
Verity® K2 Toolkit
Search System
Administration Guide V2.2

July 20, 2000
Verity, Incorporated
894 Ross Drive
Sunnyvale, California 94089
(408) 541-1500
Part Number DM0451

Copyright 2000 Verity, Inc. All rights reserved. No part of this publication may be
reproduced, transmitted, stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written permission of the copyright owner,
Verity, Inc., 894 Ross Drive, Sunnyvale, California 94089. The copyrighted software that
accompanies this manual is licensed to the End User for use only in strict accordance with
the End User License Agreement, which the Licensee should read carefully before
commencing use of the software.

Verity, KeyView, the Verity search button, and the running man logos are trademarks of
Verity, Inc. in the USA and numerous other countries.

Sun, Sun Microsystems, the Sun logo, Sun Workstation, Sun Operating Environment, and
Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.

UNIX is a trademark of UNIX Systems Laboratories.

Macintosh is a registered trademark of Apple Computer, Inc.

Microsoft is a registered trademark, and MS-DOS, Windows, Windows 95, Windows NT,
and other Microsoft products referenced herein are trademarks of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

InfoSoft is a registered trademark of InfoSoft International, Inc.

Deluxe English US Electronic Thesaurus 1994 by InfoSoft International, Inc. Adapted from
the Oxford Thesaurus 1991 by Oxford University Press and from Roget’s II: The New
World Thesaurus 1980 by InfoSoft International, Inc. All rights reserved. Reproduction or
disassembly of embodied programs and databases prohibited.

LinguistX from Inxight Software, Inc., a Xerox New Enterprise Company, 1996-1997.
Xerox, Inxight and LinguistX are trademarks of Xerox Corporation and Inxight
Software, Inc. LinguistX contains patented technology of Xerox Corporation. All rights
reserved.

All other trademarks are the property of their respective owners.

Notice to Government End Users

If this product is acquired under the terms of a DoD contract: Use, duplication, or disclosure
by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of 252.227-
7013. Civilian agency contract: Use, reproduction or disclosure is subject to 52.227-19 (a)
through (d) and restrictions set forth in the accompanying end user agreement.
Unpublished-rights reserved under the copyright laws of the United States. Verity, Inc., 894
Ross Drive Sunnyvale, California 94089.

Part number DM0451

Table of Contents

Preface
Content Summary... viii
Conventions Used... x

Chapter 1 K2 Search System
K2 Search System Overview... 1-2
Advanced Search and Retrieval... 1-3

Verity Document Filters... 1-4
Verity Locales .. 1-4

Scalability .. 1-5
Simple Design with Single K2 Server .. 1-5
Advanced Design with K2 Broker and Multiple K2 Servers.. 1-5

Load Balancing ... 1-7
Intelligent Routing of Search Requests.. 1-7
Parallel Data Architecture ... 1-8

Flexible System Design ... 1-10
Redundancy... 1-10
Ping Communications.. 1-10
Multiple Language Search... 1-10
Verity Topics.. 1-11

Operation and Administration .. 1-13
K2 Broker and K2 Server Administration ... 1-13
Self-Monitoring Features ... 1-13

Server Status..1-13
Collection Status ...1-14

Remote Administration ... 1-14

Chapter 2 K2 System Configuration
K2 Configuration Overview ... 2-2
Document and Collection Management... 2-5

K2 Collection State.. 2-5
K2 Document Key... 2-5

Using Collections with K2 Server.. 2-6
Load Balancing.. 2-6
Distributing Collections... 2-6

Table of Contents
Chapter 3 Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Server .. 3-2

k2server Command-line Tool ... 3-2
k2server.ini Configuration File ... 3-3

Server Section ..3-3
Server Administration Keywords ..3-3
Search Thread Keywords ..3-5
Collection Sections..3-6

Setting Up a K2 Broker.. 3-9
k2broker Command-line Tool... 3-9
k2broker.ini Configuration File .. 3-11

Broker Section ...3-11
Node Section ...3-13

Sorting Results at the Collection Level ... 3-14
Result Caching.. 3-15
Using rck2 as a Search Client ... 3-16

rck2 Syntax... 3-16
rck2 Command Options... 3-16

Chapter 4 Collections and Search Performance
How Collections Work.. 4-2

Collection Partitions ... 4-2
Attributes and Fields .. 4-3
The Word Index .. 4-4
Using mkvdk ... 4-7

Using the merge Utility... 4-9
Merging Collections ... 4-9
Splitting Collections ... 4-9

Using the Incremental Squeeze Feature ... 4-11

Chapter 5 Verity KeyView Filters
Key Features ... 5-2
Supported Formats .. 5-3

KeyView Filters—Limitations... 5-5
New Features and Enhancements ... 5-6

Headers and Footers ..5-6

Chapter 6 XML Support
Requirements for Data Files ... 6-2
Implementation Summary.. 6-3

XML Filter..6-3
Style Files ...6-3

Style File Configuration .. 6-4
K2 Toolkit Search System Administration V2.2 iv

Table of Contents
style.uni File... 6-4
style.xml File.. 6-4

style.ufl File ...6-6
style.dft File ...6-6

Indexing XML Documents.. 6-7
Indexing using mkvdk... 6-7
Searching using rcvdk.. 6-7

Chapter 7 Verity Locales
Verity Locales and their Components .. 7-2

Predefined Locales.. 7-2
Custom Locales ... 7-2

Tokenization for Locales other than English..7-2
Locales from Verity Partners... 7-2

About Verity Locales ... 7-3
Verity Locales Using LinguistX .. 7-4

Upgrading from IntelliScope to LinguistX Locales ...7-4
Using the THESAURUS Operator.. 7-5

Installing Predefined Locales ... 7-6
Localized Query Language... 7-8

Using English Query Language for Locales other than English.. 7-10

Appendix A Reference for mkvdk
Overview.. A-2

Default Behavior .. A-2
Document Path Names in Collections .. A-2
Basic Syntax .. A-3

Basic Operations.. A-4
Optimization, Modes, and Service Options .. A-7
Advanced Features ... A-11

Appendix B Using Verity Topics
Using mktopics to Create Virtual Collections .. B-2
mktopics Syntax Reference.. B-3
Topic Set Limits... B-5

Appendix C Date Formats
Export Date Format .. 8
Import Date Format .. 10
K2 Toolkit Search System Administration V2.2 v

Table of Contents

vi K2 Toolkit Search System Administration V2.2

Preface

The K2 Toolkit Search System Administration Guide is designed to help you configure,
maintain, and use the K2 Toolkit to build a K2 advanced search system for your
enterprise. To make the best use of this document, you should be familiar with Verity
collection building and search technology. The following Verity documentation provides
additional background information:

• Verity Collection Building Guide

• Verity Query Language Reference Guide

In addition, Verity maintains a Web site providing current information about Verity
products and technology, which you can reach with the following URL:

http://www.verity.com/

Content Summary
Content Summary

The following summary describes the contents of each chapter in this manual.

Chapter 1: K2 Search System

This chapter introduces the features of the K2 Toolkit and how to use the toolkit to
develop an enterprise-scale K2 search system. The K2 Toolkit combines enterprise-level
performance and scalability with Verity’s market leading knowledge retrieval features.
Using the K2 Toolkit, you can design a scalable solution that meets your current needs
and can grow easily in the future.

Chapter 2: K2 System Configuration

This chapter describes K2 search system configuration and configuration options. Several
configuration parameters can be set to control the operation of the K2 server and how it
accesses Verity collections (or document indexes).

Chapter 3: Setting Up K2 Servers and K2 Brokers

This chapter describes how to set up, configure, and start K2 Servers and K2 Brokers. A
k2server.ini file is used to configure the K2 Server. A k2broker.ini file is used to configure
the K2 Broker. These configuration files and startup tools are covered.

