
 

JRun 4 Groundbreaking Clustering
Architecture

by Brandon Purcell
Senior Technical Support Engineer

May 2002

 

 

 

 

 

 

 



Copyright © 2002 Macromedia, Inc. All rights reserved.  

The information contained in this document represents the current view of Macromedia on the issue discussed as of the date of publication. Because 
Macromedia must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Macromedia, and Macromedia 
cannot guarantee the accuracy of any information presented after the date of publication. 

This white paper is for information purposes only. MACROMEDIA MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. 

Macromedia may have patents, patent applications, trademark, copyright or other intellectual property rights covering the subject matter of this document. 
Except as expressly provided in any written license agreement from Macromedia, the furnishing of this document does not give you any license to these 
patents, trademarks, copyrights or other intellectual property. 

Add Life to the Web™, Afterburner™, Aftershock™, Andromedia®, Allaire® , Animation PowerPack™, Aria®, Attain™, Authorware®, Authorware Star®, 
Backstage™, Bright Tiger®, Clustercats® , ColdFusion®, Design In Motion™, Director®, Dream Templates™, Dreamweaver®, Drumbeat 2000™, EDJE®, 
EJIPT®, Extreme 3D®, Fireworks®, Flash™, Fontographer®, FreeHand®, Generator™, HomeSite™, JFusion™, JRun™, Kawa™ , Know Your Site®, Knowledge 
Objects™, Knowledge Stream™, Knowledge Track™, LikeMinds™o Lingo™, Live Effects™, MacRecorder Logo and Design®, Macromedia®, Macromedia 
Action!®, Macromedia Flash™, Macromedia M Logo and Design™, Macromedia Spectra™ , Macromedia xRes Logo and Design®, MacroModel®, Made with 
Macromedia™, Made with Macromedia Logo and Design®, MAGIC Logo and Design™, Mediamaker®, Movie Critic®, Open Sesame! ™ , Roundtrip®, 
Roundtrip HTML™, Shockwave®, Sitespring™ , SoundEdit™, Titlemaker™, UltraDev™, Web Design 101™, what the web can be™, Xtra™ are either trademarks 
or registered trademarks of Macromedia, Inc. in the United States and/or other countries. The names of actual companies and products mentioned herein 
may be the trademarks of their respective owners. 

Macromedia, Inc. 
600 Townsend Street 
San Francisco, CA 94103 
415–252–2000 



 
JRun 4 Groundbreaking Clustering Architecture 

Contents 

Clustering architecture ........................................................................................................ 1 
Levels of clustering................................................................................................................................. 2 

Web server clustering ..................................................................................................................... 2 
Connector clustering....................................................................................................................... 2 
Object clustering .............................................................................................................................. 3 

Building and deploying an application to a cluster ........................................................................ 3 
Implementing session failover ............................................................................................................. 6 
Application considerations: .................................................................................................................. 8 

Session data must be serializable ............................................................................................... 8 
Use setAttribute() to change session state............................................................................... 9 
Consider serialization overhead for session objects .............................................................. 9 

Object clustering: EJB and JMS ........................................................................................................ 9 
Object clustering: ............................................................................................................................. 9 

Sample configurations.......................................................................................................10 
Securing a cluster ................................................................................................................................. 13 
Set up host-based authentication .................................................................................................... 13 
Secure Sockets Layer ......................................................................................................................... 13 
Configuring JNDI Access ................................................................................................................... 14 
Resources, services and server settings ........................................................................................ 14 

 

May 2002 Page iii 





JRun 4 Groundbreaking Clustering Architecture 
Clustering architecture 

Businesses today are dependent on system reliability. This is the foundation 
for e-commerce sites and mission-critical business applications. High-end 
servers that are designed as stand-alone systems can be very reliable, but any 
amount of downtime can be deadly to online-only businesses. To solve these 
problems of reliability and redundancy, Macromedia JRun 4 provides the 
option of clustering. You can prevent downtime by having multiple servers 
work together to balance the load and provide failover.  

