FrameMaker 2019)

EXAMPLE: A graphic in HTML may appear as:

which defines an image, identifies the image
source and sets the height and width in pixels.

These attributes are basic metadata that further
define the img (image) element. Metadata for
elements could include many types of informa-
tion such as those that define the audience to
whom content applies, a specific product or plat-
form, status of the content, uniquely identify spe-
cific steps in a task, or for a range of other
functions.

Benefits XML offers

While XML is based on code (just like HTML for
the web) there are many tools that simplify the
view and allow authors to focus on content (just
like HTML authoring for the web). We’ll show you
code so you can understand what is happening
behind the scenes, but always remember that a
professional author tool hides the code, provides
the semantics, and allows writers to focus on
their writing.

Extensible Markup Language (XML) is a set of
configurable rules for content that define the
structure of content, not the appearance. It is
most often guided by a formal set of rules that

specify what options can be considered in a
given context.

One XML rule set many people in the content
creation field use is DITA. This allows software
and services vendors to start with a common
baseline to develop applications and solutions
that can be simpler to implement. DITA supports
content creation in a topic-based structure and
simplifies reuse, management, and publishing.

Consider a single structured hazard statement
used in the product safety information, as it
might be written in XML.

Table 3: Hazard statement sample

Ideally, it’s written so that a human can even see
the code and identify that it’s a safety warning
about laser radiation and has information on the
type of hazard faced, what could happen to

someone, and how to avoid the hazard. The look
and feel can also be assigned to content based
on the structure. This would allow, for example,
the <typeofhazard> to be bold, <consequence>

<hazardstatement type="laser3B" id="SafeT-1st-3B" last-update="20180123">
 <messagepanel>
 <typeofhazard>LASER RADIATION CLASS 3B</typeofhazard>
 <consequence>DIRECT EXPOSURE TO THE EYE CAN CAUSE BLINDNESS.</consequence>
 <howtoavoid>DO NOT LOOK DIRECTLY AT THE LASER.</howtoavoid>
 </messagepanel>
 <hazardsymbol href="laser.png"/>
</hazardstatement>

Section 1: XML and structured content > Benefits XML offers

Page 11 of 60

red, and <howtoavoid> reversed (white text on a
black background). Later, if for example, you
decide the <howtoavoid> should be on a red
background, you can update your template and
reformat the look and feel of every <how-
toavoid> element immediately!

Enforcing consistent organization

Unstructured files allow authors flexibility in cre-
ating content. Consider a task in which steps con-
tain a range of instructions. Identifying which
content is first, last, or in any specific order is left
to a style guide, author training, trust in the pro-
cess, and human memory. In many cases, an
additional review of all content is required to
ensure the style guide is consistently followed
and both the sequence of steps and information
to support steps is organized according to stan-
dards. In structured content the sequence can be
clearly defined and enforced through automated
validation of the standard.

EXAMPLE: A step could have a command
(instruction to perform an action), a stepxmp (a
step specific example illustrating a specific way
to perform a step), a set of choices, a set of sub-
steps, or a specific stepresult.

This establishes a clear and defined guide to cre-
ating a <step>. It now represents the action a
user must follow to complete the single step
accurately. A collection of <step> elements
would be grouped into <steps> (note the singu-
lar <step> and the plural <steps> here…) and
these would be the core of the task body. Each
<step> element would require:

• At a minimum, a clear command with a spe-
cific action the user would perform

• One or more optional choices to consider,
informative statements to help your reader
understand the step, a specific example of the
step or substeps to perform

• An optional expected result that identifies the
outcome of the step (if it’s not obvious to the
reader)

• An optional way to troubleshoot the step if the
result is not as expected

This model ensures that the command is first,
then a list of optional "middle" content, and the
result is last. In short, the model enforces a stan-
dard and consistent organization.

Figure 6: Enforced content order

EXAMPLE: Using a sample Structure View (the
right portion of Figure 6) and clicking between a
<cmd> and <stepresult> shows a small black tri-
angle. It also updates the Elements (left portion

of the image) to display only 4 valid options for
an author to choose from. The author can still
create content, but must do so within the con-
fines of the available structured options.

Section 1: XML and structured content > Benefits XML offers

Page 12 of 60

This could be formalized as follows:

• <step> must begin with a single <cmd>

• The <cmd> may be followed by the following
optional and repeatable elements: <choices>,
<info>, <stepxmp>, <substeps>

• The <step> may also, optionally, contain a final
element listing the <stepresult>

If required content is missing or inserted and
reorganized in a structurally invalid order it
breaks the rules as seen in Figure 7. At times it
may be important to reorganize content and,
briefly, have invalid structures. Good software
can validate the structure and provide real-time
updates to identify any invalid content.

Figure 7: Invalid structure representation

Here the small red square error mark indicates a
missing element and the dashed descended line
indicates an element in the incorrect location.
Based on the formalized rules (above) the step
must begin with a single <cmd> and this may be
followed (optionally) by the <info>. As this is not
the case, the error is flagged.

Standardize corporate branding

As content between traditional silos is starting to
be shared more often (such as marketing and

technical communications converging1 or train-
ing and policy and procedure sharing step-by-
step instructions) it’s also important to reformat
content based on the specific need of a corporate
brand. To facilitate file sharing, structured con-
tent can be exchanged between software tools.
As long as both tools "understand" the same
structured code, they can reformat information
dynamically to display as needed.

EXAMPLE: A structured document is opened in
multiple tools, and uses multiple templates. The
document may have a different appearance
when published in a smaller page layout, if pub-
lished as a work order, included in a mobile app,
or when opened using a default author template.
Figure 8 shows that while content is identical in
every configuration, the appearance of the con-
tent dynamically changes and adheres to the
corporate template, regardless of what that tem-
plate looks like. Authors could even have a web-
based template to write in that is completely
removed from the appearance of any review or
publish template. Here the same content
appears in unique formats based on tools and
templates.

Figure 8: Same content, unique templates

Automating and enforcing format

Structured content removes the need for authors
to think about the style-based format assigned to
tables, words, paragraphs, or other content. Con-
tent is not organized into formatted units based
on tagging such as a heading or a subheading.
Format no longer drives the relationship of the
content. A unit of information can be logically
reorganized, and is formatted automatically,
based on context of use.

1. https://offers.adobe.com/en/na/marketing/
landings/xml_documentation_add_on_for_
adobe_experience_manager_whitepaper_the
_convergence_of_technical_and_ma.html

Section 1: XML and structured content > Benefits XML offers

Page 13 of 60

EXAMPLE: An unordered list may appear nested
within another list. Figure 9 shows three lists.
One has two bullets; the first for Fruit and the

second for Vegetables. The others two lists are
specific lists of fruits and of vegetables.

Figure 9: List and nested-list formats

The format is automatically assigned based on
the nested level. If the list is the "first" in the hier-
archy it appears as a bullet list with round bul-
lets. If placed at a second level the list is
automatically formatted as a dash list, and so on.
Should the lists later be reorganized the formats
would automatically change to match the rules.

Figure 10: Format rules based on list count

As an author there is no need to reformat list
content if it is reorganized or reused. With the
right tools list formats are automatically assigned

based on the number of nested elements.
Figure 10 shows rules to dynamically format
elements as a main or second level bullet.

Using metadata for versioning and delivery

Metadata is, as mentioned previously, informa-
tion about information. This can be used to per-
form additional actions. Just like an <image>
may need to know the actual file to import, the
height and width, and other data, you can per-
form additional actions based on metadata.

Table 4: Procedural steps sample

EXAMPLE: In Table 4 a set of procedural steps
are customized for a specific platform. That is, a
step may be unique to either the Windows or the

<steps>
<step platform="win">Open the Windows
Explorer.</step>
<step platform="mac">Open the Mac
Finder.</step>
<step>Select the location to create a new
folder.</step>
<step>Press Ctrl/Command+Shift+n.</
step>

</steps>

Section 1: XML and structured content > Benefits XML offers

Page 14 of 60

Macintosh operating system. The step would
appear for authors, but conditionally be included
in content for specific readers based on the plat-
form. In this sample we’ve flagged two steps to
stand out.

An author would see all the content, perhaps for-
matted similar to Figure 11. The information is
automatically numbered with 4 steps (which to
the author are visible and can be edited, proof-
read, translated, or worked with as needed
before it is seen by the consumer of the content).

Figure 11: Content as seen by an author

The structure of this content has <step> ele-
ments. There are optional attributes with specific
values assigned to them.

Figure 12: Structure with platform attributes

The audience sees information specific ONLY to
their environment (the reader may even toggle
the display to see one or the other in some out-
puts). For example, the default may show all con-
tent, but also has an option to filter by OS.

This enhances value to the reader and adds min-
imal overhead in the content creation process. It
also means a single source of content exists
which helps reduce risk, costs, and management.

Figure 13: Responsive HTML5 with all content

If the Windows version is shown then only three
steps are displayed.

Figure 14: Filtered to show only Windows

If the Macintosh version is shown then the steps
update to show only the Finder procedure.

Figure 15: Filtered to show only Macintosh

Ideally, the author also configures step 3 to con-
tain only an OS specific phrase so that only Win-
dows or Macintosh content displays. Even this
can be done with effective processes and tools.

Publishing to multiple output formats

Structured content allows output to almost any
format. One source can therefore be converted
to be read on any device, or to any print ready
template. Need to create for tablets, phones, or
desktops? No problem. You can even publish to
mobile apps! Do you want PDF and print-ready
content for newsletters, whitepapers, print books

Section 1: XML and structured content > Benefits XML offers

Page 15 of 60

(hardcover or paperback), textbooks, catalogs, or
any other "traditional" print deliverable? You can
generate it all from one source.

EXAMPLE: A publisher creates structured con-
tent explaining how to prepare a floor for instal-
lation of ceramic tile. This is used in a Planning
Guide (delivered online), referenced in educa-
tional materials (print and online), provided to
customers in-store during hands-on demonstra-
tions, and even is used online in videos as part of
an overall strategy to gain new customers. This
means there is a need to publish to many out-
puts.

Using a traditional model the content is refor-
matted for each print component. It is converted

to HTML content and plugged into each required
location with updates to stylesheets and other
format elements.

With an XML based workflow we can convert the
content to many outputs, and can even do so in
an automated way. This frees up writers, editors,
managers, and others to do the work they were
hired to do, not convert content through labor-
intensive manual workflows!

Let’s explore these ideas in Table 5. Notice that
the structured content has steps and substeps.
Some steps also have additional information that
help guide the reader to purchase product.

Table 5: Structured <steps> and <substeps>

<steps>
<step>Plan the layout.

<substeps>
<step>Lay chalk lines and find the center point of the room.</step>
<step>Square the chalk lines.</step>

</substeps>
</step>

<step>Test your layout strategy.
<substeps>

<step>Without mortar lay a half row of tiles in both directions from the center point out.</
step>
<step>Install spacers between tiles until there isn’t room for a full tile.

<info>The gap on either side of the finished test should be equal if properly centered. If not,
adjust your center point and try again.</info>

</step>
</substeps>

</step>

<step>Plan for safety and comfort
<substeps>

<step>Wear safety gear such as gloves and glasses.
<info>Safety gear can be ordered online, or purchased in-store.</info>

</step>
<step>Read the instructions for the mortar mix.

<info>We love Grip-Oh mortar. Order now for same day delivery.</info>
</step>
<step>Plan for threshold transitions.</step>
</substeps>

</step>
</steps>

Section 1: XML and structured content > Benefits XML offers

Page 16 of 60

When delivered, content can be formatted in
many ways to instruct someone on planning for
tile installation, or as part of a sales discussion, or
even online with links to specific product. In this
way, the same content is delivered in multiple
formats from one source. In this sample we’ve
simplified the code for the purpose of the docu-
ment, but a lot more information could be stored
in the materials and published to specific audi-
ences and outputs.

Structured content is converted using a logical
set of instructions.

This information may be used by marketing on
the corporate website as text embedded on a
page with a video showing the product in use
and the option to immediately buy product or
related materials. Your content is now used to
help generate revenue!

Figure 16: Marketing (Website)

Now think about how it can be used as part of a
mobile application. Not only are the detailed
step-by-step instructions provided, but so in the
option to order materials immediately. Figure 17
show that, again, the content can be used as a
sales generation tool to help build revenue.

Section 1: XML and structured content > Benefits XML offers

Page 17 of 60

Figure 17: Mobile (for DIY)

The content can also be added to a printed or
PDF brochure where the primary steps are all we
need. Figure 18 should look familiar as it rep-
resents what we may see in a manual or as a sin-
gle page instruction on product use.

Figure 18: Brochure (Print)

Finally, let’s explore what an associate in a store
needs. Figure 19 has additional information (nor-
mally hidden from any consumer) included as
part of the content. Associates can connect con-

tent to client engagement and even consider
specific interactions to help generate revenue.

Figure 19: Store Associates Only (Print)

We can create all these outputs from one source.

Each contains a mix of content customized based
on the delivery and output. On the web it is
merged with video and instructional content. On
a mobile device a reader can immediately order
the products discussed. For a brochure it’s a sim-
ple black-and-white document. Lastly, in-store
customers are engaged through additional infor-
mation about workshops and specific aisles with
products (this also helps to drive sales!).

Each format has a unique look, and a specific
function, but all of them are based on one single
source of content.

Supporting content reuse

The world of XML and DITA has opened up con-
tent reuse beyond what you may traditionally do
with an authoring tool. If you are familiar with
concepts such as text insets, variables, condi-
tional content, and sharing files between books,
you are already on the way to working with
structured content reuse.

Many mechanisms exist for content reuse. Some
of the easier ways to explain and demonstrate

Page 18 of 60

Section 1: XML and structured content > Next steps

them connect to what you already know about
your authoring tool. As discussed earlier, there
are ways to assign metadata such as the platform
(we compared the same general steps for both
Windows and Macintosh), or to create custom
output based on templates. However, within
DITA there are additional reuse components.