Chapter 4: Collections and Search Performance

This chapter provides an overview to Verity collections and the indexing process.
Additionally, information about optimizing collection configuration for the best possible
search performance is given.

Chapter 5: Verity KeyView Filters

This chapter describes the features of the KeyView document filters included with K2
Toolkit V2.0. These filter support indexing and viewing documents stored in numerous
popular desktop publishing, graphics presentation formats.

Chapter 6: XML Support

This chapter describes support for XML and how to use the XML filter to index
documents.

Chapter 7: Verity Locales

This chapter describes the numerous predefined Verity locales which you can use to
localize your K2 search system.
viii K2 Toolkit Search System Administration V2.2

Content Summary
Appendix A: Reference for mkvdk

This appendix describes the mkvdk utility, a standard Verity indexing tool. Using the
command-line mkvdk tool, you can create Verity collections which are required
components of your K2 search system. Command-line syntax and examples are included.

Appendix B: Using Verity Topics

This appendix discusses how to define Verity topics in a topic outline file, and then build
a topic set for those topics using the mktopics utility. This information is covered in
detail in the Verity Collection Building Guide.

Appendix C: Date Formats

This appendix describes input and output date formats used in K2 Toolkit.
K2 Toolkit Search System Administration V2.2 ix

Conventions Used
Conventions Used

Convention Usage

Courier type Used to describe API constructs in structure member descriptions
and code examples

Courier oblique type Used for user-replaceable constructs

Courier bold Used to denote API data type names in structure member
descriptions and for command-line application names.

Palatino Used in narrative text

italics Used at the first introduction of a new term, and for book titles
x K2 Toolkit Search System Administration V2.2

1
K2 Search System

This chapter introduces the features of the K2 Toolkit and how to use the toolkit to
develop a robust K2 search system. These topics are covered:

• K2 Search System Overview

• Advanced Search and Retrieval

• Scalability

• Load Balancing

• Flexible System Design

• Operation and Administration

K2 Search System
K2 Search System Overview
K2 Search System Overview

The Verity K2 Toolkit, designed for application developers, combines the market leading
knowledge retrieval features of the Verity Developer’s Kit with scalability and
enterprise-level performance. Using the K2 Toolkit, organizations can build fault tolerant
applications that allow thousands of users to search and navigate hundreds of millions of
unstructured documents in electronic form, with nearly instantaneous results.

The K2 Server is a multi-threaded C application built around the Verity search engine,
providing access to Verity collections and tracking any changes made by indexing
applications.

The K2 search system is designed to take advantage of the latest advances in hardware
and software technology and provides the following features:

• Multi-threaded architecture

• Support for Verity knowledge retrieval features, including topics

• Continuous operation support

• Incremental squeeze

• Highly scalable
1-2 K2 Toolkit Search System Administration V2.2

K2 Search System
Advanced Search and Retrieval
Advanced Search and Retrieval

The K2 Toolkit offers a high-performance search engine designed to process searches
quickly in a high performance, distributed system. As shown in the illustration below, a
K2 search system built using the K2 Toolkit has a client/server model. K2 client
applications, built using the K2 Toolkit API, provide users access to document indexes
stored in Verity collections.

K2 client application

K2 Server

Response

Search query

Collections
Verity

Search
results

mkvdk and other
indexing applications

Source documents

Newsfeeds Database Lotus NotesHTML, SGMLWYSIWYG
SMTP, NNTP

PDF
records
K2 Toolkit Search System Administration V2.2 1-3

K2 Search System
Advanced Search and Retrieval
Verity collections provide full-text indexes for information resources on an enterprise-
wide basis, including Internet formats, newsfeeds, PDF, SQL databases, Lotus Notes, and
WYSIWYG documents, such as MS Word, Adobe FrameMaker, and MS Excel.

Verity Document Filters

Verity KeyView Filters V6.5 are packaged with Verity K2 Toolkit V2.2. The KeyView
filters support indexing and viewing documents stored in many popular desktop
publishing, word processing, and presentation formats. For information about the
KeyView filters, see Chapter 5, “Verity KeyView Filters.”

This release includes a new Verity-supplied filter for XML. For complete information,
refer to Chapter 6, “XML Support.”

Verity filters for ASCII, HTML, and PDF formats are included with K2 Toolkit as well. For
complete information about these filters and their default configuration, refer to the
Verity Collection Building Guide.

Verity Locales

Verity provides many predefined locales that you can use right away. Locales have
several components including a linguistics package (stemmer, tokenizer, natural
language processing capabilities). The linguistics package is based on technology from
Inxight LinguistX.

Verity packages support for each language (or region) as a separate locale. A Verity locale
includes all the components specific to the language, such as a character set mapping,
date formats, a message database, a linguistics package (stemmer, tokenizer, natural
language processing capabilities).

For information about Verity locales, refer to Chapter 7, “Verity Locales.”
1-4 K2 Toolkit Search System Administration V2.2

K2 Search System
Scalability
Scalability

As the number of users grows and the quantity of data increases, K2 systems can keep
pace by adding new servers and/or processors. A K2 search system designed today can
be expanded gracefully in the future to accommodate more users, documents, or queries
with no degradation in performance.

Scalability is supported by the K2 multi-tier parallel computing architecture which takes
advantage of advanced symmetric multiprocessing (SMP) and exploits the multi-
threading and concurrency features of today’s leading SMP hardware and software
platforms. The multi-tier architecture includes configurable components, including the
K2 Server, K2 Broker, and K2 client application (built using the K2 Toolkit API).

Simple Design with Single K2 Server

In a simple K2 system, client requests are passed to a single, multi-threaded K2 Server.

Advanced Design with K2 Broker and Multiple K2 Servers

In an advanced K2 system, one or more K2 brokers consolidate client requests and pass
them on to multiple servers, which use the K2 multi-threaded, multiprocessing
architecture to concurrently search over numerous collections, providing efficient access

K2 clients

K2 Server

C3C2C1
Verity

Collections

TCP connection

K2 Features
� Multi-threaded

� Parallel Search

� Split Indexes

� Multiple CPUs

� Real-time
Collection Control
K2 Toolkit Search System Administration V2.2 1-5

K2 Search System
Scalability
to millions of documents. As shown in the following illustration, the K2 Broker acts as an
intermediary between the K2 Server and K2 clients, allowing a client request to be
distributed to the next available server.

TCP connections are used to connect the K2 Broker with clients and servers, allowing the
K2 Broker to run on the same machine with a client or server or to run on a dedicated
system. The K2 Broker supports the growth and extension of an information retrieval
system in a virtually unlimited manner and provides the redundancy required to avoid a
single point of failure.

K2 clients

K2 Broker

K2 Server

K2 Server

K2 Server

Collections
Verity

TCP connections

Collections

Verity

Collections

Verity

Additional

� Cross Platform

� Load Balancing

� Fault Tolerance

� Auto Server
Recognition

� Multiple
Language Search

K2 Features

Additional

� Cross Platform

� Load Balancing

� Fault Tolerance

� Auto Server
Recognition

� Multiple
Language Search

K2 Features
1-6 K2 Toolkit Search System Administration V2.2

K2 Search System
Load Balancing
Load Balancing

The K2 search system implements concurrent load balancing to spread the processing
load across multiple servers. These K2 Toolkit features support efficient load balancing to
ensure quick response times and system stability:

• Intelligent Routing of Search Requests

• Parallel Data Architecture

Intelligent Routing of Search Requests

Depending on the server availability, the K2 Broker determines whether to distribute a
single search request to one or more servers. If a search request consists of a query with
two or more target collections, the K2 Broker can send the search to one or more servers.
Given the K2 search system configuration shown below, if the search request is query1
with the target collections 1 and 4, the K2Broker can divide the search request into two
parts: query 1 to Server 1 (S1) for Collection 1 (C1) and query1 to Server 2 (S2) for
Collection 4 (C4).