Clustering architecture 
JRun 4 includes a new state-of-the-art clustering architecture. Unlike many applications servers, 
cluster creation and application deployment are very simple with JRun 4. You create clusters using 
the JRun Management Console (JMC). After creating and adding servers to the cluster, deploying 
an application is easy. To deploy an application across a cluster, you add an EAR or WAR file 
into one of the directories for deployment; the application is instantly available across the entire 
cluster. Then you can connect and configure your web server directly to a cluster of JRun servers 
using a Swing-based wizard. JRun 4 provides an end-to-end solution for clustering so that you can 
build multiple levels of redundancy. It also lets you scale your applications at a lower cost by 
reducing hardware requirements. In the past, if you wanted to add an application server, you were 
required to add a web server. Now, if your application server is overloaded, you can add another 
one, and use the clustering functionality to provide load-balancing for the requests from your 
existing web server.  

The following figure shows a typical clustering architecture using JRun 4: 

Web Server A JRun Server A

JRun Server B

 JRun Server C

JRun Server BJRun Server BWeb Server BWeb Server B

erver
Clustering

erver
Clustering

Web
Container

Web
Container

Web
Container

JRun Server CJRun Server C

Object Clustering

Connector
Clustering
Connector
Clustering

Web SWeb S

EJB
Container

Web
Container

EJB
Container

Web
Container

EJB
Container

EJB
Container

EJB
Container

Web
Container

EJB
Container

Web
Container

EJB
Container

Web
Container

EJB
Container

Web
Container

EJB
Container

May 2002 Page 1 



JRun 4 Groundbreaking Clustering Architecture 
Clustering architecture 

Levels of clustering 

In JRun 4, clustering is implemented at three levels to offer the maximum level of reliability, 
scalability, and performance.  As the previous figure shows, JRun 4 provides the following three 
levels of clustering: 

Web server clustering � 

� 

� 

Connector clustering 

Object clustering  

The following sections describe these levels of clustering in detail. 

Web server clustering 

Web server clustering is a technique in which two or more web servers that support one or more 
domains are grouped together as a cluster of servers. The cluster collectively accommodates 
increases in load and provides system redundancy. Clustering for scalability works by distributing 
load among each server in the cluster (load-balancing) using an unintelligent-but-regular 
distribution sequence (round-robin DNS and routers), or a predefined threshold or algorithm. You 
specify and can adjust the distribution sequence or algorithm for each server in the cluster. With 
JRun 4, you cluster web servers using the ClusterCATS software- based solution, a hardware-
based solution, such as a packet router (Cisco Local Director, F1 Labs Big IP), or a combination 
of the two. ClusterCATS integrates directly with Cisco LocalDirector by providing intelligent load 
information from the JRun server. 

Connector clustering  

A native web server connection module, or connector, is compiled for the specific web server, 
hardware architecture, and operating system. For example, JRun uses Apache modules to create 
the connectors for the Apache web server for each possible hardware architecture and operating 
system supported by JRun. The JRun web server connector is different from the Sun J2EE Java 
Connector Architecture (JCA) connectors, which provide integration with back-end systems. JRun 
ships with several different connectors that plug into the major web servers on the market 
(Apache, Iplanet, and IIS). The main difference between the connectors that shipped with JRun 3.x 
and JRun 4 is the clustering functionality. In JRun 4, you can connect multiple instances of JRun 
to one web server and load balance incoming requests. Out of the box, Macromedia provides three 
different algorithms for load-balancing (round-robin, weighted round-robin, and weighted 
random). As the web server receives requests, the connector directs the requests to JRun based on 
the algorithms. If a JRun server fails, the connector uses automatic failover to transfer requests to a 
running server. In-memory session replication ensures that state information is preserved when a 
failure occurs. 