The <ph> element defines a phrase. In the DITA
specification the <ph> is specifically created for
reuse or conditional processing (for example,
when specific parts of a paragraph only apply to
a given audience, platform, or product).

Share content with others using XML

Sharing content has become a huge topic of dis-
cussion in the technical communications world,
but it’s also a big deal to people in marketing,
sales, training , and basically any other place peo-
ple use and share content. It’s now simpler to
create XML (specifically, DITA) as the standards
have developed and fewer companies are "build-
ing their own". With the implementation of DITA
as a standard you can also create and share with
people using other tools.

EXAMPLE: XML lets you move information from
one authoring tool to another without losing
information. You can develop information in one
tool, save it out to XML, and then open the XML
files in another tool. Perhaps a technical writing
group uses FrameMaker and needs to share
information with a marketing group who use
Adobe Experience Manager Guides. You can
use XML to exchange content between two or
more applications with ease.

Reducing localization cost

Part of the cost of translation is related to refor-
matting content that is translated. Page durations

will change, images may be replaced with larger
or smaller ones, tables may reflow, or other
updates may be required based on the revised
materials. Exact numbers will vary for specific
projects, but as a general rule, about half the
total localization cost is for publishing and pro-
duction. A publishing workflow built on XML and
structured authoring lets you automate much of
the publishing effort, so you can greatly reduce
the ongoing costs associated with localization.

Simplifying database publishing

Databases can generate an XML file with all the
information needed for publishing. This allows
you to export content from the database and
then import it into a publishing tool for output to
PDF or HTML based deliverables.

EXAMPLE: A database of parts includes the part
ID, name, illustration, pricing (both retail and
wholesale), and other related information. Spe-
cific content is exported every month as XML
content. This content is imported to a publishing
template. All layout and format is automatically
applied. The result is a high quality PDF docu-
ment used by sales reps at trade shows, sent to
clients, and provided to partners. The same con-
tent is also published to HTML5 output and con-
verted to the most current version of the
company app.

Complying with required document structures

Regulatory environments may specify specific
content that is required in a specific order. Struc-
tured authoring allows consistent content devel-
opment to ensure compliance with government
or industry requirements.

Next steps

Let’s explore how software can best be used to
help you migrate content to a structured format.
In Section 2: Benefits of structured FrameMaker
we’ll explore Adobe FrameMaker and its fea-
tures. Specifically, we’ll use Adobe FrameMaker
(2019 release) and demo features that are avail-

able even in just the trial version. If you don’t
have FrameMaker, don’t worry. We’ll provide
links to videos that demonstrate ideas so you can
follow along, as well as tutorials and access to
the trial version to get you started. If you already
have FrameMaker then it’s even easier!

Section 2: Benefits of structured FrameMaker > Migrating from unstructured FrameMaker to structured FrameMaker

Page 19 of 60

Section 2: Benefits of structured FrameMaker
XML can be complex and may not always look
like you would prefer. FrameMaker uses an
author-centric structured environment that
allows you to create valid XML content. You can
create, edit, and publish complex content with
rich format and layout options. Authors can cre-
ate PDF and online formats with all the same
functions they expect from their software. Struc-
tured FrameMaker content gives you the com-
fort of an authoring tool with a powerful visual

interface, and lets you enjoy the benefits of a
structured workflow.

• Migrating from unstructured FrameMaker to
structured FrameMaker

• Authoring visually

• Creating multiple outputs from one source

• Relatively low licensing cost

• Relatively low implementation effort

• XML implementation options

Migrating from unstructured FrameMaker to structured FrameMaker

Traditional unstructured content is based on
paragraph, character, table, and other formats
that are stored in catalogs. Content in a struc-
tured workflow is managed based on the context
of use and format automatically applied. That is,
a paragraph that might be in a bullet list can be
moved to a numbered list and automatically
reformatted. Or a topic that is nested 2 levels
deep with related indents could be moved in its
entirety up 1 level and all subordinate content
immediately reformats as well!

While the author experience in a structured envi-
ronment changes, the capabilities of the software
remain the same. Authors can often be up and

running in a completely new workflow within
days; much faster than they might be if switching
between tools completely. Additionally, tem-
plates can keep the look and feel they had before
the migration, ensuring content retains the look
and feel that authors expect.

As a bonus, authors will discover that they no
longer need to even think about content format.
Instead, they have a consistent, repeatable, and
automated format-based document. The format-
ting rules informally applied to unstructured
content can be formalized in a structured work-
flow.

Authoring visually

There are multiple ways that a structured docu-
ment can be viewed. This includes with markup
(tags) showing in-line with text, markup without
tags, or the Structure View with a tree-like hierar-

chy of elements. FrameMaker supports many
combinations, allowing authors to see what they
want, when they want.

Creating multiple outputs from one source

Being able to deliver any type of output is a
major strength of working with FrameMaker, and
structured content makes this even better. While
numerous formats can be created out-of-the-box
let’s talk about the most common formats used
today—PDF and HTML5.

Print and PDF output

Just like unstructured FrameMaker, a structured
FrameMaker environment creates the best PDF
in the world. Most DITA-aware authoring tools
either do not have a print option, or they create a
finished PDF with no way to customize and con-
figure the format unless you put time into learn-
ing programming. Layout for print can be

Section 2: Benefits of structured FrameMaker > Relatively low licensing cost

Page 20 of 60

designed in almost the exact same way as with
unstructured content. The resulting template is
connected to FrameMaker’s Element Definition
Document (EDD) and allows complex print pub-
lishing with dependable and repeatable output.

HTML5 output

In the same way that Adobe allows you to
quickly convert content to PDF, the ability to cre-

ate HTML5 content is also native to FrameMaker.
The "Publish" option allows you to convert topics
or maps to HTML5 including dynamic content fil-
tering, and automated resizing of content based
on device type, and does it all with a completely
visual interface for customization.

Relatively low licensing cost

Support for structured authoring is already
included if you are using FrameMaker. It’s simply
a toggle in the Preferences. If you want to try it
out-of-the-box it’s easy to do and you can work
with structure without making a huge commit-
ment to new software. This can be scaled in an
organization by adding either other licenses of

FrameMaker, or even through the use of a com-
ponent content management system (CCMS) like
Adobe Experience Manager Guides that
allows reviewers, subject matter experts, or
others to contribute using only their browser!

Relatively low implementation effort

You already have an unstructured template. The
existing paragraph, character, table, cross-refer-
ence, and other formats can be referenced and

reused. There are also tools built right into
FrameMaker to help you convert your content.
We’ll even teach you how to get started for free!

XML implementation options

When working with FrameMaker and XML you
can work with one or more workflows. Not
everyone wants to use structured content at
every step of the process. Some people want to
use FrameMaker as a publishing tool. Others
want to integrate FrameMaker with a compo-
nent content management system. Whatever
workflow you want to use, FrameMaker can sup-
port it.

• Author structured content in FrameMaker, and
as needed you save content as XML. Struc-
tured files are saved as FrameMaker docu-
ments, opened, edited, and when you need to
convert them to XML you "Save As" and gener-
ate valid structured text files.

• Open XML files, edit, and export the content
back to XML, all from within FrameMaker.
FrameMaker is your authoring tool, com-
pletely configured so that you open content

and see a fully formatted rendition on screen.
When you edit, you do so using the complete
visual interface with headings, tables, charac-
ter formats, and other familiar content. When
you save files at the end of the day they are
saved back to their native XML format.

• Work with a mix of authoring tools, including
FrameMaker, to create, edit, and publish con-
tent. When it is time to publish, you open the
files in FrameMaker and combine all the con-
tent to produce the final deliverable. In this
environment, contributors could work with
online tools or other low-end XML editors to
contribute to a FrameMaker based team.

• Database publishing workflows export a data-
base to a structured format that is then
imported to FrameMaker for publishing to any
supported formats. This allows you to create
and deliver content that is based on the most
current database and then import that content

Section 3: Working in a supported structured authoring environment > Authoring only in structured FrameMaker

Page 21 of 60

to a full page layout and design tool creating a
finished document with rich and visually
appealing design and all the most current
technical specifications and data.

• Author in any tool and publish with
FrameMaker. Create content in any tool or sys-
tem that allows export to XML. Then receive
the content, load it into FrameMaker, and pro-
duce output regardless of the source tools and
processes used.

Section 3: Working in a supported structured authoring environment
Unstructured FrameMaker just needs a high
quality template and you can start to author. You
define paragraph, character, page, table, and
other properties, test the template, train authors,
and let them write. However, in a structured
authoring environment additional files are
required.

• Authoring only in structured FrameMaker

• Authoring in structure (with XML support)

• Analyzing content

• Choosing an EDD strategy

• Get familiar with EDD and XML syntax

Authoring only in structured FrameMaker

If you don’t plan to import or export XML you
can still use structured FrameMaker. This pro-
vides a formal guided authoring environment,
dynamic formatting, and other benefits without
the need to immediately work with XML. It’s a
good way to get started with structured author-
ing and develop standards beyond a company
style guide.

A basic structured authoring environment
requires both an EDD and an associated tem-
plate. With these two documents, rules can be
defined and connected to FrameMaker’s format-
ting functions. These methods can even be com-
bined together based on the complexity of your
format needs.

• Connect to a template with formats. Figure 20
demonstrates an EDD rule that states "if the
item is the first in a numbered list use the
paragraph tag ol.list.num.begin, but if it is not
the first item, then use the paragraph tag
ol.list.num.continue, and in any other situation
use a ul.bullet". This allows your structure to
connect to a template using tags for para-
graphs, characters, tables, and so on, all based
on what you already may know about unstruc-
tured templates and numbering.

Figure 20: Connecting to paragraph tags

• Use format change lists (FCL). In Figure 21 an
FCL uses a format that is defined in the EDD,

Section 3: Working in a supported structured authoring environment > Authoring in structure (with XML support)

Page 22 of 60

but in one place. For example a format change
list may define a level of indent for all second-
ary level to add a fixed indent for first line and
for left line in a paragraph, but use default
paragraph settings for all other elements. This
allows you to, for example, initially decide
every nested topic is indented with an extra
3cm of space. Then later, you make one
change and update this to 2cm of space glob-
ally. Done. Everything updates. No more
tweaking 15 paragraph tags one at a time every
time someone redefines an indent.

Figure 21: Format change list references

• Embed formatting in each element. Figure 22
shows a format rule in the actual element and
ensures the exact value is applied to only the
one element in all specific use cases. This
ensures that, if you decide an element should
be bold, blue, and 12pt in height it is ALWAYS
that specific value, regardless of other factors.

Figure 22: Embedded format rule

In all of these examples you need a basic tem-
plate to define master pages, headers and foot-
ers, automated page layout, and other publishing
features. How format is defined and applied can
be controlled using ideas discussed here.

Once an EDD is created and formatting is
decided on combine these ideas into one struc-
tured template. To do so you create an EDD and a
format-rich template. With both open import the
EDD into the initially unstructured template to
create a new structured template. Test is and
resolve bugs or issues and distribute the finished
to authors. Keep the original EDD and a copy of
the template in case you ever need updates.

Authoring in structure (with XML support)

There are a few core requirements for structured
authoring. Authors use use a structured template
and are ready to go. Structured template devel-
opers need, at an absolute minimum, an EDD
and a template. Ideally both are interconnected.
That is, the template has the look and feel you
want, and the EDD has the structural rules.

There may be a few additional files needed to get
a complete XML-based workflow that allows you
to open XML files, edit them, and then save them
back into their source XML structure.

Section 3: Working in a supported structured authoring environment > Authoring in structure (with XML support)

Page 23 of 60

Figure 23: XML and FrameMaker workflow

Figure 23 illustrates how content is converted
into and out of FrameMaker and XML. Many doc-
uments may be required to provide core support
to import or export content, and these include:

• Read/Write Rules (required): Rules that con-
vert XML content to and from FrameMaker
content (for example, XML markup sees a
paragraph or an index as a string of code [<p>
for paragraph, or <index> for an index entry],
but must convert them to FrameMaker text or
markers) as you open/save/close an XML file.

• XSLT (optional): As XML files are read into
FrameMaker (or FrameMaker files exported to
XML) there may be additional functions that
read/write rules cannot support. If so, code can
transform content and even re-organize it.

To author content, assign format, or perform
other work within a structured environment,
additional required or optional files are devel-
oped. These include:

• Schema (optional) or DTD (required): An XML
based set of structural rules that match the
EDD and validates XML content.

• EDD (required): Structure rules and formats.

• Template (required): Import the EDD to the
template and format rules are connected to
content in the FrameMaker model (such as
paragraph/character/table styles, cross-refer-
ence formats, page layout, etc.).

• FrameMaker API Clients (optional): More
sup-port functions can be programmed and
refer-enced. For example, if using Adobe
Experience Manager Guides you may opt to
use an API to connect your XML directly to the
repository.

• Structured Application (required): This file
contains a collection of paths and information
about all files used to convert content to and
from FrameMaker and XML. This specifies
what FrameMaker files and EDD to use, scripts
to run, read/write rules to use, DTD to refer-
ence, and other setting that, once configured,
apply behind the scenes to make import and
export of content simple.

While it may sound complex at first the overall
workflow could be broken into two major envi-
ronments for major roles as seen in Figure 24.

• Developer: Creates and manages the tem-
plate, largely through interaction with the EDD.
The developer imports a schema or DTD into
FrameMaker and creates an EDD. The EDD
contains rules and formats that are imported
to the template. Once tested and validated, the
template is shared with an author.

• Author: Creates, edits, or publishes content,
largely by using the template. The template is
used to display XML content and formats the
content in a human-readable and nicely for-
matted way.

Both developers and authors work with a shared
template, but in two different ways.

• Developers create the template and define the
appearance of it

• Authors create content with it.