Given the search request as query1 with the target collections C1 and C4, the K2 Broker
can process the request in two different ways:

K2 Broker

S1

S1 = Collection 1= Server 1 C1

C2C1

 K2DocKey=VdkVgwKey@collection

S2

C1C3 C4

query1 = "filters"
collection = C1, C4

K2 Client

K2 Servers

Verity
Collections
K2 Toolkit Search System Administration V2.2 1-7

K2 Search System
Load Balancing
• Send the whole search request to Server 2 (S2)

• Split the search request and send query1 for Collection 1 (C1) and query1 for
Collection 4 (C4) at Server 2 (S2)

The K2 Broker always distributes a search request in the most efficient way based on its
monitoring of server load. The number of distribution options is dependent upon how
you distribute your collections across servers.

Parallel Data Architecture

K2 servers and brokers can be used in a multi-tiered, brokered system, which can allow
fast, distributed search response for a practically unlimited number of search requests
from end users. The figure below shows a K2 search system that has three brokers, nine
servers, and 18 collections.

This multi-tiered approach allows search requests to be distributed to as many servers as
necessary to maintain optimum user response time. It also allows you to create
redundant processing paths to ensure uninterrupted service, even in the event of
hardware or software failure of a particular server or broker.

In the illustrated system, every collection is available to any client connected to Broker 1
and 2. The system configuration allows clients connected to Broker 3 to search collections
managed by six of the nine servers. Each document in the system is identified by a
unique external key, which in the illustration consists of the document path name plus an
identifier for the collection, server, and broker used to find the document.

Broker1 Broker2 Broker3

S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 = Collection 1= Server 1 C1

C2 C4 C5 C6C3C1 C8 C10C9C7

C11 C12 C14 C16C15C13 C17 C18

VdkVgwKey=path

K2DocKey=VdkVgwKey@collection
1-8 K2 Toolkit Search System Administration V2.2

K2 Search System
Load Balancing
By default, a search request issued by a client in this system can be processed by every
server for every collection in the system, allowing fast, global searches. If the collections
are built correctly, the results of a search by a client connected to any broker in the system
will be the same. To make this possible, the collections must have a consistent structure
and should be segmented to optimize search performance.
K2 Toolkit Search System Administration V2.2 1-9

K2 Search System
Flexible System Design
Flexible System Design

The K2 development framework provides optimized C language APIs for client
development and tools for configuring the search system design and performance. The
following system design and performance features can be implemented using tools
supplied with the K2 Toolkit:

• Redundancy

• Ping Communications

• Multiple Language Search

• Verity Topics

Redundancy

The K2 Toolkit’s parallel data architecture enables the system administrator to duplicate
collections across K2 servers. Collection redundancy offers these benefits:

• Enables the K2 Broker more options for optimizing search performance

• Supports continuous search over data, even when servers are coming on-line and off-
line

Ping Communications

The new ping functionality synchronizes K2 Broker/K2 Server communication and helps
to optimize system performance. The ping functionality is optional, although
recommended.

The K2 Broker is always looking for servers. Using ping communications, K2 Server can
be configured to ping the K2 Broker on a regular basis. When implemented, the K2 Server
pings the K2 Broker until the connection is re-established. If a TPC/IP connection is
interrupted, the K2 Server pings the K2 Broker until communication is restored. The K2
Broker expects to receive ping notifications within a specified period of time. If the K2
Broker does not receive ping notifications within the specified period of time, the K2
Broker stops sending search requests to the server until the K2 Broker/K2 Server
connection is restored. The ping mechanism ensures that search requests are handled in
the most efficient way.

Multiple Language Search

The K2 Toolkit supports simultaneous multiple language search. Each K2 Server in a K2
search system can be set up to search collections of documents in a particular language,
as illustrated below. The S1 server searches English collections, the S2 server searches
French collections, and the S3 server searches German collections.
1-10 K2 Toolkit Search System Administration V2.2

K2 Search System
Flexible System Design
Verity Topics

A Verity topic is a pre-defined query which can be reused and shared among users. Verity
topics can be indexed against a collection to provide performance benefits to end users. A
K2 search system can include multiple topic sets. In the illustration below, Topic set 1 was
indexed against collections C1 and C2, and Topic set 2 was indexed against collection C3.

K2 Broker

S1

C2C1

S2

C4C3 C5

K2 Client

S3

C7C6 C8

Eng
lis

h

Eng
lis

h
Fre

nc
h

Fre
nc

h

Fre
nc

h

Ger
m

an

Ger
m

an

Ger
m

an

K2 Servers

Verity
Collections
K2 Toolkit Search System Administration V2.2 1-11

K2 Search System
Flexible System Design
For details about how to build collections and topic sets for use in a multi-tiered brokered
system, refer to Appendix B, “Using Verity Topics.”

K2 clients

K2 Server

C3C2C1
Verity

Collections

To
pic

 se
t 1

To
pic

 se
t 2

To
pic

 se
t 1
1-12 K2 Toolkit Search System Administration V2.2

K2 Search System
Operation and Administration
Operation and Administration

The K2 search system supports fault tolerant 24x7 operations. System stability remains
even if servers are unexpectedly brought off line.

Before you startup a K2 search system, you need to set up each K2 Broker and K2 Server
to be used in the system, built your K2 client application using the K2 Toolkit APIs, and
index your documents into collections. The K2 Toolkit includes a Verity command-line
indexing tool called mkvdk. For a complete description of mkvdk with syntax and
examples, see Appendix A, “Reference for mkvdk.”

Basics about the K2 search system administration and operation are covered below:

• K2 Broker and K2 Server Administration

• Self-Monitoring Features

• Remote Administration

K2 Broker and K2 Server Administration

For each K2 Server and K2 Broker, you set up a configuration file which identifies the
server or broker to the system. The configuration file for the K2 Server is called
k2server.ini, and for the K2 Broker it is called k2broker.ini. To start each K2
Server, you run a tool called k2server. To start each K2 Broker, you run a tool called
k2broker. The k2server and k2broker tools are command-line tools which take a port
number and configuration file as input.

For complete information about the configuration files (k2server.ini,
k2broker.ini) and the command-line tools (k2server, k2broker), refer to Chapter 3,
“Setting Up K2 Servers and K2 Brokers.”

The administrator can add and remove K2 brokers and servers from a K2 search system
at any time, without affecting system performance.

Self-Monitoring Features

At startup, the K2 Broker looks for all available servers and assumes all servers are alive.
As search requests are forwarded to the broker from the clients, the broker determines
which server can return results most efficiently before it forwards the search request to a
server.

Server Status

The K2 Broker can recognize when individual servers are disconnected and reconnected.
K2 Toolkit Search System Administration V2.2 1-13

K2 Search System
Operation and Administration
Collection Status

During operation, the K2 Broker maintains status information about each collection. The
collection status can be:

• On-line—The collection is on-line and available for searching.

• Off-line—The collection is off-line and is not available for searching. When a
collection is set off-line, any queries currently running complete using these resources;
subsequent queries do not see the resource.

• Hidden State—The collection is in a hidden state. Hidden collections can be added to
the system and tested, but not searched by end users.

The collection status is set for each K2 Server in the server configuration file, called
k2server.ini.

The K2 search system automatically makes real-time changes to a collection’s status
during operation. For example, if the network connection between the K2 Broker a K2
Server goes down, the K2 Broker changes the collection status to off-line until the
connection is restored. Using the K2 client API, a client application and query the status
of a collection in the system at any time.