Page 2 May 2002 



JRun 4 Groundbreaking Clustering Architecture 
Clustering architecture 

Object clustering  

Groundbreaking Jini-based object clustering enables load-balancing and automatic failover of 
requests sent by clients (for example, JavaServer Pages (JSPs), Servlets, or regular Java clients) to 
server objects, such as Enterprise JavaBeans, JMS queues and topics, JNDI trees, or other 
services. The object’s state (for example, the state of a stateful EJB) is automatically replicated in 
an optimized manner, provides the highest level of reliability while maintaining performance. 
At server startup, clusterable services use Jini to register with each server. The use of Jini allows 
the clustering portion of JRun to be lightweight, have a small footprint, yet remain robust. Jini 
initiates the clustering process using dynamic discovery and join, and deals with events, such as 
service failure and new service joins. All features in JRun are "services" that plug into the JRun 
kernel. JRun services are "clusterable" and are monitored through a Jini lookup service. Each JRun 
server contains a service called the ClusterManager. This service encapsulates the Jini lookup 
service; so when clustering is enabled, one lookup service is running within each JRun server in a 
cluster. The JRun servers run in peer fashion, so there is no single ClusterManager cluster-wide, 
but rather a set of ClusterManagers for a single cluster (one per server); thus, there is no single 
administrative point of failure. As subsequent services are started (such as deployer services, 
transaction services, JNDI services, EJB container services, custom services created by users or 
ISV's) any one of those services might be "clusterable." A clusterable service is a JRun service and 
a Jini service. As part of the clusterable service’s lifecycle, when the clusterable service starts, it 
dynamically discovers and joins all lookup services that are nearby (multicast) and, optionally, 
statically configures (unicast) services using the Jini discovery protocol. 

Building and deploying an application to a cluster 

To build and deploy an application and use clustering, perform the following steps using the JMC:  

Create any number of JRun instances..  1 

2 

3 

4 

5 

6 

� 

1 

Start all servers in the cluster.  

Create a cluster and add the servers to the cluster. 

Restart all servers in the cluster. 

Run the Web Server Configuration tool to connect your web server to the cluster.  

Deploy your application across the cluster by adding it to a deployable directory. 

To build and deploy an application to a cluster: 

To create JRun instances, open the JMC, click Create New Server, and follow the instructions 
in the wizard: 

 

May 2002 Page 3 



JRun 4 Groundbreaking Clustering Architecture 
Clustering architecture 

 

To manage remote servers from the JMC, start a server on the remote computer and register 
the server in the JMC.  

  

To register the remote server, you only need the remote servers Host Name, JRun Server 
Name, and JNDI Port. 

After you register a remote server, you can add/remove, start/stop/restart, and administer the 
setting for all servers from one JMC.  

 

2 Before creating the cluster, start all servers that you created. 

Page 4 May 2002 



JRun 4 Groundbreaking Clustering Architecture 
Clustering architecture 

To create the cluster, in the JMC, click Create New Cluster and add the appropriate servers to 
the cluster. 

3 

Enter a name for the cluster, and choose the servers that will be a part of the cluster. 

 

 

4 

5 

a 

b 

c 

d 

e 

f 

In the JMC, restart all servers in the cluster 

To connect your web server to the cluster, run the Web Server Configuration tool. 

You can also use the command-line tool. For more information, see the “JRun 4 
Administrator’s Guide 

All servers in the cluster must be running so the installer can modify the applicationropriate 
xml configuration files. 

If you have JRun servers on multiple computers, do not choose the default JRun host or 
localhost; instead use the host name of one of the servers in the cluster. 

Select the cluster name from the JRun Server drop-down list. 

Choose the applicationropriate web server. 

Choose the site or configuration directory. 

Click OK. 
The installer makes all configuration changes and restarts the web server. 