It is entirely possible (even likely) that the tem-
plate developer is also an author who uses it.

Section 3: Working in a supported structured authoring environment > Analyzing content

Page 24 of 60

Figure 24: Structured content workflow roles

Analyzing content

You can get started with structure right out-of-
the-box with FrameMaker. However, to under-
stand the core components of a structured appli-
cation it may be helpful to build your own setup.
While this can be complex, based on the content
you have, in the following section we’ll create a
sample document, all the tools required to con-
vert it to structure, and provide you a way to gain
insight to the process.

Consider Figure 25 in which there is an analysis of
a topic. In it there is an introduction to an idea,

sample content in paragraphs, lists, and some
semantic character level markup.

Later, in the hands-on exercises, we’ll work to
build an entire working environment that sup-
ports this structured approach to content. We’ll
reuse this basic analysis to develop all the mov-
ing parts needed to migrate the content.

Reviewing the content you can identify the over-
all topic, a title, several sections, and many para-
graphs. There are also lists and character level
formats.

Section 3: Working in a supported structured authoring environment > Choosing an EDD strategy

Page 25 of 60

Figure 25: Sample topic with tagging

Choosing an EDD strategy

Building an EDD can be based on several work-
flows. In most cases you end up working with
many of the same ideas, but how you get started
depends a bit on your goals. In all cases you end
up having a set of content rules attached to for-
mat rules. The good news is that a lot of the work
required in any EDD work has overlapping ideas
and rules. It is a bit like technical communica-
tions; once you know core grammar rules, style
use, and software to work with it won’t matter
much if it’s a user guide, reference manual, or a
training video you need to create—the rules you
follow are largely the same!

In our sample document there are minimal for-
mats, so the work to build a template is simple.
Again, later in this document we’ll walk you
through a step-by-step sample.

Build your own

To build your own EDD means knowing the end
goal of your structure. This can be very simple
(imagine a structure for a business memo) or can

become incredibly complex (imagine a structure
for the rules of setup, maintenance, and opera-
tion of a complex medical device, computer sys-
tem, or airplane).

Building your own is most likely required when
you have already evaluated structures that exist
and decided they don’t meet your needs. You
then need to have a complete architecture of
your content (either already defined, or bring in a
content strategist with structured information
architecture experience) and the skills to apply
this to your new structure.

We’ve taken this approach with clients; it works
well, but it is usually more complex and costly
unless we’re looking at a basic document struc-
ture. This was popular 20 years ago when XML
was in its infancy, but today you are usually best
off to first evaluate existing structures. Building
your own isn’t a bad idea; it’s just not the first
approach to take as you get started with XML.

Section 3: Working in a supported structured authoring environment > Get familiar with EDD and XML syntax

Page 26 of 60

Import an existing DTD or schema

If you are considering an existing structure that is
not supported in some way by your current
FrameMaker installation you can import a set of
rules and then attach formatting. You still need to
think about content and the rules for it, and
decide what parts of the new rules you want to
use though. In many cases even an industry
"standard" set of rules (for example, air transpor-
tation standards, regulatory medical standards,
or even DITA) may contain far more elements
and structure rules than you need.

You should likely talk with a content strategist
who has structured information architecture
experience before making decisions to custom-
ize any existing rules. This needs to be done in a
way that restricts the potential for a mismatch
with others who may be using the entire specifi-
cation.

We’ve also worked with existing rules with some
clients. It saves them the upfront costs of plan-
ning a full structure, is often a bit quicker, and can
still be formatted to their specific requirements.
It’s most commonly done when a standard
exists, but is not integrated directly into
FrameMaker out-of-the-box.

Modify an existing EDD

This is very similar to importing an existing DTD
or schema in scope except that the rules have
already been imported. You still need to think
about the rules, decide which ones apply to your
content, how they apply, and why they do or do
not apply.

Customizing an EDD means you must also know
the end state of your structure. As the modifica-
tion is to an existing set of rules it can be simpler,
once the rules of the existing structure and for-
mat are understood.

The clients we work with that are looking to
modify an existing EDD are often either updating
and customizing an older structure, or working
with DITA as it appears out-of-the-box and then
customizing templates and rules.

Work with DITA

Since FrameMaker already supports DITA it’s
easy to get started with this standard. The rules
exist, there are many books written about them,
training and online support is simpler to find, and
numerous conferences discuss the ideals of a
DITA-based workflow—sharing tips and tricks for
the same.

EDD customization is simpler when you already
know your own templates, but it’s also relatively
quick to build your own look and feel for DITA
with FrameMaker. The visual interface makes it
far simpler than writing code and building
stylesheets using the DITA Open Toolkit. Once
you know the FrameMaker EDD rules and the
default templates, you’ll start to build your own
formatting in minutes. This approach to DITA is
more and more common as it becomes the most
popular standard for content created by structur-
ally-driven technical communications teams.

Publishing Smarter clients are asking about DITA
more and more often. Surveys by Adobe and
others support this. DITA is an XML standard
users can find a lot of information about and
learn with general ease due to the broad support
available. Once ready to create content they
build maps, topics, and use FrameMaker to pub-
lish. Of course, as with any new system, there is
an initial learning curve to master, but within
days they can start creating content and design-
ing templates. Without FrameMaker they can
take days or weeks to get settled into a comfort-
able writing routine, with some finding that
building multiple output types can take weeks or
even months of effort!

Get familiar with EDD and XML syntax

There is some very specific syntax that matters
when developing the FrameMaker EDD—and it’s
also used in an XML based DTD (the DTD is a

document type definition that defines content fre-
quency and order). Once you understand a few

Section 3: Working in a supported structured authoring environment > Get familiar with EDD and XML syntax

Page 27 of 60

basic terms you can start to define rules in an
EDD (or read rules in a DTD).

Order rules

Table 6 shows a sample of symbols used to
define the order of elements in an EDD (or DTD).

• The comma (,) indicates a specific order

• The pipe (|) indicates an either/or

• Parenthesis (()) indicate logical groupings of
elements

Table 6: Order rules

Based on this, the following samples can be created (the notes use a friendly term for the elements):

A more robust structure can be created by adding frequency rules to the structural order rules.

Frequency rules

Table 7 shows symbols used to define the fre-
quency of elements in an EDD (or DTD).

• No symbol indicates only one element

• A question mark (?) indicates zero or one

• An asterisk (*) is used to indicate zero or more

• The plus sign (+) indicates one or more

Table 7: Frequency rules

Order Notes

A, B All elements in order. The first is A, the second is B. Always appears as AB.

A | B Only one element. Always appears as either A or as B, but not AB or BA.

A | B, C Incorrect syntax due to mixed connectors. Cannot be used.

A | (B,C) Either only A, or both B and C in order. Appears as A or BC, but not AB nor AC.

(A | B), C Either element A or B, followed by C. Appears as either AC or BC.

Syntax Notes

para, list In order, a paragraph followed by a list.

para | list One or the other of a paragraph or a list, but never both.

title, para, list In order, three specific elements. A title, then a paragraph, and then a list.

title, (para | list) A title which is followed by either a paragraph or a list.

title | (para, list) Either only a title and nothing else, or just a paragraph followed by a list.

(title | para), list One option of a title or a paragraph. Once inserted this is followed by a list.

Frequency Notes

A, B All elements in order and appearing once per element. Always appears as AB.

A, B? Element A must appear once. Element B is optional and appears zero or one
times. Always appears as either A or AB.

A, B* Element A must appear once. Element B is optional and appears zero or more
times. Appears as at least A, and could be AB, ABB, ABBBBBB (unlimited
optional B elements).

Section 3: Working in a supported structured authoring environment > Get familiar with EDD and XML syntax

Page 28 of 60

Based on this, the following samples can be created (the notes use a friendly term for the elements):

A much more robust structure can be created by adding frequency rules to the structural order rules
and creating entire content rule sets.

Sample topic

A very basic topic (simplified for this example)
could be defined as seen in Figure 26.

Figure 26: Basic topic sample

That is, a topic contains, in order, a required title
element and a required body element:

title, body

The element title contains a rule that specifies a
writer creates text:

<TEXT>

The element body contain a rule that one or
more paragraphs are required:

p+

Lastly, the <p> element is also defined to contain
text and appears as:

<TEXT>

Content created from this could look like Table 8.

Table 8: Basic topic sample content

Let’s go further and work hands-on to create an
EDD based on this sample. This gives you a

chance to get familiar with how an EDD is cre-
ated, format is assigned, and how to test this.

Syntax Notes

title, para+ One title, followed by as many paragraphs as desired.

title, (para | list)+ One title, followed by a repeatable choice of a paragraph or a list. This could
allow a title to be followed by a list, another list, and a third list.

title, (para, list?)+ A title, and at least 1 paragraph. Each paragraph can be followed by an optional
list. This ensures that every list has at least one paragraph that leads into it.

title, body One title, followed by the body. Both elements are required. The body could be
further defined to contain a broad range of other elements.

<topic id="fm-structured">
<title>Work with Structured FrameMaker</title>
<body>

<para>Adobe provides tools that work with structured (XML) content. These include both
Adobe FrameMaker and Adobe Experience Manager Guides.</para>
<para>Adobe FrameMaker is the industry-standard tool for authoring and publishing multilin-
gual technical content across mobile, web, desktop, and print…</para>
<para>Dynamically deliver DITA content to Adobe Experience Manager thereby bringing mar-
keting and technical content to the same platform.</para>

</body>
</topic>

Section 4: Hands-on development > Tips to get you started

Page 29 of 60

Section 4: Hands-on development
If you’ve read everything to this point you should
have a good idea of the overall processes to fol-
low. If you skipped it we’ll try to make sure that
the hands-on information makes sense. Feel free
to clarify ideas with our YouTube videos.

There are several things that need to be done to
work with structured FrameMaker. Much of what
you do in the following exercises only needs to
be done once. Rather than jumping into creating
content in DITA, we’ll start by building some sup-
porting files. We’ll set up FrameMaker for struc-
ture, build an EDD (based on the DITA rules), test
the EDD, look at a sample document to map to
the EDD, and create a conversion workflow. We’ll
evaluate the resulting files and eventually we’ll
be at the point a new author would be at. We’ll
have a template and a workflow and we can
write. We’ll take you behind the scenes to help

you learn as much as possible about how to
build and use DITA content with FrameMaker!

To get you started, we’re going to work to build
an EDD (although, technically, FrameMaker
already has several to pick from) so that you can
learn about structure from behind the scenes. To
do so, it’s important to configure FrameMaker to
work with structured content. Then we’ll build
the EDD, which will contain rules with a similar
structure as a basic DITA topic. While you can
build an EDD for any structure, our topic-like
DITA template allows our converted content to
later be placed into the DITA templates included
with FrameMaker. You can then see how much
further a structured environment can take you.

Our goals are to give you a solid start when it
comes to structure, AND to show you where you
can go with structure.

Tips to get you started

Don’t start by jumping right in and building an
EDD and structured content. Instead review each
of the tasks, scan them a second time, and then
get started. You may also choose to watch our
videos. If you really run into challenges, contact
us and ask for sample files if it turns out you don’t
get you the results you expect.

Videos

The following hands-on materials are supported
with "how-to" videos. Publishing Smarter has
many videos to help you learn how to work with
DITA. Look for them at https://www.youtube.com/
user/publishingsmarter/

Visit the YouTube Playlists for specific videos
related to the content that follows. Look for the
Migrate FrameMaker to Structured Content area.

Sample content

All the content that follows can be created with-
out the need to download specific sample con-
tent. Instead, all you need is a default installation
of Adobe FrameMaker (2019 release).

Hands-on development of an EDD

• Prerequisites

• Creating your first EDD

• Configuring your workspace

• Populate the EDD with the first element

• Build your own workspace

• Build the EDD content

• Test the EDD

• Assigning format rules for content using the EDD

• Formatting contextually

• Import and test the EDD formats

• Format a text string element

Hands-on migration to structured content

• Structured application files and XML round-trip-
ping

• Implementing structured FrameMaker

• Migrating unstructured files to structure

• Tips and tricks about conversion to structure

https://www.youtube.com/user/publishingsmarter/
https://www.youtube.com/user/publishingsmarter/

Section 4: Hands-on development > Creating your first EDD

Page 30 of 60

Prerequisites

Before building your first EDD ensure you are
using the Structured Interface in FrameMaker.
You should also be generally familiar with work-
ing in a structured interface using the Structure
View and Element Catalog. If you’ve never done
that, consider watching our sample videos.

Work with structured content as an author

While the EDD developer is expected to know
how to work in structured content as an author,
we know not everyone has had the chance to
create content using the structured interface. We
want you to learn how to build an EDD, which in
itself is a structured document. As you build it
you’ll also start to learn to work within any struc-
tured environment. You’ll have to use the Struc-
ture View, insert elements, add content, and
make other changes that an author working with
any structured content does.

Before you begin, take a few minutes and get
familiar with the structured interface as a writer.
There are a set of clear, short videos you should
watch first. If you have already worked with
structured content and are comfortable with
how to author content in a structured workspace
you can skip these.

• Go to https://www.youtube.com/
watch?v=FwqC8gbH_Xc&list=PLdG-
fUF32cbY3l8xCOMz4ZQeXjKb7tQTQE

• Watch the videos and, if you prefer, create
sample content as illustrated in the videos.

Configure the product interface

FrameMaker can be used in unstructured or
structured formats. To create an EDD, or to work
with structured content, you must switch to the
Structured FrameMaker interface.

TIP: If you see menu options like Element or
Structure, you’re already there and can skip
ahead to Creating your first EDD.

1. Select Edit > Preferences.

2. Under Global > General ensure you change
the Product Interface to Structured
FrameMaker.

You can also turn off Automatic Backup on
Save to reduce the number of files in any
folder as you work with the tool.