Remote Administration

The K2 search system includes remote administration features. During operation, servers
and collections can be enabled and disabled for search remotely. Also, the entire system
configuration can be obtained remotely.

K2 Broker

S1

S1 = Collection 1= Server 1 C1

C2C1

S2

C1C3 C4

K2 Client

K2 Servers

Verity
Collections

K2 Server Info

K2 Broker Info
1-14 K2 Toolkit Search System Administration V2.2

2
K2 System Configuration

This chapter describes K2 search system configuration and configuration options. These
topics are covered:

• K2 Configuration Overview

• Document and Collection Management

• Using Collections with K2 Server

K2 System Configuration
K2 Configuration Overview
K2 Configuration Overview

As shown in the following illustration, the K2 Server dedicates one search service for
each collection.

The configuration file parameters let the server administrator control all aspects of the K2
Server’s configuration, including the path name for each collection (or collection map
file). The K2 Server architecture supports high-performance searches of very large
document sets. Parallel search services are created by defining multiple collections for a
source document set and listing each collection in the K2 Server configuration file.

All the collections appear as a single collection to users and user applications, but each
search request can be processed by multiple search services. This design takes advantage
of SMP hardware and multithreaded operating systems, allowing greater system
resources to be dedicated to a search request. Search response time can be improved by
simply adding more processors and system memory.

As shown in the following illustration, the K2 Server provides a TCP acceptor that
receives client connection requests and connects each client to a separate listener service
for each concurrent connection. The Listener receives client requests and passes the
requests to the next available search service.

Search Service 1

K2 client

Search Service 2 Search Service n

K2 Server

collection1 collection2 collectionn
2-2 K2 Toolkit Search System Administration V2.2

K2 System Configuration
K2 Configuration Overview
The number of listeners determines how many concurrent client connections the server
can support. Each search service can process one search request for each thread assigned
to it. The number of threads multiplied by the number of search services determines the
number of concurrent searches that the K2 server can perform. For example in the system
illustrated, the number of threads assigned to the two search services is one and the
number of listeners is three. You need to be sure there are enough listeners for the clients.
If all three clients were to submit requests at about the same time, then the third client
would be rejected by the K2 server.

Because one listener is required for each concurrent search request, the number of
listeners should always be equal or greater than the number of threads.

Note: an extra Listener thread must be assigned if you wish to create a concurrent K2Watch client
connection for monitoring or controlling the server.

To optimize search performance on a dedicated search server, you should allocate
enough listeners to support the largest number of concurrent client connections and
enough threads to optimize CPU utilization. If you have a much larger number of
registered users than the number of listeners you assign to support concurrent users, you
should include logic in your K2 client application that causes the client to wait for the

Search Service 1

K2 client 1

Search Service 2

Listener 1

TCP Acceptor

Thread 2Thread 1

Listener 2 Listener 3

K2 client 2

K2 client 3

K2 Server
K2 Toolkit Search System Administration V2.2 2-3

K2 System Configuration
K2 Configuration Overview
next available listener, and to time out a connection when it becomes inactive. The
default behavior of the K2 client connection (K2ConnectNew) is to remain open because
it is inefficient to repeatedly close and open a TCP connection.
2-4 K2 Toolkit Search System Administration V2.2

K2 System Configuration
Document and Collection Management
Document and Collection Management

The K2 Toolkit includes robust document and collection management features, as
described in the section below.

K2 Collection State

New to this release, the K2 system maintains information about the state of each
collection in the system. A collection can have one of these states:

• Collection off-line

• Collection in a hidden state

• Collection on-line

In the hidden state, collections can be primed and tested, but are not yet available for
searching by users. When collections are set off-line, any queries currently running
complete using these resources; subsequent queries do not see the resource.

The K2 collection state information helps the K2 search system to run efficiently. The K2
client application can request state information at any time so application users and/or
search system administrators can benefit from up-to-date information on server/broker
performance.

K2 Document Key

The K2 document key identifies a Verity document key to the K2 Broker. The K2
document key is a CSTRING data type in this format:

VdkVgwKey@collection

where VdkVgwKey represents the Verity document key assigned to the document during
indexing, collection is the collection name where the document exists.

K2 document keys are used by the K2 Server, Broker, and Client components. Document
keys are managed internally between the K2 Server and Broker. A K2 client application
needs to specify a document key when a user wants to view a hit document. To display a
document, the application supplies a K2 document key for in the
K2ReadDocNewArgRec structure that is input to the K2ReadDocNew function.

A K2 client can get a number of document read errors, including “Invalid document” and
“Invalid collection.”
K2 Toolkit Search System Administration V2.2 2-5

K2 System Configuration
Using Collections with K2 Server
Using Collections with K2 Server

You can balance the search load and optimize search performance by allocating threads
to different search services, or by distributing and segmenting your collections to
separate server machines.

Load Balancing

In the simplest case, collections are built sequentially over time, using separate sources,
as shown in the following diagram:

Each of the collections in this diagram indexes documents from a specific source, such as
a newsfeed or file system directory. In the system illustrated, global search requests are
efficiently distributed to different search services. However, because search requests
apply to the entire group of collections accessed by a K2 Server system, the attribute table
for each collection should contain a field that identifies the source of a particular
document. This allows users to issue search requests for information from a specific
source.

If users issue a large number of search requests restricted to one source, the associated
search service may become overloaded, while other search services are under utilized.
One way to handle the extra loading is by allocating extra threads to the larger and more
popular collections. If requests for a collection can no longer be handled by a single
server machine, you can divide the collections among a group of servers.

Distributing Collections

If you have collections of approximately equal size, you can simply distribute the
collections to as many server machines as you have available and use one or more
instances of the K2 Broker to balance and distribute search requests to the different

Search Service 1 Search Service 2 Search Service n

K2 Server

Coll-A Coll-B Coll-C
2-6 K2 Toolkit Search System Administration V2.2

K2 System Configuration
Using Collections with K2 Server
machines. Again, global searches will be handled efficiently, but if a disproportionate
number of search requests are restricted to a specific collection, the overall load will not
be in balance.

To balance the load under these circumstances, you can segment your collections into
equal sizes, with each collection containing indexes for documents from different
sources. The following illustration shows how this might look in a system with three K2
Server nodes and a single K2 Broker.

With this configuration, search requests for a particular source are distributed to all the
available servers and search processes. This configuration will help balance the load over
a number of machines. However, you cannot allocate more threads for search requests
over a particular source, because the sources are not segregated in separate collections. If
you want to allocate more processing resources to handling search requests over a
specific source, which is very large and/or very popular, you can segment the indexes for
this collection into dedicated collections, as shown in the following illustration:

K2 Broker

K2 Server

K2 Server

K2 Server

Coll-1

Coll-2

Coll-3

Source-A Source-B Source-C

mkvdk or other indexing application
K2 Toolkit Search System Administration V2.2 2-7

K2 System Configuration
Using Collections with K2 Server
.

In this example, the documents in Source-A are far more numerous and popular than
those in Source-B and Source-C. Accordingly, mkvdk has been used to create three
collections indexing documents from Source-A, and three collections indexing
documents from both Source-B and Source-C. Additional threads can now be allocated as
required to maintain good response time for requests restricted to documents in
Source-C.

When creating segmented collections, it is also important to distribute the index entries
for documents of different ages. This helps to further balance search requests, which tend
to focus on more newer source documents. In the illustration, the collections for Source-A
have been “striped” according to date, so that each collection contains an even balance of
index entries for older and newer source documents.

To create segmented collections, run mkvdk with a separate bulk submit file for each
group of source documents. The mkbulk utility can be used to create a bulk submit file
for a specific group of source documents.