May 2002 Page 5 



JRun 4 Groundbreaking Clustering Architecture 
Clustering architecture 

 

 

Deploy your application across the cluster. 6 

There are two types of deployments that you can use in a cluster: cluster and local 
deployments: 

• Cluster deployments. A cluster deployment lets you place an EAR or WAR file into the 
cluster deploy directory {servername}/SERVER-INF/cluster of any one servers in the 
cluster. This deploys the application across the entire cluster. When using cluster 
deployments, you must turn off local hot deploy for each server in the cluster. To disable hot 
deploy, in the JMC, click the + next to the ClusterName; a list of all servers in the cluster 
appears. Click one of the servers in the cluster. In the right frame, select Settings > 
Deployment Settings , clear the Use Hot Deploy check box, and click Submit. You must 
follow this procedure for each server in the cluster. 

• Local deployment. Cluster deployment is the preferred method of deploying an application 
to a cluster. Local deployment can be used if there are issues with cluster deployment or in a 
large cluster where multiple buddy groups are formed for session replication. Using local 
deploy an application is placed in the {servername}/ directory of every server in the cluster.  
For example if you had a cluster with three servers (server1, server2, server3) with an 
application myapp.war you would need to copy the myapp.war file into the following 
locations: 
{jrun.rootdir}/servers/server1/myapp.war 
{jrun.rootdir}/servers/server2/myapp.war 
{jrun.rootdir}/servers/server3/myapp.war 

Implementing session failover 

JRun 4.0 provides in-memory replication of session data to provide failover functionality for JSPs 
and servlets. In a clustered environment you may want session information to be immediately 
available to other servers in the cluster. This section describes the steps in configuring session 
replication. Session replication should only be used in cases where it is absolutely necessary for 
sessions to be available across the cluster. The overhead from session replication between 
instances of JRun can cause an overall decrease in performance.  

Page 6 May 2002 



JRun 4 Groundbreaking Clustering Architecture 
Clustering architecture 

Session replication is configured manually by modifying the jrun-web.xml or through the JMC. 
The jrun-web.xml is an XML based JRun configuration file that exists within a web applications 
WEB-INF directory. In most cases you will create this file and place it in your application to take 
advantage of JRun specific features. For an example of the jrun-web.xml file see {jrun4-
root}/servers/default/default-ear/default-war/WEB-INF/jrun-web.xml 

For web applications JRun replicates session data to one or more servers in the cluster (the buddy 
server). If the JRun server shuts down or the JVM unexpectedly fails, the web server connector 
automatically routes requests to a buddy server. To use session replication for a web application, 
update the session-config element in jrun-web.xml file for all web applications that use in-memory 
session management. You can replicate to all servers in the cluster, or create groups of servers to 
replicate to. If you have a small number of servers (two to four), you can choose to replicate to all 
servers. For more than four servers, build groups of servers to replicate. The web server connector 
detects which servers in each group to failover to. 

You have two options when modifying the jrun-web.xml file: you can use the wildcard asterisk 
(*), or specify each server in the cluster. Both options replicate all session information across the 
entire cluster. 

jrun-web.xml  
<jrun-web-app> 
 <session-config> 
 <replication-config> 
 <active>true</active> 
  <buddy-name>*</buddy-name> 
 </replication-config> 
 </session-config> 
 </jrun-web-app> 

 
 
<jrun-web-app> 
 <session-config> 
 <replication-config> 
 <active>true</active> 
  <buddy-name>JRun1</buddy-name> 
  <buddy-name>JRun2</buddy-name> 
  <buddy-name>JRun3</buddy-name> 
  <buddy-name>JRunX</buddy-name> 
 </replication-config> 
 </session-config> 
 </jrun-web-app> 

In a cluster containing more than four servers multiple buddy groups should be constructed. This 
will reduce the amount of overhead caused by replicating between buddy servers. In the following 
example there are six servers in a cluster (server1,server2, server3, server4, server5, and server6). 
Session replication is broken down into two buddy groups (server1, server2, server3) and (server4, 
server5, server6). The servers in each group replicate between each other. This is accomplished by 
deploying the application locally to each server in the cluster, followed by adding replication 
buddies through the JMC for each server.  