3. Click OK, and if prompted, restart
FrameMaker.

Creating your first EDD

It’s simple to create the EDD, but developing it
takes more work. Ensure you are in the struc-
tured interface and have completed the prereq-
uisites. Illustrations are added to help clarify
complex ideas. When in doubt, read the entire
task, then review the images, and only then per-
form the actions. We’ve also create videos to
help guide you through the process.

TIP: Pick a location for files and create a folder
there. We’ll create a folder named MyTutorials on
the Desktop and reference it moving forward.

Generate an EDD and view boundaries and ele-
ment structure

1. Select Structure > EDD > New EDD.

The EDD is created. Default content is
inserted by FrameMaker. It is a structured
document, meaning as you learn to use the
EDD you also learn to work with the struc-
tured interface!

https://www.youtube.com/watch?v=FwqC8gbH_Xc&list=PLdGfUF32cbY3l8xCOMz4ZQeXjKb7tQTQE
https://www.youtube.com/watch?v=FwqC8gbH_Xc&list=PLdGfUF32cbY3l8xCOMz4ZQeXjKb7tQTQE

Section 4: Hands-on development > Configuring your workspace

Page 31 of 60

2. Select File > Save As and save the EDD as
TopicEDD.fm in one folder that you will use
for all your hands-on work.

For example, save the EDD to the folder
named "MyTutorials" on your desktop.

3. Select View > Element Boundaries (As
Tags).

4. If the interface does not appear as seen in
Figure 27 don’t panic. Continue to Configuring
your workspace.

Figure 27: XML/Structured Interface

Configuring your workspace

To get the most out of working with an EDD (or
any structured content) the workspace you use
can be configured to help guide you. This
includes using the Structure View, the Element
Catalog, and working with Attributes. T

Depending on your screen resolution it may be
easier or more involved to have all the pods we
suggest opened. In this section we’ll explore both
suggested minimum and suggested ideal ways

to have things set up on screen. At a minimum,
the icons for common EDD development tools
should be quickly available. Adobe provides a
default workspace for this.

Assign a default workspace

1. In the top right of FrameMaker, click the
Workspace dropdown.

2. Choose XML/Structured.

Once done, icons for the Structure View, Element
Catalog, and Attributes Dialog display. If not, you
can select the same dropdown and Reset work-
space.

Later, we’ll build a new workspace from scratch.

Section 4: Hands-on development > Populate the EDD with the first element

Page 32 of 60

Populate the EDD with the first element

The basic structure for our topic needs to be
developed. If you were working with an existing
EDD this would already be done, but it’s a good
way to get to know a bit about the organization
of our structure and to work with the Structured
Interface.

1. Ensure your insertion point is positioned in
the element named Tag.

Do not click the name/bubble of the ele-
ment Tag. You can either click to the right of
the bubble named Tag in the Structure View,
or between the Tag markup in the document
view (next to the word Element:).

2. Type the word topic.

As you type, the content appears in both the Structure View and the document window.

Build your own workspace

Configuring the placement of components like
the Element Catalog and Structure View allows
you to create and save a custom workspace.

Before you begin, you may need to click the
Workspace dropdown and select Blank. You may
also need to reset it if components are visible.

1. Select Structure > Structure View and, once
the Structure View is displayed, drag and

drop it to the left of the application window.

You may need to move it slowly to the side
and wait for a highlight to appear (and the
tab to fade) before dropping it.

2. Select View > Pods > Element Catalog, then
move the pod between the Structure View
and the document.

3. When the highlight displays, drop the pod.

Section 4: Hands-on development > Build the EDD content

Page 33 of 60

4. Reorganize the workspace as required based
on your resolution and needs.

This may include resizing or changing the
zoom of various parts of the FrameMaker
interface. Configure it so that it appears simi-
lar to what is seen here.

5. When done, click the Workspace dropdown
at the top right of the screen and choose
Save workspace.

6. Name the workspace Structured Developer.

7. Click OK.

Build the EDD content

The remainder of the EDD drives the entire struc-
ture and will be tested later.

Develop the highest level <topic> element

While the tag named topic has been started,
there are still parts of it missing. FrameMaker
guides you through the requirements for struc-
tured content.

1. Select View, then deselect Element Bound-
aries (as Tags).

This simplifies the interface.

2. Click to the right and just above the red box
in the Structure View.

The Elements catalog updates to show valid
elements. If you do NOT see an element
named Container you may have to choose
Options (the Gear icon) and select Valid Ele-
ments for Working Start to Finish.

3. In the Elements catalog double-click Con-
tainer.

Both the Container and the GeneralRule are
inserted.

4. Type title, body

5. In the Structure View, click immediately
below the GeneralRule.

6. In the Elements catalog double-click
ValidHighestLevel.

The topic element has been developed.

7. Collapse the Element by clicking the triangle
pointing down and toggling it.

You can collapse content in the Structure
View by clicking triangle as needed. For
example, clicking it to the left of Element
collapses the element to preserve space in
the Structure View. This is helpful when
many elements are visible.

Add a <title> element

Based on our earlier content analysis the struc-
ture needs further definition. We’ll add a title ele-
ment using simpler instructions (hopefully it’s
getting a bit easier).

1. Click immediately below the collapsed Ele-
ment tag.

2. Insert another Element (remember to dou-
ble-click it in the Elements catalog).

The insertion point is already immediately
next to the element in the Structure View, so

Section 4: Hands-on development > Build the EDD content

Page 34 of 60

you can begin to type the name of the ele-
ment immediately).

3. Type title

4. Click to the right and just above the red box
in the Structure View.

5. Insert a Container (remember to double-
click it in the Elements catalog).

Both the Container and the GeneralRule are
inserted.

6. Type <TEXT>

This rule allows users to type in this element
when working as authors.

7. Collapse the Element by clicking the Downward Triangle.

Add a <body> element

Let’s speed up a bit more and add a body ele-
ment below the most recent content.

1. Click immediately below the collapsed Ele-
ment tag.

2. Insert another Element and in the Tag type
body

3. Click to the right and just above the red box
in the Structure View and insert a Container.

4. Type p?, section+

This rule allows authors to insert an optional
<p> element, followed by one or more <sec-
tion> elements.

5. Collapse the Element.

Section 4: Hands-on development > Build the EDD content

Page 35 of 60

Add a <p> element

We’ll speed up the creation of this element even
more!

1. Click immediately below the collapsed Ele-
ment tag and insert an element, naming it p

2. Insert a Container.

3. Type (<TEXT> | i | ul)*

Include the parenthesis. This rule allows
authors to insert text, italic content, or an
unordered list.

4. Collapse the Element.

Complete the EDD structure

Finish the following steps and apply what you’ve
learned to this point to complete the structure.

1. Complete the structural rules by adding the
elements seen here.

The EDD now contains the structure you want for
the topic, but with no formatting. Before adding
formatting information, it’s a good idea to test
the structure.

Element General Rule Notes Illustration of result

section title, p+ The <section> contains a
required title (but only one, as
well as one or more <p> ele-
ments.

i <TEXT> The <i> element is for content
that will be formatted (later) as
italic and it contains text only.

ul li+ The unordered list contains one
or more list items.

li <TEXT> Each list item contains text.

Section 4: Hands-on development > Test the EDD

Page 36 of 60

Test the EDD

To test the EDD, import it to a document. Verify
you can create the expected structure. It is
important to remember that in this part of the
exercise no formatting is applied! The goal is
only to validate the structure works.

1. Select File > New > Document and click
Portrait.

2. Select File > Import > Element Definitions.

3. Ensure that TopicEDD.fm is selected under
Import from Document.

4. Click Import.

Element definitions import. A successful log
file can be closed. If there is an error review
the previous steps. Errors may be due to an
invalid source EDD. If so, compare your EDD
with that from Creating your first EDD. Trou-
bleshooting links from the error report to the
EDD are created. Structure definitions in the
EDD are imported to the blank document.

5. To verify that the definitions were imported,
click once in the main text flow and look at
the Elements catalog.

You should see the topic element.

6. Insert a topic element.

7. Insert a title element.

8. In the title type the text Primary Title.

9. Insert a body element.

The structure should appear as seen here.

10. Within the body add a child p element.

11. In the p type Some content can be structured
with character level formatting.

12. Equal to the p element add a section ele-
ment.

13. In the section element add a title.

14. In the title type the text Section level title.

15. Equal to the title element add a p element.

16. In the p element type The following is a sam-
ple of an unordered list.

17. At the end of the text in the p element insert
a ul element.

18. In the ul element insert two li elements.

Section 4: Hands-on development > Assigning format rules for content using the EDD

Page 37 of 60

19. In the first li type Unordered list with a list
item in it.

20. In the second li type Another item within the
unordered list.

21. Save your file as TopicTesting.fm in the same
folder as your TopicEDD.fm.

Assigning format rules for content using the EDD

The EDD you built provides structure for a simple
topic. However, when you insert content, no for-
matting is applied. Working with your EDD and
template you can automatically apply the cor-
rect format for the various titles.

By default, text uses the Body paragraph tag.
We’ll update the list items to appear as bullets,
the titles to appear as either a Title or a Heading1
based on the context in which they are used, and
assign character-level formatting.

Create a format for list items

In our EDD we have a rule that the unordered list
contains one or more li elements. The li ele-
ments contain text, but have no format rules.
We’ll update this and import the rules to our test
file.

1. Switch to your EDD.

2. Within the element tagged as li, equal to the
GeneralRule, add a TextFormatRules ele-
ment with nested children named AllCon-
textsRule, ParagraphFormatting, and
ParagraphFormatTag.

3. Type Bulleted as the text in ParagraphFor-
matTag.

The finished structure is seen in Figure 28.

Section 4: Hands-on development > Formatting contextually

Page 38 of 60

Figure 28: Final format for a list item

Import the new format

1. Switch to the TopicTesting.fm file.

2. Select File > Import > Element Definitions.

3. Ensure that TopicEDD.fm is selected as the
source to import from.

4. Click Import.
The element definitions are imported suc-
cessfully. The format of the two li elements
changes and bullets are visible in the docu-
ment view. The structure remains the same.

Formatting contextually

Rather than formatting content the same way in
all cases, you can define contextual rules. For
example, you may base format on the parent ele-
ment and assign 2 formats to the same element,
but depend on the parent to change the context.

This allows you to build multiple unique and
contextually driven formats. For example, con-
sider where a list item may appear. If in a parent
of or you may want to format the list
item with bullets or numeric values. Alterna-
tively, A title could appear in many places and
therefore has contextual formatting. For exam-
ple, in a <topic> element it may appear as a Title,
and within a <section> element as a Heading1.

Contextually format a topic <title> element

The title requires a more complex rule. It can dis-
play in either the topic element, or in the section

element. Therefore, a context rule is required.
Review Figure 29 before attempting the steps to
gain a better understanding of the finished struc-
ture.

1. Switch to your EDD.

2. Build the structure in Figure 29.

If required, the steps in Assign a topic title for-
mat (detailed steps) detail how to create this
structure and appear below Figure 29. Other-
wise, proceed to Format a section <title> ele-
ment.

Section 4: Hands-on development > Formatting contextually

Page 39 of 60

Figure 29: Final <title> format for a topic title

Assign a topic title format (detailed steps)

Only perform these steps if you have not already
completed the work illustrated in Figure 29. If this
was already done, skip to Format a section <title>
element.

1. In the element tagged as title, after the Gen-
eralRule, add a TextFormatRules element
with nested children named ContextRule, If
and Specification.

2. In Specification type topic.

3. Below the Specification insert a Paragraph-
Formatting and ParagraphFormatTag.

4. Type Title as the text in ParagraphFor-
matTag.

This is the first of two rules. It states that if a
title is within the topic the paragraph format
to apply is Title (note the uppercase initial
character as it matches the format in the
Paragraph Catalog in our TopicTesting file).

Format a section <title> element

1. Click the collapsing triangle to the left of the
if element to collapse it.

2. Immediately below the collapsed if element
add an ElseIf and Specification.

3. Complete the structure to appear as seen in
Figure 30.

If required, Assign a section title format
(detailed steps) details this structure and
appears below Figure 30. Otherwise, pro-
ceed to Import and test the EDD formats.

Figure 30: Final <title> format for a section

Section 4: Hands-on development > Import and test the EDD formats

Page 40 of 60

Assign a section title format (detailed steps)

Only perform these steps if you have not already
completed the work illustrated in Figure 30. If this
was already done, skip to Import and test the EDD
formats.

1. In the element tagged as title, add a TextFor-
matRules element with nested children
named ContextRule, ElseIf and Specifica-
tion.

2. In Specification type section.

3. Below the Specification insert a Paragraph-
Formatting and ParagraphFormatTag.

4. Type Title as the text in ParagraphFor-
matTag.

This is the second of two rules. It states that a
title within the section is formatted as a
Heading1 paragraph (note the uppercase ini-
tial character, and the lack of a space before
the number as it matches the format in the
Paragraph Catalog in our TopicTesting file).

5. Click the collapsing triangle to the left of the
ElseIf element to collapse it.

Import and test the EDD formats

Once format rules have been defined they can
be imported and tested in a structured file.

1. Switch to the TopicTesting.fm file.

2. Review the current format of the text Pri-
mary title and of the text Section level title.

The text appears in the Structure View and
in the document. Both titles are formatted as
Body paragraphs by default. Once format
rules are imported the appearance of both
title elements will change based on context
in the structure.

3. Select File > Import > Element Definitions.

4. Ensure that TopicEDD.fm is selected as the
source to import from.

5. Click Import.

Element definitions are imported success-
fully. The format of the two title elements
changes and formats are visible in the docu-
ment view. The structure remains the same.

Format a text string element

Content can be structured and formatted at a
character level as well. To illustrate this we’ll
insert a string of text and structure it. Then we’ll
update the EDD and import it one more time.