K2 Broker

K2 Server

K2 Server

K2 Server

Source-A

Source-B Source-C

mkvdk or other indexing application
2-8 K2 Toolkit Search System Administration V2.2

3
Setting Up K2 Servers and K2 Brokers

This chapter describes how to set up, configure, and run K2 Servers and K2 Brokers.
These topics are covered:

• Setting Up a K2 Server

• Setting Up a K2 Broker

• Sorting Results at the Collection Level

• Using rck2 as a Search Client

Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Server
Setting Up a K2 Server

You start a K2 Server using a command-line tool called k2server. The k2server tool
takes as input the name of a server configuration file called k2server.ini. The section
below describes how to use the k2server tool with the k2server.ini.

k2server Command-line Tool

The K2 Server is started from the command line or from a script in the Unix environment
and is integrated as a service within the Windows NT environment. The server is
designed to run with a minimum of intervention. Most configuration parameters are set
in a configuration file, which can be given a user-assigned name (the default file name is
k2server.ini).

Command-line arguments include the name of the configuration file, the TCP port for
incoming connections and the verbosity level for informational messages. The K2 Server
has a warm restart capability, designed to keep the server’s well-known TCP port open in
case of a crash and to allow changes in the configuration file to be initialized without
killing the primary server process.

The K2 Server is started by the using the following command:

k2server [<option1> <option2> ...]

The options available for this command are summarized in the table below.

Keyword Permitted values Function

-port <value> Positive integer Identifies the TCP port number for
use by the K2 Acceptor. To run the
K2 Server as an NT service, use the
-ntservice keyword and do not
specify a port number using the
-port keyword.

-iniFile <filename> Any valid filename Identifies the filename to use as the
configuration file for this instance of
the K2 Server.

-verbose <value> 0=status
1=informational
2=verbose
3=debug

Determines the amount of
information contained in the K2
Server system messages.
3-2 K2 Toolkit Search System Administration V2.2

Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Server
k2server.ini Configuration File

The K2 Server configuration file called the K2server.ini file is composed of a series of
blocks. The first block, [Server], provides keywords that control the behavior of the entire
server. Each subsequent block, (in the form [Coll-1], [Coll-2], and so forth) controls each
collection and search service configured for the server.

Server Section

The following table describe the keywords that can be used in the [server] section of
the server configuration file. A sample configuration file (k2server.ini) is provided
with the K2 Server executable.

Server Administration Keywords

-iniEmit <filename> Any valid filename Creates a sample configuration file.

-ntService <value> 1=load as NT service
0=remove as NT service

Used to load or remove the K2
Server as an NT service. When set to
1, the server is loaded as an NT
service. When set to 0, the server is
removed as an NT service.
NOTE: To run the K2 Server as an
NT service, do not specify a port
number using the -port keyword.

Keyword Description

serverAlias= An arbitrary name used to identify the server.

numThreads= Default number of search threads to be started in the server process. If
too many threads exist, the system can run out of memory; if too few
threads exist, then searches will be blocked and forced to wait for a Verity
engine thread to become free. The value of numThreads is based on
hardware resources and system needs.

Keyword Permitted values Function
K2 Toolkit Search System Administration V2.2 3-3

Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Server
maxFiles= The maximum number of file handles that can be opened by a specific
search thread. The default value for maxFiles is dependent on the
limits of the OS used. The maxFiles value affects how file handles are
shared between the operating system and the search engine. The
maxFiles and numThreads values together can be used to tune system
performance.

These values can be set for a server:
[server]
numThreads=4
maxFiles=100
The above entries for a K2 Server cause the system to support a
maximum of 4 concurrent searches, with 100 file handles allocated for
each search thread.

The search engine determines default values per operating system. For
large or fragmented collections, it is recommended that you explicitly set
a value for maxFiles.

numListeners= Maximum number of clients that can connect to the server at one time.
The numListeners value must be equal to or greater than the sum of
all numThreads values specified by all K2 Brokers in the K2 search
system. The numThreads value is set for a K2 Broker in the
k2broker.ini file.

portNo= TCP port number for client connections. The value of portNo is the same
value assigned to portNo in the k2broker.ini file that identifies the
broker referring to this server.

broker(n)= Brokers to ping on startup. Multiple brokers may be specified. For
example:
broker(1)=machinea:9900
broker(2)=machineb:9901

maxColSize= The maximum width of the fields to return to the results list, in bytes.
Default is 2048 bytes.

Keyword Description
3-4 K2 Toolkit Search System Administration V2.2

Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Server
Search Thread Keywords

Keyword Description

vdkHome= Directory containing Verity resources.

vdkSortingFlag= A flag indicating whether the Verity engine will sort at the collection
level. Valid values are:
NO | False | 0 to not perform sorting at the collection level (default)
YES | True | 1 to perform sorting at the collection level
To implement sorting at the collection level you must set
vdkSortingFlag to YES in the k2server.ini file (in the [server]
section) and the k2broker.ini file (in the [broker] section). See
“Sorting Results at the Collection Level” later in this chapter for details
about how collection level sorting is implemented.

sortTruncDocs= Maximum number of documents to consider when sorting.

accessProfile= Security Access Profile specified in the form of a query expression. The
security access profile represents the access question that a document
must pass in order for users to have access to it.

topicSet= Default path name to a directory for the default topic set, which is an
indexed set of topics. The value of topicSet identifies the default topic
set to make available to clients at start-up by every search service.

knowledgeBase= Default path name to a knowledgebase map file, which identifies
numerous topic sets (indexed topics). The value of knowledgeBase
identifies the topic sets (multiple) to make available to clients at start-up
for every search service).

charMap= A string that names the character set to use for strings that are sent into
the server, and are generated by the server. This string must correspond
to the name of a .cs file in the root of the common directory that
configures a character set and its mappings. For example, if your
application should use character set 8859 for all of its interactions with
the server, then set this charMap to the string 8859. Valid values
include, but are not limited to, the character sets supplied by Verity: 850
(default) for code page 850; 8859 for code page 8859; mac for Macintosh
systems.

locale= The name of the locale (combination of language, dialect, and character
set) to use for all internal Verity engine operations. This name must
correspond to a subdirectory in the common directory where the
configuration file for the locale is found and where the message
database and other locale-specific files are located. Leaving this
keyword null means the server will use the default internal locale,
which is “english” written in the “850” character set.

resultCacheTimeout= Timeout in milliseconds for the result cache. Timeout occurs after 60
seconds or when the cache overflows based on
resultCacheQuota.
K2 Toolkit Search System Administration V2.2 3-5

Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Server
Collection Sections

The K2 Server initializes a separate search service for each collection that you identify in
the server configuration file. To add one or more collections to the configuration file,
enter a separate block of keywords for each collection in the following format:

[Coll-n]
collPath=<pathname>
topicSet=<topicset>
knowledgeBase=<knowledgeBase>
numThreads=<value>
maxFiles=<value>
onLine=<value>
maxColSize=<value>
locale=<language>
charmap=<charmap>
inputDateFormat=<format>

Increment the block label for each collection that you configure, starting with Coll-0.
The following table lists the keywords used to configure each collection and search
service.

resultCacheQuota= The number of slots per segment for the result cache. The result
cache is composed of 16 segments, each of which has a number of
slots for caching items in: K2SearchNew, K2SearchRecv,
K2DocReadBatch. Timeout occurs after resultCacheQuota value * 16.
If resultCacheQuota=10, each of the segments has 10 slots. Note that
since a search operation involves a call to K2SearchNew and a call to
K2SearchRecv, an additional slot is used. For more information, see
“Result Caching.”

resultCacheEnabled= A flag indicating whether the result cache is enabled. Valid values
are:
Yes | True | 1 to enable the result cache
No | False | 0 to disable the result cache (default).
By default, the cache is not enabled.

resultCacheMaxInBytes= Amount of memory, in bytes, to use for the cache.