The JRun Management Console (JMC) provides access to modify the list of buddy servers for an 
application. To modify the buddy names through the JMC click on the + next to the cluster name 
then click on one of the servers in the cluster. In the right frame click on J2EE components, this 
will show a list of all applications that are deployed. Click on the application name or war file. The 
JMC will present the details of the application, similar to the following illustration: 

May 2002 Page 7 



JRun 4 Groundbreaking Clustering Architecture 
Clustering architecture 

 

Within the JMC modify the buddy name list, remember to modify the buddy list for each server in 
a replication group. For example if this were server1 you would need to add server2 and server3 to 
the buddy group. Then modify the buddy list for all other servers according to the following table: 

Server Buddy Server 

server1 server2 server3 

server2 server1 server3 

server3 server1 server2 

server4 server5 server6 

server5 server4 server6 

server6 server5 server6 

Application considerations:  

Session data must be serializable 

In order to support in-memory replication for HTTP session states, all servlet and JSP session data 
must be serializable. If the servlet or JSP uses a combination of serializable and non-serializable 
objects, JRun Server does not replicate the session state of the non-serializable objects. 

Page 8 May 2002 



JRun 4 Groundbreaking Clustering Architecture 
Clustering architecture 

Use setAttribute() to change session state 

Session replication occurs only at the end of a request when setAttribute or 
removeAttribute is called on the current session. You must be aware of this change when you 
make a change to an existing attribute; for example:  

Collection c = (Collection)session.getAttribute("my.collection"); 
c.add("new collection value"); 

This would not be replicated. You must also call the folllowing method: 
session.setAttribute("my.collection", c); 

Or ensure that setAttribute is called on a different object. It does not have to be on the Object 
that you changed. 

Consider serialization overhead for session objects 

Serializing session data introduces some overhead for replicating the session state. The overhead 
increases as the size of serialized objects grows. If you plan to create very large objects in the 
session, first test the performance of your application to ensure that performance is acceptable. 

Object clustering: EJB and JMS 

Object clustering: 

Jini-based object clustering enables load-balancing and automatic failover for server objects, such 
as Enterprise JavaBeans (EJBs), JNDI trees, or other services. The object’s state (for example, the 
state of a stateful EJB) is automatically replicated in an optimized manner which provides the 
highest level of reliability while maintaining performance. 

The JRun clustering architecture is controlled by the cluster manager, which runs on each JRun 
server for which you enabled clustering. At server startup time, clusterable services use the Jini 
lookup service to register with each cluster manager. in the cluster. This enables each cluster 
manager to discover all clusterable services in the cluster and also enables each clusterable service 
to discover its peers in the cluster.  

JRun provides the following clusterable services: 

Service Description 

JNDI Context 
Manager 

When a client requests a clusterable object through a JNDI lookup, JRun 
returns a context manager that recognizes all servers in the cluster. 

RMI Broker The RMI transport implementation for all remote access in JRun. 

Session 
Replication 

When using session replication for web application, the session replication 
service uses clustering to synchronize state with a buddy server in the cluster. 

Object clustering with EJBs: 

When a client looks up an EJB through JNDI, JRun returns a context manager that knows about 
all servers in the cluster. This means that these resources are consistently available through the 
failover that is automatically in effect for clustered JRun servers. It also means that JRun 
automatically balances load across the cluster using different load-balancing algorithms, as 
follows: 

Stateless session beans: Sticky round-robin � 

May 2002 Page 9 



JRun 4 Groundbreaking Clustering Architecture 
Sample configurations 

Stateful session bean home: Sticky round-robin � 

� 

� 

� 

Stateful session bean EJBObject: Buddy algorithm 

Entity bean homes: Sticky round-robin 

Entity bean EJBObject: Clustering is not supported for entity bean EJBObjects 

If a JRun server goes offline during a call to an EJB method, the client stub automatically reroutes 
the request to another server in the cluster. In addition, object clustering provides replication for 
stateful session beans by automatically passivating state to the buddy server in the cluster. 