1. In your document, locate the text Some con-
tent can be structured with character level for-
matting.

2. Double click the word character.

3. In the Element Catalog double click the ele-
ment i.

This wraps the content in the element used
to represent italics. As no character format is
yet assigned the element breaks to the next
line. Structurally the content is valid.

4. Switch to your EDD.

5. In the element tagged as i add a TextForma-
tRules element with nested children named

Section 4: Hands-on development > Structured application files and XML round-tripping

Page 41 of 60

AllContextsRule, TextRangeFormatting,
and TextRange.

6. Immediately below the TextRange insert the
CharacterFormatTag element.

7. Type Emphasis as the text in CharacterFor-
matTag.

The finished structure also updates the doc-
ument window for the i element.

Figure 31: Completed character format

8. Switch to the TopicTesting.fm file.

9. Select File > Import > Element Definitions
and, selecting the TopicEDD.fm, click Import.
The element definitions are imported suc-
cessfully. Since we defined the element as a
TextRange the format of the i element
changes and it appears inline and formatted.
The structure remains the same, but the text
is now treated as a string of text.

10. Save both open files and close them.

Further formatting

In a more complex EDD, the formatting would
have to be further defined. There are many rules
on how to format a document. For more infor-
mation, refer to the Adobe documentation on

developing formatting in an EDD. More complex
content (for example, tasks with steps, multiple
levels of bullets, tables and images, cross refer-
ences, and other FrameMaker content) usually
means you also need more complex EDDs and
more format rules.

Further testing

If you wish, continue to add elements or text to
your structure and ensure the formats appear as
expected. You can reorganize elements within
the context of what is valid (or break your struc-
ture), dynamically reformat content (try to
switch out the titles of a section and the topic by
dragging/dropping them in the Structure View).
More complex structures also require more com-
plex testing for both structure and format.

Structured application files and XML round-tripping

Since we are focused on migrating content to
structure we’re creating content that we can add
to the default DITA environment in FrameMaker.
To that end, we’ve ensured that you know more
about the EDD and how to assign formatting.
There are also application files that are used by
FrameMaker to reference entire workflows for
structure. A complete set of DITA-based applica-
tions already exist.

An application is used to convert pure XML con-
tent into a FrameMaker friendly document. This
application can then be used to round-trip XML
content to and from FrameMaker. If you build an
application file there is testing to be done to
ensure it works as expected. FrameMaker
includes a complete set of DITA-based round-
tripping applications that have been extensively

Section 4: Hands-on development > Implementing structured FrameMaker

Page 42 of 60

tested by Adobe. Therefore, we do not need to
test the XML round-trip.

Implementing structured FrameMaker

Any implementation is going to take time, have
unique challenges, and require a broad mix of
skills. We’ll help prepare you for the implementa-
tion, but there is going to be a lot of planning and
testing before things work as you expect them to.

Analyze your content

Before building your own structured environ-
ment, and documents like an EDD, it’s helpful to
do a detailed content analysis. Content analysis
is a process in which existing documents are
reviewed to understand their design and content
and what implicit structure they contain. This
helps to determine what is required, optional,
and how often it occurs.

Begin your analysis by making a list of the docu-
ments your organization produces. This list
might include user guides, reference guides,
whitepapers, tutorials, training manuals, and
online help. Make a list of the major components
for each document type.

Table 9 shows, at a high level, what you may find
within your own content (a cover page, legal
notes, a table of contents, chapters, and an
index). There may also be optional material (a
foreword, list of figures, list of tables, appendices,
and a list of authors). Some content may occur
only once (cover, table of contents, index) and
other content may occur one or more times
(chapters or appendices).

Table 9: Initial sample analysis of content frequency

For each of the major components, such as mod-
ules (which may be part of your training manu-
als) or chapters (such as those in traditional
books), work your way down the document hier-
archy. You’ll start to list smaller and smaller
chunks until you reach the bottom level of the
hierarchy. Eventually you end up with index
entries, character level objects (often things like a
menu option [File, Insert, View, etc], specific key-
words [Product Name, Branded Phrase, etc], win-
dow titles [Insert Table Dialog , Configure Settings

Dialog, etc], or others), and even hard formats
(such as Emphasis, or Bold).

Documents are unlikely to be perfect in consis-
tency, so a decision must be made around the
structure and how "loose" or "strict" it will be.
Each has potential benefits and drawbacks:

• Loose allows for wide variations (think about
how many ways people construct content for
websites) and can be complex to maintain, but
allows writers broad freedoms.

COMPONENT REQUIRED OR OPTIONAL? OCCURRENCE

Cover Required 1

Legal Notes Required 1

Table of contents Required 1

List of Figures Optional 0 or 1

Chapter Required 1 or more

Appendix Optional 0 or more

Glossary Optional 0 or 1

Index Required 1

Section 4: Hands-on development > Implementing structured FrameMaker

Page 43 of 60

• Strict is very limited (think about how formal a
database of parts could be, or the simplicity of
a glossary with terms and definitions) and is
simpler to maintain, but restricts possible vari-
ations.

Neither is "right" nor "wrong" and, instead, you
will likely land somewhere between the two. Of
course, this same issue exists with templates cre-
ated in an unstructured workflow. Too many spe-
cific tags for characters, tables, and paragraphs
and writers spend all their time trying to remem-
ber which to apply; not enough tags and writers
create content in the broadest way possible.

Decide on a structured approach

Post-analysis you need to decide if an existing
structured standard will work, or if you need to
build your own. Standards help get you started,
provide a baseline that may already be sup-
ported in your tools, and could also be required
in specific areas (medical, aerospace, or military
for example). Building your own has more mov-
ing parts, but gives you exactly what you need.
We’ll get you working hands-on with DITA
shortly, but let us first compare why you may
want to use an existing standard or build your
own.

Table 10: Factors that influence using standards or customizing

Sample analysis of a document (illustrated)

There isn’t enough time to create dozens of files
to review. Instead, let’s look at one simple docu-
ment. It’s already marked up, but it’s easy to cre-
ate the following if needed in FrameMaker. (We’ll
actually walk you through this file later on.) The
collected content will be one document type
we’ll call a topic.

Use a standard (DITA, S1000D, DocBook, etc) Build your own (Custom rules)

Regulatory: You must create content that fol-
lows the standard (aerospace, military)

You want a structure that matches your specific
content analysis

Content is already close to a standard, with
minimal overall effort you could use one that
exists

Content analysis resulted in content that does not
mach any standard, and there is little or no flexibil-
ity to change

Less effort in standards development; instead,
you put time and effort into conversion,
rework, and layout/design

Structure must match and putting time into build-
ing a formal set of rules, plus the work in conver-
sion and layout/design, is acceptable

Technical skills to do the work are not avail-
able internally

Technically experts are available and can build
your custom structure

Section 4: Hands-on development > Implementing structured FrameMaker

Page 44 of 60

Figure 32: Sample topic with tagging

Based on Figure 32, we can perform some basic
content analysis. The entire document is a topic
with a primary title and a paragraph. There are
two sections. Each section has a Heading1 fol-
lowed by more paragraphs. Some paragraphs
are followed by bulleted lists. There is also some
character formatting applied.

Create representative unstructured content

For the purpose of this exercise, create the con-
tent as seen in Figure 32. This is the same content
we’ve already analyzed.

1. Select File > New > Document, then click
Portrait.

2. Type in the following content and leave it
formatted as Body paragraphs:
Work with Structured Content¶
Adobe provides tools that work with structured
(XML) content. These include both Adobe
FrameMaker and Adobe Experience Manager
Guides.¶
Adobe FrameMaker¶
Adobe FrameMaker is the industry-standard
tool for authoring and publishing multilingual

technical content across mobile, web, desktop,
and print. Easily work with unstructured and
structured content in the same documentation.
Work faster and smarter with advanced XML/
DITA capabilities.¶
Publish content as:¶
Responsive HTML5¶
Mobile App¶
PDF¶
EPUB¶
and more¶
Adobe Experience Manager Guides¶
Dynamically deliver DITA content to Adobe
Experience Manager thereby bringing market-
ing and technical content to the same platform.
Effectively manage all aspects of your content
workflow such as:¶
authoring¶
web-based review and collaboration¶
translation¶
digital asset management, and¶ multichannel
publishing¶

Section 4: Hands-on development > Implementing structured FrameMaker

Page 45 of 60

3. Format content as Title, Body, Heading1, and
Bulleted paragraphs based on Figure 32.

For example, the Title is applied to the text
Work with Structured Content, and so on.

4. Within the Heading1 titled Adobe
FrameMaker select the body text content
Adobe FrameMaker and apply the Emphasis
character format.

5. Within the Heading1 titled Adobe Experience
Manager Guides select the body text content
Adobe Experience Manager and apply the
Emphasis character format.

6. Select File > Save As and save the file as
WorkWithStructure.fm in a location you can
easily find later.
For example, use the Desktop folder named
MyTutorials (created earlier). The document
should appear as seen in Figure 33.

Figure 33: Unstructured sample content

Content analysis (already done earlier)

We can now plan our EDD and begin to build it.

Section 4: Hands-on development > Migrating unstructured files to structure

Page 46 of 60

The EDD will have support for many elements,
but based on the review of the content, we know
we have to include at least:

• topic, as a highest-level element. This is the
overall document that we’ll create.

• title, a required subordinate to the topic.

• section, an optional sub-level of content with
its own title and content.

• paragraphs, usually at least one or more is
required after a title.

• lists, optional and containing one or more
items if lists are used.

• emphasized words, optional and appearing
within paragraphs.

The great news is that in the earlier exercises we
created a template and EDD that already support
this content!

Unique tagging of content

For best results in conversion the content you
work with should be correctly tagged. Uniquely
tagged paragraphs in our sample include Title,
Heading1, Bulleted, and so on. The same can be
said about the character level format. If you have
larger documents ensure they are based on well-
defined templates and that the tagging is applied
in a consistent way for best results. This allows us
to convert unstructured content to structured
content using a conversion table. Note that only
tagging in use in the document will be reflected
in a conversion table.

Migrating unstructured files to structure

To best manage the conversion of unstructured
content you need:

• Content that is unstructured, but uses tags
consistently.

• An EDD that has the formal rules you want to
follow.

• A conversion table that maps content between
unstructured and structured models.

Section 4: Hands-on development > Migrating unstructured files to structure

Page 47 of 60

We already have the first two. The content that
we just created is unstructured. The EDD we cre-
ated in the last hands-on portion has the rules.
We still need a conversion table.

The conversion table is a mapping utility that
makes it easier to transfer unstructured to struc-
tured content. Results will vary based on many
factors. These can include the consistency of
your source content, how close your source
structured and formal rules for structure align,
the use of some content types (for example,
whether images are copied or referenced), and
other specific issues that may come up.

The good news is that if you do anything consis-
tently there is often a way to manipulate
FrameMaker either via scripting before or after
the transformation to structured content. While
we’ll just convert one document in this set of
exercises it is possible to convert dozens, hun-
dreds, or even thousands by using conversion
tables and working with good quality source
content.

Import EDD rules

To ensure the resulting conversion matches the
structure, we need to first import the EDD into
the current unstructured document.

1. Open TopicEDD.fm.

2. Switch to the WorkWithStructure.fm file.

3. Select File > Import > Element Definitions
and, selecting the TopicEDD.fm, click Import.
The element definitions are imported suc-
cessfully. While the rules are imported the
current unstructured document looks the
same. However, if the Elements pod is dis-
played you can see elements to choose
from.

Create a default conversion table

FrameMaker can automatically build a basic con-
version table for you. In doing so the content is
scanned and paragraph, character, and other tags
(for example, tables, cross-references, markers,
and so on) are found and mapped. The default
mapping is to match the name of the tag with
the name of an element.

1. Select Structure > Utilities > Generate Con-
version Table.

2. Select Generate New Conversion Table.

3. Click Generate and review the table.

4. Save this in the same folder as your other
files and name it ConversionTable.fm

The resulting conversion table has a one-to-one
mapping of the paragraphs and the character
tag. While the resulting elements are not
matches with the EDD we can still apply the con-
version table, view the results, and start to make
adjustments to the conversion table. After each

change we can reconstruct the structured file
and review it for accuracy.

Wrap this object or objects In this element With this qualifier

P:Title Title

P:Body Body

P:Heading1 Heading1

P:Bulleted Bulleted

C:Emphasis Emphasis

Section 4: Hands-on development > Migrating unstructured files to structure

Page 48 of 60

Convert a document to structure

It is likely, or even certain, that the first conver-
sion table will not give us the results we need.
However, to see how the conversion of iterative
updates impacts the results let us convert the
WordWithStructure.fm file to a structured docu-
ment using the conversion table default.

1. Switch to the WorkWithStructure.fm file.

2. Select Structure > Utilities > Structure Cur-
rent Document.

3. Ensure the conversion table to use is the
ConversionTable.fm file.

4. Click Add Structure.

5. When the operation is successfully com-
pleted click OK.

The format is stripped of format and a
default structure (that is incorrect) is applied.

The red in the structure indicates an element
that does not match the rules. In this sample
the highest level element is NoName (and in
the EDD it should have been topic). Tags like

Title, Body, Heading1, and Emphasis are
direct conversions of the named tags.

6. Close the Untitled file.

7. Switch back to the ConversionTable.

Update the default conversion table

As you change a conversion table, the conver-
sion process needs to be repeated to see the
impact of the change.

As you update the structure the content adheres
to the EDD rules and formatting is also applied.
Remember, our EDD was built with a rule that
formats the li as bulleted! 1. Modify the conversion table by changing the

second column.