Keyword Description

collPath= The path name identifying the collection home directory.

collAlias= An arbitrary name used to identify the collection.

Keyword Description
3-6 K2 Toolkit Search System Administration V2.2

Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Server
topicSet= The path name to a directory for the default topic set, which is an
indexed set of topics. The value of topicSet identifies the default topic
set to make available to clients at start-up by every search service. If not
specified, the value of topicSet from the [server] section is used.

knowledgeBase= The path name to a knowledgebase map file, which identifies numerous
topic sets (indexed topics). The value of knowledgeBase identifies the
topic sets (multiple) to make available to clients at start-up for every
search service. If not specified, the value of knowledgeBase from the
[server] section is used.

numThreads= The number of concurrent searches for the collection. If not specified, the
value of numThreads from the [server] section is used.

maxFiles= The maximum number of files that can be opened by a specific search
thread for a collection. If not specified, the value of maxFiles from the
[server] section is used. The maxfiles and numThreads values
together can be used to tune system performance. These values can be set
for a collection:
[Coll-0]
numThreads=4
maxFiles=100
The above entries for collection 0 cause K2 to support a maximum of 4
concurrent searches, with 100 file handles allocated for each search
thread.

onLine= A flag indicating whether the server starts up with the collection on-line.
Valid values are:
0 to start the server with the collection off-line;
1 to start the server with the collection in a hidden state;
2 to start the server with the collection on-line (default).
In the hidden state, collections can be primed and tested, but are not yet
available for searching by users. When collections are set off-line, any
queries currently running complete using these resources; subsequent
queries do not see the resource.

maxColSize= The maximum width of the fields to return to the results list, in bytes. If
not specified, the value of maxColSize from the [server] section is used.

charMap= A string that names the character set to use for strings that are sent into
the server, and are generated by the server. This string must correspond
to the name of a .cs file in the root of the common directory that
configures a character set and its mappings. If not specified, the value of
charMap from the [server] section is used.

For example, if your application should use character set 8859 for all of
its interactions with the server, then set this charMap to the string 8859.
Valid values include, but are not limited to, the character sets supplied
by Verity: 850 (default) for code page 850; 8859 for code page 8859; mac
for Macintosh systems.

Keyword Description
K2 Toolkit Search System Administration V2.2 3-7

Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Server
There can be n-collection specs.

[Coll-0]
collPath=/z/app/doc1/
topicSet=/z/app/topics1/
knowledgeBase=/z/app/topics/top1.kb
onLine=2

[Coll-1]
collPath=/z/doc2/
topicSet=/z/topics2/
knowledgeBase=/z/app/topics/top2.kb
onLine=1

locale= The name of the locale (combination of language, dialect, and character
set) to use for all internal Verity engine operations. This name must
correspond to a subdirectory in the common directory where the
configuration file for the locale is found and where the message database
and other locale-specific files are located. If not specified, the value of
locale from the [server] section is used.

inputDateFormat= The input date format to be used. If there is no specified value for
inputDateFormat, the default is MDY (Month-Day-Year), a numeric
format. See Appendix C for more information.

Keyword Description
3-8 K2 Toolkit Search System Administration V2.2

Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Broker
Setting Up a K2 Broker

You start a K2 Broker using a command-line tool called k2broker. The k2broker tool
takes as input the name of a server configuration file called k2broker.ini. The section
below describes how to use the k2broker tool with the k2broker.ini.

k2broker Command-line Tool

The K2 Broker is started from the command line or from a script in the Unix environment
and is integrated as a service within the Windows NT environment. The server is
designed to run with a minimum of intervention. Most configuration parameters are set
in a configuration file, which can be given a user-assigned name (the default file name is
k2broker.ini).

Command line arguments include the name of the configuration file and the TCP port for
incoming connection. The K2 Broker is started by using the following command:

k2broker [<option1> <option2> ...]

The options available for this command are summarized in the table below.

The K2 Broker is used within a multi-tiered, brokered, information retrieval system to
balance and distribute search requests among multiple servers. As shown in the
following diagram, the architecture of the K2 Broker is similar to the K2 Server, but
instead of searching over collections, the K2 Broker searches over servers.

Keyword Permitted values Function

-port <value> Positive integer Identifies the TCP port number for
use by the K2 Acceptor.

-iniFile <filename> Any valid filename Identifies the filename to use as the
configuration file for this instance of
the K2 Broker.

-verbose <value> 0=status
1=informational
2=verbose
3=debug

Determines the amount of
information contained in the K2
Broker system messages.

-iniEmit <filename> Any valid filename Creates a sample configuration file.

-ntService <value> 1=load as NT service
0=remove as NT service

Used to load or remove the K2
Broker as an NT service. When set to
1, the broker is loaded as an NT
service. When set to 0, the broker is
removed as an NT service.
K2 Toolkit Search System Administration V2.2 3-9

Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Broker
As shown in the preceding diagram, the K2 Broker uses four threads for each server,
which each have a total of four threads allocated for search services (one thread for each
of four collections). Like the K2 Server, the K2 Broker requires one listener for each
concurrent incoming connection.

Note: an extra Listener thread must be assigned if you wish to create a concurrent K2Watch client
connection for monitoring or controlling the broker.

TCP/IP host names and TCP port numbers are used to configure the connection between
the K2 Broker and the servers. In the following illustration, the K2 Broker is configured
for two concurrent client connections (numListeners=2) and for distributing search
requests to two servers, as indicated by the two node definitions. The value for the
numthreads should be less than equal to the number of listeners as are specified in the
k2server.ini file.

4 Listeners

TCP Acceptor

K2 client(s)

K2 Broker

Search request

K2 Server

C6 C8C7C5

1 Thread

 4 Threads

K2 Server

C2 C4C3C1

1 Thread

 Up to 4
3-10 K2 Toolkit Search System Administration V2.2

Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Broker
The entry in the [Nodes] block of the k2broker.ini file matches the value of portNo in
each server’s k2server.ini file.

k2broker.ini Configuration File

You configure the K2 Broker using a configuration file, similar to the one provided for the
K2 Server. The K2 Broker configuration file is divided into the following sections:

• [Broker] configures the communication services, including the port number, the
number of threads, the log file and verbosity levels.

• [Node-n] identifies the individual search servers, including host names and TCP port
numbers for each server. Increment the block label for each node that you configure,
starting with [Node-0].

Broker Section

The following table summarizes the keywords in the [Broker] section that control the
general configuration and operation of a K2 Server instance.

Keyword Description

vdkHome= Directory containing Verity resources.

portNo= TCP port number for client connections. User selected port number.

K2 Broker

K2 ServerK2 Server

k2broker.ini

[Server]
portNo=8800

k2server.ini

[Broker]
numListeners=2

server1 server2
[Server]
portNo=8801

k2server.ini

K2 Client K2 Client

numListeners=1 numListeners=1

numThreads=1
[Node-0]

[Node-1]
nodeSpec=server2:8801

nodeSpec=server1:8800
K2 Toolkit Search System Administration V2.2 3-11

Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Broker
numListeners= Number of client listener threads that connect at any one time.

numThreads= The default number of search threads. This value is used only if the
numThreads parameter is not set for a particular [node] section.

vdkSortingFlag= A flag indicating whether the Verity engine will sort at the collection
level. Valid values are:
NO | False | 0 to not perform sorting at the collection level (default)
YES | True | 1 to perform sorting at the collection level
To implement sorting at the collection level you must set
vdkSortingFlag to YES in the k2server.ini file (in the [server]
section) and the k2broker.ini file (in the [broker] section). See
“Sorting Results at the Collection Level” later in this chapter for
details about how collection level sorting is implemented.

connTimeout= Timeout in milliseconds for a server connection. Minimum is 2000
milliseconds. A connTimeout value set to less than 2000 is
automatically set to 2000. Each server can override this timeout
specification. The value for connTimeout is the default timeout for
each server node.