JMS in a clustered environment: 

JRun provides load-balancing for JMS queues and topics for JMS in a cluster. Message-driven 
beans are clustered but share the same JMS backend. Macromedia recommends a third-party JMS 
solution for fully clustered failover capable JMS solution. For details on supported third-party 
solutions, see the JRun 4 release notes. 

Sample configurations 
This section includes three sample configurations of web servers and JRun servers, and describes 
how to configure the clusters. 

Configuration 1: One web server -> three instances of JRun (with session failover) 

This configuration provides load balancing and failover on the application server using the 
connector clustering. It provides session failover in the case of a JRun instance failure, but does 
not provide failover if the web server fails.  

 

This configuration is the least complicated clustered configuration that you can have with JRun. It 
provides load balancing and failover at the application server level and allows you to scale by 
adding application servers. If you are looking for failover at the web server refer to configuration 
3. You can use this configuration with or without session-based failover. To configure session 
failover modify, the jrun-web.xml file in your web application.  

To configure one web server and multiple instances of JRun servers:  

 In the JMC, create two to four JRun servers. 1 

Page 10 May 2002 



JRun 4 Groundbreaking Clustering Architecture 
Sample configurations 

2 

3 

4 

5 

Note: 

 In the JMC, create a cluster. 

 Run the Web Server Configuration tool to connect the web server to the cluster. 

 Add or modify the jrun-web.xml file in your webapplication. 

 Deploy the application across the cluster by adding the WAR or EAR file in  
  {jrun-root}/servers/JrunA/SERVER-INF/cluster/ . 

Remember to disable hot deploy for each individual server in the cluster. 

You have two options when modifying the jrun-web.xml: you can use the wildcard asterisk (*),or 
specify each server in the cluster. Both options replicate all session information across the entire 
cluster. 

jrun-web.xml  
 
<jrun-web-app> 
 <session-config> 
 <replication-config> 
 <active>true</active> 
  <buddy-name>*</buddy-name> 
 </replication-config> 
 </session-config> 
 </jrun-web-app> 
 

 
 
<jrun-web-app> 
 <session-config> 
 <replication-config> 
 <active>true</active> 
  <buddy-name>JRunA</buddy-name> 
  <buddy-name> JRunB </buddy-name> 
  <buddy-name> JRunC </buddy-name> 
 </replication-config> 
 </session-config> 

 </jrun-web-app> 

Configuration 2: Round-robin DNS -> two web servers -> four instances of JRun 

This configuration provides load-balancing and failover on the application server using the 
connector clustering. It also provides load-balancing on the web server using round-robin DNS . It 
does not provide failover on the web server. 

 

 
This configuration allows you to scale by adding multiple web servers and JRun servers, The 
downside to this configuration is that it does not provide failover at the webserver if you are 
looking for a solution that provides failover see configuration 3. 

May 2002 Page 11 



JRun 4 Groundbreaking Clustering Architecture 
Sample configurations 

To configure two web servers and multiple JRun server with round-robin DNS: 

1 

2 

3 

4 

5 

Note: 

In the JMC, create two to four JRun servers. 

Create a cluster through the JMC 

Run the Web Server Configuration tool on each web server in the cluster. 

Add or modify the jrun-web.xml file in your web application. 