Section 4: Hands-on development > Migrating unstructured files to structure

Page 49 of 60

2. Switch to the WorkWithStructure.fm file.

3. Select Structure > Utilities > Structure Cur-
rent Document.

4. Ensure the ConversionTable document is
being referenced.

5. Add the structure and review the results.

The broken line in the structure indicates
elements that are not in the expected order,
based on the parent. In this sample the high-
est level element is NoName (and in the
EDD it should have been topic). Tags are,
however, much better. The title, p, i, and li
elements are no longer in red. This is
because they are valid as elements, but not
structured as expected. In addition, the for-
mat has been assigned in the document
view to the li elements. We now have better,
but still incomplete converted content.

6. Close the Untitled file.

7. Switch back to the ConversionTable.

Nest list content

Rather than just one level of conversion a nested
process can be completed. In our example we’ll
group the list items into a list.

1. Modify the conversion table as seen here by
adding a new row at the end.

Wrap this object or objects In this element With this qualifier

P:Title title

P:Body p

P:Heading1 title

P:Bulleted li

C:Emphasis i

Section 4: Hands-on development > Migrating unstructured files to structure

Page 50 of 60

The rule we’ve added will take one or more
li elements and wrap them in the ul ele-
ment.

2. Switch to the WorkWithStructure.fm file.

3. Select Structure > Utilities > Structure Cur-
rent Document.

4. Ensure the ConversionTable document is
being referenced.

5. Add the structure and review the results.

While the format remains the same, the
structure is updated to show the li elements
as children of the ul parent.

6. Close the Untitled file.

7. Switch back to the ConversionTable.

Nest lists in paragraphs

Nesting content ensures that if the parent ele-
ment is selected (for example, to move it, delete

it, or to reuse it) the nested content is also
included. For example, if a paragraph introduces
an idea (such as the text string "Publish content
as:") then the following text should be consid-
ered a part of the same element.

In this example if the p element is selected the ul
(and each of its child li elements) is also selected.

1. Change the rule for the conversion of the
paragraph named Body to support an
optional subordinate ul element.

The new rule is going to find the paragraph
named Body and, if followed by an optional

element named ul, convert it into a p ele-
ment. If the Body is not followed by the ul

Wrap this object or objects In this element With this qualifier

P:Title title

P:Body p

P:Heading1 title

P:Bulleted li

C:Emphasis i

E:li+ ul

Wrap this object or objects In this element With this qualifier

P:Title title

P:Body, E:ul? p

P:Heading1 title

P:Bulleted li

C:Emphasis i

E:li+ ul

E

Section 4: Hands-on development > Migrating unstructured files to structure

Page 51 of 60

element it will still convert. The question
mark indicates "zero or one".

2. Switch to the WorkWithStructure.fm file.

3. Select Structure > Utilities > Structure Cur-
rent Document.

4. Ensure the ConversionTable document is
being referenced.

5. Add the structure and review the results.

The structure is updated and shows the ul
elements as children of the p parent.

6. Close the Untitled file.

7. Switch back to the ConversionTable.

Convert titles using qualifiers

Remember that our EDD defined rules for a title
that provided a format that changed based on
context.

A title in the topic element is formatted as a Title
paragraph and, if in the section, it is formatted as
a Heading1. Currently we are mapping both the
Title and Heading1 to a title. By using a qualifier
we can treat the two in different ways. The Title
paragraph will become the "main" one and the

Heading1 will become the "sub". This allows us to
convert and group the content in unique ways to
create section or topic elements.

1. Change the rule for the conversion of the
paragraph named Title and the one named
Heading1 to distinguish them.

2. Add a new row to the table to structure con-
tent into a section element.

Section 4: Hands-on development > Migrating unstructured files to structure

Page 52 of 60

The rules provide a distinct qualifier for the
two title elements. The new row will find the
element named title—and if it is marked
with the "sub" qualifier AND followed by one
or more p elements (the plus sign means
"one or more")—and wrap these into a sec-
tion element.

3. Switch to the WorkWithStructure.fm file.

4. Select Structure > Utilities > Structure Cur-
rent Document.

5. Ensure the ConversionTable document is
being referenced.

6. Add the structure and review the results.

The structure is updated and two section
elements are created. Each contains a title
(properly formatted) and one or more p ele-
ments.

7. Close the Untitled file.

8. Switch back to the ConversionTable.

Complete the topic conversion

A few more modifications using the ideas we’ve
learned allows us to create a complete conver-
sion of the topic.

1. Update the conversion table to the follow-
ing.

Wrap this object or objects In this element With this qualifier

P:Title title main

P:Body, E:ul? p

P:Heading1 title sub

P:Bulleted li

C:Emphasis i

E:li+ ul

E:title[sub], E:p+ section

Section 4: Hands-on development > Migrating unstructured files to structure

Page 53 of 60

The rules provide a distinct qualifier for the
two title elements. The new row will find the
element named title—and if it is marked
with the "sub" qualifier AND followed by one
or more p elements (the plus sign means
"one or more")—and wrap these into a sec-
tion element.

2. Switch to the WorkWithStructure.fm file.

3. Select Structure > Utilities > Structure Cur-
rent Document.

4. Ensure the ConversionTable document is
being referenced.

5. Add the structure and review the results.

The structure is updated and two section
elements are created. Each contains a title
(properly formatted) and one or more p ele-
ments.

6. Save the Untitled file as ValidTopic.fm in the
same location as your other files.

7. Switch back to the ConversionTable.

8. Save and close the ConversionTable.

Wrap this object or objects In this element With this qualifier

P:Title title main

P:Body, E:ul? p

P:Heading1 title sub

P:Bulleted li

C:Emphasis i

E:li+ ul

E:title[sub], E:p+ section

E:p, E:section+ body

E:title[main], body topic

Section 4: Hands-on development > Tips and tricks about conversion to structure

Page 54 of 60

9. Save and close all files EXCEPT for the Valid-
Topic.fm.

Compare the valid topic with DITA

A lot of work has been done to get to this point.
Comparing the results with a valid DITA topic will
show you how close the converted content is to
a valid topic in the DITA model! Since the default
templates that are included have different for-
mats you will see a few other benefits of working
with structured content. For example, as soon as
we transfer this to a new template the format will
change to reflect

1. In the ValidTopic file click the topic element
and copy it (and all the content in it).

2. Select File > New > DITA Topic.

3. In the untitled DITA topic, in the Structure
view, click in the topic element.

4. Delete the element and all the default con-
tent.

5. Select Edit > Paste.

The content from your topic is pasted into
the shell of the DITA topic and can be
reviewed for accuracy.

By default the template may display all attri-
butes; this can be toggled to show required
or specified attributes.

6. Select View > Attribute Display Options.

7. Set the display to show Required and Speci-
fied Attributes.

8. Scroll to the top of the Structure view.

9. Review the DITA topic.

10. The only invalid part of the conversion is the
required ID attribute.

11. Right click in the topic element and select
Assign ID to Element.

Tips and tricks about conversion to structure

Conversion tables are powerful tools. The sam-
ple provided here is just one small part of what
can be done during conversion.

When mapping content, start with a document
that you can manage the complexity of. Don’t try
to convert a document that is 5, 10, or 50 pages
long. Instead, start with something that is repre-

sentative, but only a page or two long. This may
provide you a good way to learn without having
to try to juggle too many rules at once. However,
when you are ready, here are some things to
think about to continue to develop you conver-
sion tables.

Start simple

Begin by structuring the simpler elements first.
That may be the character formats in the con-
tent, simple paragraphs, or basic lists. Create

structure from the smaller parts to begin. Then
wrap them as we did in the exercises.

Wrap this object or objects In this element With this qualifier

P:Title title

P:Body p

P:Heading1 title

P:Heading2 title

P:Bulleted li

P:Numbered1 li

Section 4: Hands-on development > Tips and tricks about conversion to structure

Page 55 of 60

Use qualifiers

Look for duplicate elements, similar to the two
title elements we had and consider uniquely
qualifying them. For example, you may have
both numbered and bulleted content that

become li elements. One set could be qualified
as being ‘numbered’ and the other as ‘bulleted’ to
ensure conversion into appropriate parent ele-
ments.

Add a root element

The root element is the "highest level" element.
In our sample we converted content and eventu-
ally wrapped it all in the topic element. However,
adding RE:RootElement and then naming it is
another way to define the top level. Only one
root element may be defined per conversion
table.

Our sample wrapped content and resulted in a
valid structure, but to get there took several
passes. By using the RE for a root element you
can quickly assign the top level structure every
time instead of working around the NoName.

Work iteratively

Make a change. Test it. Repeat. This allows you to
make small changes and see what the impact is.
By making incremental strides you can identify
an error much quicker. Instead of making 4 or 8
or 25 changes, make 1 or 2. Toggle to the unstruc-

tured file and apply the conversion table. Repeat
this as needed until you succeed. Then move
ahead.

Save your file as needed, but you don’t need to
save to import. The most current content is

P:Numbered li

C:Emphasis i

C:Heavy b

C:Menu uicontrol

Wrap this object or objects In this element With this qualifier

Wrap this object or objects In this element With this qualifier

P:Title title main

P:Body p

P:Heading1 title sub

P:Heading2 title section

P:Bulleted li bullet

P:Numbered1 li number

P:Numbered li number

Wrap this object or objects In this element With this qualifier

E:title[main], body topic

RE:RootElement topic

Section 4: Hands-on development > Tips and tricks about conversion to structure

Page 56 of 60

always used, so you can test the conversion and,
if the results are not as expected, you can use the
Undo command to reset. If you plan to do com-
plex changes you may want to save multiple ver-
sions of the content. Create your
ConversionTable, but every so often create a
backup (for example, you may end up with Con-
versionTable01, ConversionTable02, and so on) so
that you can review the work you have done.

Add to the conversion table

Once you have a working conversion table for a
smaller file, open a larger document. By again
selecting Structure > Utilities > General Conver-
sion Table you can select an existing conversion
table and add to it by selecting the current con-
version table. The new content is added at the
end of the current table.

Create multiple conversion tables

Structures such as DITA have multiple root ele-
ments. For example, a topic, concept, task, refer-
ence, or glossary could be created. In each of
these there may be subtle (or major) differences.
The topic, concept, and reference have similar
content within them (for example, each supports
section and example elements, but they also
have a unique body, conbody, and refbody. To
structure them from the "bottom to the top" may
mean creating more than one conversion table
to support the migration to structure. Start with
one, then save it with a new name and modify it
as needed.

When we convert content for clients we ask
them to identify content as a task, concept, refer-
ence, and so on in the source. Then we uniquely
structure them using 3 or more conversion tables
to quickly create the correct hierarchy of content.

Promote content (graphics and tables) if needed

A graphic or a table is often anchored into the
preceding content and may need to break free.
The default conversion means they often end up
as children of the content they originally were
anchored in. Using the promote command sup-
ports converting content to a sibling of the origi-
nal paragraph rather than as a child.

In this sample the first p and image are the result
of a default conversion, and the second the result
of (promote) being used.

Add attributes

In some conversions attributes should be added.
For example, if the element note has an attribute
for type then the value may need to be defined

for a tip, caution, warning, default note, and so
on.

Wrap this object or objects In this element With this qualifier

G:Graphic image(promote)

T:Table tgroup(promote)

Wrap this object or objects In this element With this qualifier

P:Tip note[type="tip"]

P:Caution note[type="caution"]

Where to go from here > Tips and tricks about conversion to structure

Page 57 of 60

Handling formatting overrides

One common issue is the use of formatting over-
rides. Consider using the File > Utilities > Create
and Apply Formats and then map each resulting
tag to a specific row in a conversion table.

Other conversion challenges

There are many challenges related to working
with source content and structuring it. You need
to know the structure you want to convert to, be
familiar with the content, and have an under-
standing of the EDD and templates.

Challenges may include:

• Large documents that must be converted to
multiple document types. For example, a large
chapter may need to be structured with con-
tent in a task, concept, and reference. A single
conversion table to manage all this could be a
challenge. The splitting of the document could
also be difficult.

• Manual formatting is added to the documents
and must, based on context of use, be
uniquely converted. For example, the +Bold is
applied (by pressing Ctrl+b, or even using
proper character tags), but if it is in a step it

should be a uicontrol element and if in a note
it should become a b element. Converting all
of this to one element is not ideal, but you can-
not use a qualifier on the exact same tag to
create two unique structures.

• Images are imported by copy and should be
referenced instead. For example, someone cre-
ated screenshots using a print screen utility,
cropped it, and then copied and pasted it
directly into content. Structuring the docu-
ment creates a valid document, but on export
to XML the image is discarded.

• Uniquely structuring tables based on the table
format. For example, a table with complex
content should be converted to a tgroup, but a
very basic data table should be structured as a
simpletable. This cannot be done by default.

The bad news is that there are many, many,
many things users can introduce to your source
content that cannot be addressed simply by
using a conversion table. However, many of the
issues addressed above (and other common and
repeatable issues) can be resolved by automa-
tion using scripting.

Where to go from here
The content we created is comprehensive. There
is a lot of information here; however, it’s import-
ant to read additional materials as you start to
make the move to structured authoring.

The move to structured authoring, template
developing, formatting, and publishing can be
challenging. Add to that the growing interest in
managing content in a component content man-
agement system. To ensure a smooth transition
from unstructured to structured content you may
want to read more, visit the sites for specific stan-

dards, attend conferences, get trained, or hire a
consultant.

• Adobe content

• Standards

• Training

• Consulting

P:Warning note[type="warning"]

P:Note note

Wrap this object or objects In this element With this qualifier

Where to go from here > Adobe content

Page 58 of 60

Adobe content

Adobe supports the FrameMaker community
with videos, tutorials, whitepapers, and much
more. To find out more:

• https://www.adobe.com/products/framemaker/
whitepapers.html has several whitepaper on
FrameMaker.

• https://www.adobe.com/products/framemaker/
features-all.html includes all the features of
FrameMaker, including a "Getting Started" sec-
tion.

• Documentation to dive in deeper with regards
to structured content can also be downloaded
in PDF format. At over 250 and 450 pages in
length the developer’s guide and reference
manual are for anybody who develops struc-
tured FrameMaker templates and XML or
SGML applications. They are not written for
end users who author structured content.