NOTE: The connTimeout value is ignored by the K2ConnectNew
function, which has an internal, speed-optimized mechanism that
controls timeout.

resultCacheTimeout= Timeout in milliseconds for the result cache. Timeout occurs after 60
seconds or when the cache overflows based on
resultCacheQuota.

resultCacheQuota= The number of slots per segment for the result cache. The result
cache is composed of 16 segments, each of which has a number of
slots for caching items in: K2SearchNew, K2SearchRecv,
K2DocReadBatch. Timeout occurs after resultCacheQuota value *
16.
If resultCacheQuota=10, each of the segments has 10 slots. Note that
since a search operation involves a call to K2SearchNew and a call to
K2SearchRecv, an additional slot is used. For more information, see
“Result Caching.”

resultCacheEnabled= A flag indicating whether the result cache is enabled. Valid values
are:
Yes | True | 1 to enable the result cache
No | False | 0 to disable the result cache (default).
By default, the cache is not enabled.

resultCacheMaxInBytes= Amount of memory, in bytes, to use for the cache.

Keyword Description
3-12 K2 Toolkit Search System Administration V2.2

Setting Up K2 Servers and K2 Brokers
Setting Up a K2 Broker
Node Section

The K2 Broker registers a search server for each node that you identify in the broker
configuration file. To add one or more collections to the configuration file, enter a
separate block of keywords for each node in the following format:

[Node-0]
nodeSpec=<hostname>:<port>
onLine=<2 for on-line; 0 for off-line>; 1 for Hidden>

Increment the block label for each server that you configure, starting with Node-0. The
following table lists the keywords used to configure each server.

There can be n-collection specs.

[Node-0]
numThreads=2
connTimeout=15
nodeSpec=server2:9902
onLine=2

[Node-1]
numThreads=2
connTimeout=10
nodeSpec=server2:9903
onLine=2

Keyword Description

nodeSpec= Identifies the server that is to be registered with the K2 Broker in the form
<hostname>:<port> where hostname is the fully qualified host name (or
IP address) and the TCP port number.

numThreads Number of concurrent searches to send to the K2 Server from this K2
Broker. This value should be less than or equal to the number of listeners
specified in the k2server.ini. If not specified, the value of
numThreads from the [node] section is used.

connTimeout Timeout for this specific server. Default is 2000 milliseconds. This value
can be increased if the server has a slow response.

onLine= A flag indicating whether the K2 Broker starts up with the servers
on-line. Valid values are:
0 to start the broker with the servers off-line;
2 to start the broker with the servers on-line (default).
Allows you to start the broker with servers on-line (2) or off-line (0).
K2 Toolkit Search System Administration V2.2 3-13

Setting Up K2 Servers and K2 Brokers
Sorting Results at the Collection Level
Sorting Results at the Collection Level

The vdkSortingFlag keyword is a flag that indicates whether the Verity engine will sort at
the collection level.The vdkSortingFlag keyword is valid in the k2server.ini file in the
[server] section and in the k2broker.ini file in the [broker] section. Valid values are:

• NO |False|0 to not perform sorting at the collection level (default)

• YES |True|1 to perform sorting at the collection level

To implement Verity engine sorting at the collection level, you must set the
vdkSortingFlag keyword to YES in both configuration files, the k2server.ini file and
the k2broker.ini file.

Verity engine sorting at the collection level can improve the quality of the results
presented in results lists for some K2 search systems. K2 search systems that can benefit
from this feature are ones which process searches under all conditions below occur:

• Searches implement a sort specification (sortSpec) based on a primary sort field other
than “score”

• Searches set a maximum documents limit (maxDocs) for the results list size

• Searches return a number of hits (numHits) greater than maxDocs

When all conditions above are implemented in a K2 search system, the results lists are
likely to not contain the most relevant results using the default K2 sorting behavior. This
is because during the merging process, some results are removed from the results list
presented to users. Results that are ranked lower than the maxDocs number of results
(since maxDocs is greater than numHits) are removed. Using the Verity engine sorting at
the collection level changes the default K2 sorting behavior to be like the sorting behavior
in Verity Developer’s Kit (VDK).

The disadvantage of using vdkSortingFlag is that VDK-style sorting will make search
processing slower.
3-14 K2 Toolkit Search System Administration V2.2

Setting Up K2 Servers and K2 Brokers
Result Caching
Result Caching

Result caching can be set for the K2 Broker, in the k2broker.ini file, and for the K2
Server, in the k2server.ini file, using these keywords:

• resultCacheEnabled

• resultCacheTimeout

• resultCacheQuota

• resultCacheMaxInBytes

The resultCacheQuota keyword specifies the number of slots per segment for the result
cache. The result cache is composed of 16 segments, each of which has a number of slots
for caching items in: K2SearchNew, K2SearchRecv, K2DocReadBatch. Timeout occurs
after resultCacheQuota value * 16.

If resultCacheQuota=10, each of the segments has 10 slots. Note that since a search
operation involves a call to K2SearchNew and a call to K2SearchRecv, an additional slot
is used.

The segment that a cache item resides in is determined by creating a 4bit checksum of the
source parameters. For example, a cached K2SearchNew request would have a
checksum generated from the K2SearchNewArgRec that was given as input to the
search and this is kept alongside the resultant K2SearchElement at the K2 Broker or K2
Server.

When considering the distribution of a set of 4bit checksum for sixteen searches, it is
unlikely that all sixteen 4bit checksum variations will be generated. Hence, setting the
resultCacheQuota to a low number will result in earlier cached results being removed
before a full sixteen are cached.

It is recommended that you initially set the values for the result caching parameters very
high for testing. For example:

resultCacheTimeout=60000
resultCacheQuota=1000
resultsCacheMaxInBytes=16500000

You should see the interaction of the K2 Broker and K2 Server diminish and then you can
back off the number to a level appropriate for your system.
K2 Toolkit Search System Administration V2.2 3-15

Setting Up K2 Servers and K2 Brokers
Using rck2 as a Search Client
Using rck2 as a Search Client

The rck2 command-line tool allows you to search collections associated with a K2 Server
in a K2 Search System.

rck2 Syntax

The syntax used to start rck2 from the command line is:

rck2 -server <servername> -port <portno>

rck2 Command Options

The command options for rck2 are shown below.

Syntax Element Description

-server <servername> The server name for the K2 Server to attach to. The server name is defined
in the k2server.ini file. The collections attached to this server will be
searched by rck2.