Deploy the application across the cluster by adding the WAR or .EAR file in  
{jrun-root}/servers/JrunA/SERVER-INF/cluster/  

Remember to disable hot deploy for each individual server in the cluster 

You have two options when modifying the jrun-web.xml file: you can use the wildcard asterisk 
(*), or specify each server in the cluster. Both options replicate all session information across the 
entire cluster. 

jrun-web.xml  
 
<jrun-web-app> 
 <session-config> 
 <replication-config> 
 <active>true</active> 
  <buddy-name>*</buddy-name> 
 </replication-config> 
 </session-config> 
 </jrun-web-app> 
 

 
<jrun-web-app> 
 <session-config> 
 <replication-config> 
 <active>true</active> 
  <buddy-name>JRunA</buddy-name> 
  <buddy-name> JRunB</buddy-name> 
  <buddy-name> JRunC</buddy-name> 
  <buddy-name> JRunD</buddy-name> 
 </replication-config> 
 </session-config> 
 </jrun-web-app> 

Configuration 3: ClusterCATS -> two web servers -> four or more instances of JRun 

This configuration provides load-balancing and failover on the web server and application server. 
Load-balancing on the web server uses round-robin DNS. Macromedia ClusterCATS, available 
with JRun 4.0 as a separate download, provides failover capabilities. Load-balancing and failover 
on the application server uses connector clustering in JRun.  

 

 

 

Page 12 May 2002 



JRun 4 Groundbreaking Clustering Architecture 
Sample configurations 

To configure two web servers and multiple JRun servers with ClusterCATS: 

1 

2 

3 

4 

5 

Note: 

6 

In the JMC, create two to four JRun servers . 

In the JMC, create a cluster . 

Run the Web Server Configuration tool on each web server in the cluster. 

Add or modify the jrun-web.xml file in your webapplication 

Deploy the applicationlication across the cluster by adding the WAR or EAR file in  
{jrun-root}/servers/JrunA/SERVER-INF/cluster/ or use local deploy. 

Remember to disable hot deploy for each individual server in the cluster. 

Configure ClusterCATS. 

You have two options when modifying the jrun-web.xml file: you can use the wildcard asterisk 
(*), or specify each server in the cluster. Both options replicate all session information across the 
entire cluster.  
jrun-web.xml  
 
<jrun-web-app> 
 <session-config> 
 <replication-config> 
 <active>true</active> 
  <buddy-name>*</buddy-name> 
 </replication-config> 
 </session-config> 
 </jrun-web-app> 
 

 
 
<jrun-web-app> 
 <session-config> 
 <replication-config> 
 <active>true</active> 
  <buddy-name>JRunA</buddy-name> 
  <buddy-name> JRunB</buddy-name> 
  <buddy-name> JRunC</buddy-name> 
  <buddy-name> JRunD</buddy-name> 
 </replication-config> 
 </session-config> 
 </jrun-web-app> 

Securing a cluster 
High availability is not the only concern with a large-scale application. Security is also high on the 
list of priorities for such an application. There are several methods that you can use to secure your 
JRun cluster, as the following sections describe. 

Set up host-based authentication 

JRun provides a basic mechanism to secure the communication between the JRun server and 
external web servers. After you create a connection between a computer running JRun and another 
computer running a web server, ensure that unauthorized users cannot access the JRun server from 
elsewhere on the network. To do this, JRun provides host-based authentication for the JRun 
connector, so only hosts from a defined set of addresses can send requests to the JRun server. For 
information on setting this up, see the section “Host-based authentication for connectors” in “JRun 
Administrator’s Guide”. 

Secure Sockets Layer  

JRun lets you use Secure Sockets Layer (SSL) for communication between the connector and the 
JRun server. Typically, this is not necessary, because the web server is behind a firewall in most 
production configurations. However, for maximum security, you can use SSL with the web server 
connector. For information on setting up this security, see the section “Using SSL with the web 
server connector” in “JRun Administrator’s Guide”. 

May 2002 Page 13 



JRun 4 Groundbreaking Clustering Architecture 
Sample configurations 

Configuring JNDI Access  

JRun 4 provides a security.properties file that limits access to the JRun server by limiting access to 
JNDI. You must specify the subnet mask or the host nameand IP address of each server in the 
cluster.  