• https://help.adobe.com/en_US/framemaker/
pdfs/Structure_Dev_Reference.pdf

• https://help.adobe.com/en_US/framemaker/
pdfs/Structure_Dev_Guide.pdf

Standards

Many of the leading XML standards have their
own official sites where you can dive in much
deeper. In most cases a quick search for standard
results in discussion groups, conferences, online
events, trainers, consultants, and other ways to
learn more. As each standard is constantly
changing it’s best to do your own research to

learn more about the solutions available by stan-
dards. Common standards that are supported in
FrameMaker include:

• DITA

• DocBook

• S1000D

Training

Training is available from authorized training
providers and by instructors who have years of
practical and hands-on experience working with
FrameMaker. Additional resources can also be
found on the Adobe website.

Publishing Smarter delivers FrameMaker and
structured FrameMaker training and has done so

for over 20 years. Training is available online or
in-person and covers topics including using
FrameMaker as a structured (or unstructured)
author, template developer, or even as the devel-
oper of an EDD and related documents. Visit
www.publishingsmarter.com for more details.

Consulting

Many consultants can be found who bring their
experience to you. They can provide guidance
and help you troubleshoot, work with you to set
up a complete structured workflow, or even
manage the entire project for you.

Publishing Smarter delivers FrameMaker and
structured FrameMaker consulting and has done
so for over 20 years. We know the ins and outs of
structured content and templates. We’ve been
luck to work with Adobe since they first acquired

FrameMaker. We’ve helped them build tem-
plates that are included out-of-the-box including
structured and unstructured templates. We cre-
ated sample content, helped Adobe build the
AEM and DITA tools, and actively continue to
work with the FrameMaker development team.
We know the templates, the people, the work-
flows, and the challenges that can come with a
migration to structure. We’ve also spent years
developing processes to automate the conver-
sion of legacy content, built hundreds of tem-

https://www.adobe.com/products/framemaker/whitepapers.html
https://www.adobe.com/products/framemaker/whitepapers.html
https://www.adobe.com/products/framemaker/features-all.html
https://www.adobe.com/products/framemaker/features-all.html
https://help.adobe.com/en_US/framemaker/pdfs/Structure_Dev_Reference.pdf
https://help.adobe.com/en_US/framemaker/pdfs/Structure_Dev_Guide.pdf
www.publishingsmarter.com

Where to go from here > More information

Page 59 of 60

plates for use with DITA, converted thousands of
documents to structure, and can bring that expe-
rience to your projects.

Consulting is available online or in-person. Visit
www.publishingsmarter.com for more details.

More information

https://www.adobe.com/products/framemaker.html is home to the FrameMaker product page. From
there you can read much more about the product, watch educational videos, and explore structured
content.

About the author

Bernard Aschwanden solves documentation-based problems and helps companies generate more
revenue. He guides clients through best processes to create, manage, and deliver content. Once con-
tent is delivered, he helps socialize the message, understand and act on feedback, and improve the
process and workflow. He is the founder of Publishing Smarter (www.publishingsmarter.com), an Asso-
ciate Fellow of STC, and a Past President of STC. Bernard has helped hundreds of companies imple-
ment successful solutions. He is focused on publishing better, publishing faster, and publishing smarter.

https://www.adobe.com/products/framemaker.html
www.publishingsmarter.com
www.publishingsmarter.com

Adobe, the Adobe logo, and FrameMaker are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries. All other trademarks are the property of their respective owners.

© 2022 Adobe Inc. All rights reserved.

Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110-2704
USA
www.adobe.com

Get in touch
techcomm@adobe.com +1-866-647-1213

	Unlock the Business Value of your Content: Move from Unstructured to Structured FrameMaker
	A step-by-step migration guide to structured content
	Table of Contents
	We Wrote This For: You! An experienced user of FrameMaker, you are generally comfortable using the Paragraph, Character, and Table Designers, and are considering a migration to structured formats such as DITA or other XML standards. Welcome aboard.
	Challenge: Developing a structured environment requires the migration of legacy content, while also learning new tools, and related structural concepts. In many cases there is also a need to develop supporting content for importing content to (or exp...
	Moving to structured content needs hands-on involvement, and with the information in this paper you'll have a chance to see how it can be done, practice step-by-step examples and decide how your content can best be migrated to structured formats.
	About Us: Publishing Smarter (www.publishingsmarter.com) helps companies communicate. We develop and implement content strategies This includes creating, managing, and distributing content from one source to many outputs. We’ve worked with hundreds...
	Overview
	Section 1: XML and structured content
	Differences between HTML and XML
	Table 1: Comparing HTML and XML content
	<html>
	<head><title>Top Sellers </title></head>
	<booklist>
	<title>Top Sellers</title>
	<body>
	<body>
	<h1>Don Quixote</h1>
	<p>Miguel de Cervantes</p>
	<p>500 million</p>
	<p>1605</p>
	<book genre="fiction" published="1605">
	<title>Don Quixote</title>
	<author>Miguel de Cervantes</author>
	<sold>500 million</sold>

	</book>

	<h1>A Tale of Two Cities</h1>
	<p>Charles Dickens</p>
	<p>200 million</p>
	<p>1859</p>
	<book genre="fiction-historic" published="1859">
	<title>A Tale of Two Cities</title>
	<author>Charles Dickens</author>
	<sold>200 million</sold>

	</book>

	<h1>The Lord of the Rings</h1>
	<p>J. R. R. Tolkien</p>
	<p>1954-1955</p>
	<p>150 million</p>
	...
	</body>
	</html>
	<book genre="fantasy" published="1954-1955">
	<title>The Lord of the Rings</title>
	<author>J. R. R. Tolkien</author>
	<sold>150 million</sold>

	</book>
	...

	</body>
	</booklist>

	Figure 1: HTML sample of structure with output and hierarchy
	Figure 2: Sample of one (of many possible) outputs supported by an XML source
	Figure 3: XML structure sample hierarchy
	XML uses well-formed and valid structure

	Table 2: Sample of valid DITA XML content
	<?xml version="1.0" encoding="UTF-8"?>
	<!DOCTYPE concept PUBLIC "-//OASIS//DTD DITA Concept//EN" "concept.dtd">
	<concept id="unlock-content">
	<title>Unlock your content</title>
	<shortdesc>Content has business value. That value is in the ability of people to learn what you offer, how you perform services, how they can perform tasks, understand concepts and ideas, find technical reference, or otherwise learn more about what y...
	<conbody>
	<p>FrameMaker releases content from difficulties associated with other tools. This may include:
	
	large volumes of content,
	complex numbered systems,</ li>
	design and layout requirements, or
	other reasons to put aside a word processor and use a professional communications tool.

	

	</p>
	<section id="unstructured">
	<title>Unstructured content </title>
	<p>More content needed here.</p>

	</section>
	<section id="structured">
	<title>Structured content </title>
	<p>More content needed here.</p>

	</section>

	</conbody>

	</concept>

	Figure 4: XML structure in a tree view
	DITA and its relationship to XML
	Capturing information hierarchy

	Figure 5: Comparing formatted content and logical structure
	Embedding metadata in XML

	Benefits XML offers
	Table 3: Hazard statement sample
	Enforcing consistent organization

	Figure 6: Enforced content order
	Figure 7: Invalid structure representation
	Standardize corporate branding

	Figure 8: Same content, unique templates
	Automating and enforcing format

	Figure 9: List and nested-list formats
	Figure 10: Format rules based on list count
	Using metadata for versioning and delivery
	Table 4: Procedural steps sample

	<steps>
	<step platform="win">Open the Windows Explorer.</step>
	<step platform="mac">Open the Mac Finder.</step>
	<step>Select the location to create a new folder.</step>
	<step>Press Ctrl/Command+Shift+n.</ step>

	</steps>
	Figure 11: Content as seen by an author
	Figure 12: Structure with platform attributes
	Figure 13: Responsive HTML5 with all content
	Figure 14: Filtered to show only Windows
	Figure 15: Filtered to show only Macintosh
	Publishing to multiple output formats

	Table 5: Structured <steps> and <substeps>
	<steps>
	<step>Plan the layout.
	<substeps>
	<step>Lay chalk lines and find the center point of the room.</step>
	<step>Square the chalk lines.</step>

	</substeps>

	</step>
	<step>Test your layout strategy.
	<substeps>
	<step>Without mortar lay a half row of tiles in both directions from the center point out.</ step>
	<step>Install spacers between tiles until there isn’t room for a full tile.
	<info>The gap on either side of the finished test should be equal if properly centered. If not, adjust your center point and try again.</info>

	</step>

	</substeps>

	</step>
	<step>Plan for safety and comfort
	<substeps>
	<step>Wear safety gear such as gloves and glasses.
	<info>Safety gear can be ordered online, or purchased in-store.</info>

	</step>
	<step>Read the instructions for the mortar mix.
	<info>We love Grip-Oh mortar. Order now for same day delivery.</info>

	</step>
	<step>Plan for threshold transitions.</step>
	</substeps>

	</step>

	</steps>

	Figure 16: Marketing (Website)
	Figure 17: Mobile (for DIY)
	Figure 18: Brochure (Print)
	Figure 19: Store Associates Only (Print)
	Supporting content reuse
	Share content with others using XML
	Reducing localization cost
	Simplifying database publishing
	Complying with required document structures

	Next steps

	Section 2: Benefits of structured FrameMaker
	Migrating from unstructured FrameMaker to structured FrameMaker
	Authoring visually
	Creating multiple outputs from one source
	Print and PDF output
	HTML5 output

	Relatively low licensing cost
	Relatively low implementation effort
	XML implementation options

	Section 3: Working in a supported structured authoring environment
	Authoring only in structured FrameMaker
	Figure 20: Connecting to paragraph tags
	Figure 21: Format change list references
	Figure 22: Embedded format rule

	Authoring in structure (with XML support)
	Figure 23: XML and FrameMaker workflow
	Figure 24: Structured content workflow roles

	Analyzing content
	Figure 25: Sample topic with tagging

	Choosing an EDD strategy
	Build your own
	Import an existing DTD or schema
	Modify an existing EDD
	Work with DITA

	Get familiar with EDD and XML syntax
	Order rules
	Table 6: Order rules
	Order
	Notes
	A, B
	All elements in order. The first is A, the second is B. Always appears as AB.
	A | B
	Only one element. Always appears as either A or as B, but not AB or BA.
	A | B, C
	Incorrect syntax due to mixed connectors. Cannot be used.
	A | (B,C)
	Either only A, or both B and C in order. Appears as A or BC, but not AB nor AC.
	(A | B), C
	Either element A or B, followed by C. Appears as either AC or BC.
	Based on this, the following samples can be created (the notes use a friendly term for the elements):
	Syntax
	Notes
	para, list
	In order, a paragraph followed by a list.
	para | list
	One or the other of a paragraph or a list, but never both.
	title, para, list
	In order, three specific elements. A title, then a paragraph, and then a list.
	title, (para | list)
	A title which is followed by either a paragraph or a list.
	title | (para, list)
	Either only a title and nothing else, or just a paragraph followed by a list.
	(title | para), list
	One option of a title or a paragraph. Once inserted this is followed by a list.

	A more robust structure can be created by adding frequency rules to the structural order rules.
	Frequency rules

	Table 7: Frequency rules
	Frequency
	Notes
	A, B
	All elements in order and appearing once per element. Always appears as AB.
	A, B?
	Element A must appear once. Element B is optional and appears zero or one times. Always appears as either A or AB.
	A, B*
	Element A must appear once. Element B is optional and appears zero or more times. Appears as at least A, and could be AB, ABB, ABBBBBB (unlimited optional B elements).
	Based on this, the following samples can be created (the notes use a friendly term for the elements):
	Syntax
	Notes
	title, para+
	One title, followed by as many paragraphs as desired.
	title, (para | list)+
	One title, followed by a repeatable choice of a paragraph or a list. This could allow a title to be followed by a list, another list, and a third list.
	title, (para, list?)+
	A title, and at least 1 paragraph. Each paragraph can be followed by an optional list. This ensures that every list has at least one paragraph that leads into it.
	title, body
	One title, followed by the body. Both elements are required. The body could be further defined to contain a broad range of other elements.

	A much more robust structure can be created by adding frequency rules to the structural order rules and creating entire content rule sets.
	Sample topic
	Figure 26: Basic topic sample

	Table 8: Basic topic sample content
	<topic id="fm-structured">
	<title>Work with Structured FrameMaker</title>
	<body>
	<para>Adobe provides tools that work with structured (XML) content. These include both Adobe FrameMaker and XML Documentation for Adobe Experience Manager.</para>
	<para>Adobe FrameMaker is the industry-standard tool for authoring and publishing multilingual technical content across mobile, web, desktop, and print…</para>
	<para>Dynamically deliver DITA content to Adobe Experience Manager thereby bringing marketing and technical content to the same platform.</para>

	</body>

	</topic>

	Section 4: Hands-on development
	Tips to get you started
	Videos
	Sample content
	Hands-on development of an EDD
	Hands-on migration to structured content

	Prerequisites
	Work with structured content as an author
	Configure the product interface
	1. Select Edit > Preferences.
	2. Under Global > General ensure you change the Product Interface to Structured FrameMaker.
	3. Click OK, and if prompted, restart FrameMaker.

	Creating your first EDD
	Generate an EDD and view boundaries and element structure
	1. Select Structure > EDD > New EDD.
	2. Select File > Save As and save the EDD as TopicEDD.fm in one folder that you will use for all your hands-on work.
	3. Select View > Element Boundaries (As Tags).
	4. If the interface does not appear as seen in Figure 27 don’t panic. Continue to Configuring your workspace.