You can control JRun JNDI access at the global or server level. You can limit JNDI access to 
specific hosts and subnet masks, depending on the level of security and flexibility that you require. 
The JRun installation includes a jrun_root/ lib/security.properties file that contains two properties, 
jrun.subnet.restriction and jrun.trusted.hosts, which control the level of access to JNDI resources 
for all servers in a JRun installation based on the specified subnet mask and hosts, respectively. 
You can override this global security.properties file for a specific server by creating a 
security.properties file in that server's jrun_root/servers/jrun_server/SERVER-INF directory. 
JRun never combines property values from global and server-specific security.properties files; 
when a server-specific file exists, JRun always reads properties from that file rather than the global 
file. 

By default, the jrun.subnet.restriction property is set to the value 255.255.255.0, which limits 
JNDI access to the 255.255.255.0 subnet. Because no default value is set for the jrun.trusted.hosts 
property, it is ignored. You can use jrun.trusted.hosts on its own or in combination with 
jrun.subnet.restriction to allow JNDI access to a comma-separated list of IP addresses 
(recommended) or host names. If you are not concerned about security in a development 
environment, you can allow access from all subnets and hosts by specifying an asterisk (*) as the 
value of jrun.subnet.restriction or jrun.trusted.hosts. Do not use an asterisk in a production 
environment.  

When working with clusters, the security.properties file must specify either the submask or IP 
address and host name of each server in the cluster.  

If there is no security.properties file in either the jrun_root/lib directory or the 
jrun_root/servers/jrun_server/SERVER-INF directory, the JRun server will not start. When an 
invalid subnet mask is specified, JRun uses the default value of 255.255.255.0. A Security Alert 
message is printed to the JRun server event log every time a JNDI access request is rejected.  

Any change to the jrun_root//lib/security.properties file is not reflected in the servers that use that 
file until you restart the servers. For the latest information on using of security.properties file, see 
the JRun 4 release notes. 

Resources, services and server settings 

JDBC data sources, security stores and JVM server settings need to be configured individually on 
each server in the cluster. For example if an application uses a JDBC data source, the data source 
will need to be configured individually for each server in the cluster. Nearly every configuration 
needed can be made through the JMC. The same rule applies to security stores and JVM specific 
settings such as heap size, classpath, and JNI library paths. 

Also all JRun servers in a cluster are expected to have the same security store.ie: If the user uses 
the default security store which is jrun-users.xml, then the same jrun-users.xml should be present 
in all the nodes or the nodes should all point ot the same jrun-users.xml. This can be modified by 
changing the securityStore attribute of JRunUserManagerService in jrun.xml. In addition, if a user 
is authenticated to one node, this authentication is automatically propagated to other nodes, so that 
in the event of a fail over, no additional authentication is necessary. 

The introduction of clustering in JRun 4 offers an easy to implement, scalable solution that 
provides load balancing and failover for a much lower cost than many other application servers on 
the market.  

Page 14 May 2002 



JRun 4 Groundbreaking Clustering Architecture 
Sample configurations 

May 2002 Page 15 

To download JRun 4 visit the Macromedia JRun download center. For more information 
on clustering see the JRun Administrator’s Guide or the Macromedia JRun Support Center. 

http://www.macromedia.com/software/jrun/
http://www.macromedia.com/support/jrun/

	Clustering architecture
	Levels of clustering
	Web server clustering
	Connector clustering
	Object clustering

	Building and deploying an application to a cluster
	Implementing session failover
	Application considerations:
	Session data must be serializable
	Use setAttribute() to change session state
	Consider serialization overhead for session objects

	Object clustering: EJB and JMS
	Object clustering:
	Object clustering with EJBs:
	JMS in a clustered environment:



	Sample configurations
	Securing a cluster
	Set up host-based authentication
	Secure Sockets Layer
	Configuring JNDI Access
	Resources, services and server settings