	Figure 27: XML/Structured Interface

	Configuring your workspace
	Assign a default workspace
	1. In the top right of FrameMaker, click the Workspace dropdown.
	2. Choose XML/Structured.

	Populate the EDD with the first element
	1. Ensure your insertion point is positioned in the element named Tag.
	2. Type the word topic.
	As you type, the content appears in both the Structure View and the document window.

	Build your own workspace
	1. Select Structure > Structure View and, once the Structure View is displayed, drag and drop it to the left of the application window.
	2. Select View > Pods > Element Catalog, then move the pod between the Structure View and the document.
	3. When the highlight displays, drop the pod.
	4. Reorganize the workspace as required based on your resolution and needs.
	5. When done, click the Workspace dropdown at the top right of the screen and choose Save workspace.
	6. Name the workspace Structured Developer.
	7. Click OK.

	Build the EDD content
	Develop the highest level <topic> element
	1. Select View, then deselect Element Boundaries (as Tags).
	2. Click to the right and just above the red box in the Structure View.
	3. In the Elements catalog double-click Container.
	4. Type title, body
	5. In the Structure View, click immediately below the GeneralRule.
	6. In the Elements catalog double-click ValidHighestLevel.
	7. Collapse the Element by clicking the triangle pointing down and toggling it.

	Add a <title> element
	1. Click immediately below the collapsed Element tag.
	2. Insert another Element (remember to double-click it in the Elements catalog).
	3. Type title
	4. Click to the right and just above the red box in the Structure View.
	5. Insert a Container (remember to double- click it in the Elements catalog).
	6. Type <TEXT>

	7. Collapse the Element by clicking the Downward Triangle.
	Add a <body> element
	1. Click immediately below the collapsed Element tag.
	2. Insert another Element and in the Tag type body
	3. Click to the right and just above the red box in the Structure View and insert a Container.
	4. Type p?, section+
	5. Collapse the Element.

	Add a <p> element
	1. Click immediately below the collapsed Element tag and insert an element, naming it p
	2. Insert a Container.
	3. Type (<TEXT> | i | ul)*
	4. Collapse the Element.

	Complete the EDD structure
	1. Complete the structural rules by adding the elements seen here.
	section
	title, p+
	The <section> contains a required title (but only one, as well as one or more <p> elements.
	i
	<TEXT>
	The <i> element is for content that will be formatted (later) as italic and it contains text only.
	ul
	li+
	The unordered list contains one or more list items.
	li
	<TEXT>
	Each list item contains text.

	Test the EDD
	1. Select File > New > Document and click Portrait.
	2. Select File > Import > Element Definitions.
	3. Ensure that TopicEDD.fm is selected under Import from Document.
	4. Click Import.
	5. To verify that the definitions were imported, click once in the main text flow and look at the Elements catalog.
	6. Insert a topic element.
	7. Insert a title element.
	8. In the title type the text Primary Title.
	9. Insert a body element.
	10. Within the body add a child p element.
	11. In the p type Some content can be structured with character level formatting.
	12. Equal to the p element add a section element.
	13. In the section element add a title.
	14. In the title type the text Section level title.
	15. Equal to the title element add a p element.
	16. In the p element type The following is a sample of an unordered list.
	17. At the end of the text in the p element insert a ul element.
	18. In the ul element insert two li elements.
	19. In the first li type Unordered list with a list item in it.
	20. In the second li type Another item within the unordered list.
	21. Save your file as TopicTesting.fm in the same folder as your TopicEDD.fm.

	Assigning format rules for content using the EDD
	Create a format for list items
	1. Switch to your EDD.
	2. Within the element tagged as li, equal to the GeneralRule, add a TextFormatRules element with nested children named AllContextsRule, ParagraphFormatting, and ParagraphFormatTag.
	3. Type Bulleted as the text in ParagraphFormatTag.

	Figure 28: Final format for a list item
	Import the new format
	1. Switch to the TopicTesting.fm file.
	2. Select File > Import > Element Definitions.
	3. Ensure that TopicEDD.fm is selected as the source to import from.
	4. Click Import. The element definitions are imported successfully. The format of the two li elements changes and bullets are visible in the document view. The structure remains the same.

	Formatting contextually
	Contextually format a topic <title> element
	1. Switch to your EDD.
	2. Build the structure in Figure 29.

	Figure 29: Final <title> format for a topic title
	Assign a topic title format (detailed steps)
	1. In the element tagged as title, after the GeneralRule, add a TextFormatRules element with nested children named ContextRule, If and Specification.
	2. In Specification type topic.
	3. Below the Specification insert a ParagraphFormatting and ParagraphFormatTag.
	4. Type Title as the text in ParagraphFormatTag.

	Format a section <title> element
	1. Click the collapsing triangle to the left of the if element to collapse it.
	2. Immediately below the collapsed if element add an ElseIf and Specification.
	3. Complete the structure to appear as seen in Figure 30.

	Figure 30: Final <title> format for a section
	Assign a section title format (detailed steps)
	1. In the element tagged as title, add a TextFormatRules element with nested children named ContextRule, ElseIf and Specification.
	2. In Specification type section.
	3. Below the Specification insert a ParagraphFormatting and ParagraphFormatTag.
	4. Type Title as the text in ParagraphFormatTag.
	5. Click the collapsing triangle to the left of the ElseIf element to collapse it.

	Import and test the EDD formats
	1. Switch to the TopicTesting.fm file.
	2. Review the current format of the text Primary title and of the text Section level title.
	3. Select File > Import > Element Definitions.
	4. Ensure that TopicEDD.fm is selected as the source to import from.
	5. Click Import.

	Format a text string element
	1. In your document, locate the text Some content can be structured with character level formatting.
	2. Double click the word character.
	3. In the Element Catalog double click the element i.
	4. Switch to your EDD.
	5. In the element tagged as i add a TextFormatRules element with nested children named AllContextsRule, TextRangeFormatting, and TextRange.
	6. Immediately below the TextRange insert the CharacterFormatTag element.
	7. Type Emphasis as the text in CharacterFormatTag.
	Figure 31: Completed character format
	8. Switch to the TopicTesting.fm file.
	9. Select File > Import > Element Definitions and, selecting the TopicEDD.fm, click Import. The element definitions are imported successfully. Since we defined the element as a TextRange the format of the i element changes and it appears inline and f...
	10. Save both open files and close them.
	Further formatting
	Further testing

	Structured application files and XML round-tripping
	Implementing structured FrameMaker
	Analyze your content
	Table 9: Initial sample analysis of content frequency
	Decide on a structured approach

	Table 10: Factors that influence using standards or customizing
	Sample analysis of a document (illustrated)

	Figure 32: Sample topic with tagging
	Create representative unstructured content
	1. Select File > New > Document, then click Portrait.
	2. Type in the following content and leave it formatted as Body paragraphs:
	3. Format content as Title, Body, Heading1, and Bulleted paragraphs based on Figure 32.
	4. Within the Heading1 titled Adobe FrameMaker select the body text content Adobe FrameMaker and apply the Emphasis character format.
	5. Within the Heading1 titled XML Documentation for Adobe Experience Manager select the body text content Adobe Experience Manager and apply the Emphasis character format.
	6. Select File > Save As and save the file as WorkWithStructure.fm in a location you can easily find later.

	Figure 33: Unstructured sample content
	Content analysis (already done earlier)
	Unique tagging of content

	Migrating unstructured files to structure
	Import EDD rules
	1. Open TopicEDD.fm.
	2. Switch to the WorkWithStructure.fm file.
	3. Select File > Import > Element Definitions and, selecting the TopicEDD.fm, click Import. The element definitions are imported successfully. While the rules are imported the current unstructured document looks the same. However, if the Elements pod...

	Create a default conversion table
	1. Select Structure > Utilities > Generate Conversion Table.
	2. Select Generate New Conversion Table.
	3. Click Generate and review the table.
	Wrap this object or objects
	In this element
	With this qualifier
	P:Title
	Title
	P:Body
	Body
	P:Heading1
	Heading1
	P:Bulleted
	Bulleted
	C:Emphasis
	Emphasis
	4. Save this in the same folder as your other files and name it ConversionTable.fm

	Convert a document to structure
	1. Switch to the WorkWithStructure.fm file.
	2. Select Structure > Utilities > Structure Current Document.
	3. Ensure the conversion table to use is the ConversionTable.fm file.
	4. Click Add Structure.
	5. When the operation is successfully completed click OK.
	6. Close the Untitled file.
	7. Switch back to the ConversionTable.

	Update the default conversion table
	1. Modify the conversion table by changing the second column.
	Wrap this object or objects
	In this element
	With this qualifier
	P:Title
	P:Body
	P:Heading1
	P:Bulleted
	C:Emphasis
	2. Switch to the WorkWithStructure.fm file.
	3. Select Structure > Utilities > Structure Current Document.
	4. Ensure the ConversionTable document is being referenced.
	5. Add the structure and review the results.
	6. Close the Untitled file.
	7. Switch back to the ConversionTable.

	Nest list content
	1. Modify the conversion table as seen here by adding a new row at the end.
	Wrap this object or objects
	In this element
	With this qualifier
	P:Title
	title
	P:Body
	p
	P:Heading1
	title
	P:Bulleted
	li
	C:Emphasis
	i
	2. Switch to the WorkWithStructure.fm file.
	3. Select Structure > Utilities > Structure Current Document.
	4. Ensure the ConversionTable document is being referenced.
	5. Add the structure and review the results.
	6. Close the Untitled file.
	7. Switch back to the ConversionTable.

	Nest lists in paragraphs
	1. Change the rule for the conversion of the paragraph named Body to support an optional subordinate ul element.
	Wrap this object or objects
	In this element
	With this qualifier
	P:Title
	title
	P:Body, E:ul?
	p
	P:Heading1
	title
	P:Bulleted
	li
	C:Emphasis
	i
	E:li+
	ul
	E
	2. Switch to the WorkWithStructure.fm file.
	3. Select Structure > Utilities > Structure Current Document.
	4. Ensure the ConversionTable document is being referenced.
	5. Add the structure and review the results.
	6. Close the Untitled file.
	7. Switch back to the ConversionTable.

	Convert titles using qualifiers
	1. Change the rule for the conversion of the paragraph named Title and the one named Heading1 to distinguish them.
	2. Add a new row to the table to structure content into a section element.
	Wrap this object or objects
	In this element
	With this qualifier
	P:Title
	title
	P:Body, E:ul?
	p
	P:Heading1
	title
	P:Bulleted
	li
	C:Emphasis
	i
	E:li+
	ul
	3. Switch to the WorkWithStructure.fm file.
	4. Select Structure > Utilities > Structure Current Document.
	5. Ensure the ConversionTable document is being referenced.
	6. Add the structure and review the results.
	7. Close the Untitled file.
	8. Switch back to the ConversionTable.

	Complete the topic conversion
	1. Update the conversion table to the following.
	Wrap this object or objects
	In this element
	With this qualifier
	P:Title
	title
	main
	P:Body, E:ul?
	p
	P:Heading1
	title
	sub
	P:Bulleted
	li
	C:Emphasis
	i
	E:li+
	ul
	E:title[sub], E:p+
	section
	2. Switch to the WorkWithStructure.fm file.
	3. Select Structure > Utilities > Structure Current Document.
	4. Ensure the ConversionTable document is being referenced.
	5. Add the structure and review the results.
	6. Save the Untitled file as ValidTopic.fm in the same location as your other files.
	7. Switch back to the ConversionTable.
	8. Save and close the ConversionTable.
	9. Save and close all files EXCEPT for the ValidTopic.fm.

	Compare the valid topic with DITA
	1. In the ValidTopic file click the topic element and copy it (and all the content in it).
	2. Select File > New > DITA Topic.
	3. In the untitled DITA topic, in the Structure view, click in the topic element.
	4. Delete the element and all the default content.
	5. Select Edit > Paste.
	6. Select View > Attribute Display Options.
	7. Set the display to show Required and Specified Attributes.
	8. Scroll to the top of the Structure view.
	9. Review the DITA topic.
	10. The only invalid part of the conversion is the required ID attribute.
	11. Right click in the topic element and select Assign ID to Element.

	Tips and tricks about conversion to structure
	Start simple
	Wrap this object or objects
	In this element
	With this qualifier
	P:Title
	title
	P:Body
	p
	P:Heading1
	title
	P:Heading2
	title
	P:Bulleted
	li
	P:Numbered1
	li
	P:Numbered
	li
	C:Emphasis
	i
	C:Heavy
	b
	C:Menu
	uicontrol

	Use qualifiers
	Wrap this object or objects
	In this element
	With this qualifier
	P:Title
	title
	main
	P:Body
	p
	P:Heading1
	title
	sub
	P:Heading2
	title
	section
	P:Bulleted
	li
	bullet
	P:Numbered1
	li
	number
	P:Numbered
	li
	number

	Add a root element
	Wrap this object or objects
	In this element
	With this qualifier
	E:title[main], body
	topic
	RE:RootElement
	topic

	Work iteratively
	Add to the conversion table
	Create multiple conversion tables
	Promote content (graphics and tables) if needed
	Wrap this object or objects
	In this element
	With this qualifier
	G:Graphic
	image(promote)
	T:Table
	tgroup(promote)

	Add attributes
	Wrap this object or objects
	In this element
	With this qualifier
	P:Tip
	note[type="tip"]
	P:Caution
	note[type="caution"]
	P:Warning
	note[type="warning"]
	P:Note
	note

	Handling formatting overrides
	Other conversion challenges

	Where to go from here
	Adobe content
	Standards
	Training
	Consulting
	More information
	https://www.adobe.com/products/framemaker.html is home to the FrameMaker product page. From there you can read much more about the product, watch educational videos, and explore structured content.

	About the author
	Bernard Aschwanden solves documentation-based problems and helps companies generate more revenue. He guides clients through best processes to create, manage, and deliver content. Once content is delivered, he helps socialize the message, understand a...