-port <portno> The port number where the K2 Server (specified in -server) is running.

rck2 Command Description

p <sortspec> The sort specification for the search results. By default results are sorted
by Score. Multiple fields must be specified in a space-separated list using
asc or desc to indicate ascending or decending order. For example:
p score desc title asc

m <maxdocs> The maximum number of documents to return in the results list.

c <collections> The list of collections to search. Multiple collections must be specified in
a space separated list. For example:
c coll1 coll2 coll3

f <fields> The list of fields to retrieve. For example:
f k2dockey title date

s <query text> The query (or question) to be used to process the search. The query can
be expressed as words and phrases separated by commas. Additionally,
the query can include Verity query language, operators and modifiers, as
described in the Verity Query Language Reference Guide and the Verity
Search Tips Online Guide.

g <collection> Display collection information.

d <k2dockey> Display fields for the K2 document key specified.
3-16 K2 Toolkit Search System Administration V2.2

Setting Up K2 Servers and K2 Brokers
Using rck2 as a Search Client
v <k2dockey> Stream the document and display it with highlights.

r <docstart> Display results starting with the first result in the results list. Fields
specified using the f command are displayed. Docstart indicates the first
result to be displayed. For example, r 10 displays results starting with the
10th document in the results list.

b <docstart> Display results based on the last field selection.

i Display information about the K2 Server including nodes and collections.

x <score precision> Set score precision to 8 or 16 bit. By default, 16 bit precision is used.

h or ? Display online help for the rck2 command options.

rck2 Command Description
K2 Toolkit Search System Administration V2.2 3-17

Setting Up K2 Servers and K2 Brokers
Using rck2 as a Search Client
3-18 K2 Toolkit Search System Administration V2.2

4
Collections and Search Performance

This chapter describes how to optimize K2 Server and K2 Broker search performance.
The main factor affecting the speed and efficiency of searches performed using the K2
Server and the K2 Broker is the way that collections are built. For this reason, the first
section in this chapter describes the architecture of Verity collections and how mkvdk can
be used to create collections. This chapter is divided into the following sections:

• Overview to Collection Building

• Using the merge Utility

• Using the Incremental Squeeze Feature

Collections and Search Performance
How Collections Work
How Collections Work

Each collection is contained within a collection home directory, which contains all of the
subdirectories and files required for searching a set of documents. You name the
collection home directory when you create a new collection, using any file name
permitted by your operating system. The following illustration shows the subdirectories
contained within the collection home directory for a typical collection.

Collection Partitions

The parts directory and the style directory, shown in the previous illustration, are two
of the most important of the subdirectories in every collection. The parts directory
contains index and attribute tables, divided into separate partitions. The style directory
contains the configuration files that control the way the collection is generated.

In the parts subdirectory, the word index is identified by the extension did, while the
attribute table uses the extension ddd. An 8-digit number identifies the partition to which
each pair of word indexes and attribute tables belong. The pdd subdirectory contains the
partition index that identifies the partitions currently used in the collection.

The index and attribute tables in a single partition can contain information about as
many as 64,000 documents. Partitions allow real-time updating of the collection while
keeping the collection available for searching by users. To improve search performance,
smaller partitions can be consolidated into a single larger partition. To do this, use the

Collection home directory

Partition directory

Style directory
4-2 K2 Toolkit Search System Administration V2.2

Collections and Search Performance
How Collections Work
index tuning options provided by mkvdk. The optimum size of partitions for a collection
depends on the overall size of the collection, the average size of documents, and how
often new documents are added to a collection.

Attributes and Fields

As mentioned earlier, an attribute table is built for each partition in a collection, to allow
field searching and for use in formatting search results and source documents for display.
The fields within the attribute table are defined by the following collection styles:

• style.ddd, which defines fields used internally by the Verity engine (identified by an
initial underscore character (_)

• style.sfl, which defines standard fields (many of which are commented out to
limit the size of the attribute table)

• style.ufl, which is used to define custom fields that are not included in
style.sfl.

The value of each field can be filled in from source documents or can be provided
explicitly, using the mkvdk bulk submit option. You can view the contents of the attribute
table for a partition by using the following command:

browse 00000001.ddd

The system displays the following menu of options available for the browse.exe utility.

D:\VERITY\colltest\parts>browse 00000001.ddd
BROWSE OPTIONS
 ?) help
 q) quit
 c) Number of entries in field
) Toggle viewing fields beginning with ’’
 v) Toggle viewing selected fields
 ##) Display all fields in specified record number
Dispatch/Compound field options:
 n) No dispatch
 d) Dispatch
 s) Dispatch as stream
Action (? for help):

To display the values of the attributes in a specific document, enter the sequential
number of the record. To reduce the number of fields displayed, you can eliminate the
fields used internally by the Verity search engine by typing a v. To display these fields,
type an underscore character.

The following partial display of the results of the browse utility includes the fields used
internally by the Verity search engine, which start with an underscore (_) character.
K2 Toolkit Search System Administration V2.2 4-3

Collections and Search Performance
How Collections Work

18 _SECURITY_MI WRM-unsg (4) = 0
19 _SECURITY_MX WRM-unsg (4) = 0
20 _INDEX_DATE_MI WRM-date (4) = 13-Jul-1997 09:43:33 am
21 _INDEX_DATE_MX WRM-date (4) = 13-Jul-1997 09:43:33 am
22 DOC DSP-text (-1) = d:\verity\doc1.htm
23 DOC_FN VAR-text (44) = d:/verity/doc1.htm
24 DOC_OF FIX-unsg (4) = 0
25 DOC_SZ FIX-unsg (4) = 4294967295
26 DOC_FN_OF FIX-unsg (4) = 76
27 DOC_FN_SZ FIX-unsg (2) = 44
28 VdkVgwKey VAR-text (44) = d:/verity/doc1.htm
29 VdkVgwKey_IX FIX-unsg (3) = 1
30 VdkVgwKey_MI WRM-text (44) = d:/verity/doc2.htm
31 VdkVgwKey_MX WRM-text (44) = d:/verity/doc3.htm
32 VdkVgwKey_OF FIX-unsg (4) = 76
33 VdkVgwKey_SZ FIX-unsg (2) = 44
34 Title VAR-text (20) = Tools for Searching
...

Fields may be permanent or transitory and their definition may be internal or external.
The values of transitory fields are provided by the Verity search engine and change with
each search request. Permanent fields are defined internally by collection style files or
externally by other applications, such as databases.

The Word Index

You can view the contents of the word index for a partition by using didump.exe:

didump 00000001.did

The display provides an alphabetical listing of the words in the word index, shown
below.
4-4 K2 Toolkit Search System Administration V2.2

Collections and Search Performance
How Collections Work
didump - Verity, Inc. Version 2.5.1 (_nti40, Jul 7 1999)
Text Size Doc Word
A 10 3 4
a 34 5 24
abbreviations 4 1 1
about 4 1 1
acronym 5 1 2
acronyms 4 1 1
actual 4 1 1
administrator 3 1 1
advance 3 1 1
...

The meaning of each column in the display is as follows:

• Size—the number of bytes used by the Verity engine to store information about the
word

• Doc—the number of unique documents in which the word appears

• Word—the number of ocurrences

To view the ocurrences of a specific word or pattern, enter a command using the
-pattern option, as in the following example:

didump -pattern acronym 00000001.did

The didump utility will display information about the number of occurrences of the
word “acronym.” You can display the number of occurrences of a word in a sentence or
paragraph by using the verbose (-v) option.

The Indexing Process
To make a set of documents available for searching, you create a new collection using an
indexing application, such as mkvdk, and then identify the new collection to the K2
Server. The following illustration shows how an indexing application interacts with the
Verity search engine and the components of a collection.
K2 Toolkit Search System Administration V2.2 4-5

Collections and Search Performance
How Collections Work
The Verity engine uses a gateway to access the files (or other repositories) containing the
document set to be indexed. By default, the file system gateway is used to index
documents residing on file systems in various operating system environments. When
indexing source documents requiring a different access method, such as HTTP or SQL,
the indexing application specifies the appropriate gateway, identified in style.vgw.

After opening a document using the gateway, the search engine uses the appropriate
filter to perform the following operations:

• Convert the document to indexable text

• Create a field token containing the name and value of each field in the document

• Create a word token for each indexable word in the document

Field tokens are used to populate the attribute table, while word tokens are used to
generate the word index. This process is described in further detail in Lesson Two.

Source

Gateways

File system
Internet Databases

style.uni

Filters

00000001.ddd00000001.did

style.dft

documents

coll/parts

coll/style

style.vgw

style

coll/assists

coll/pdd

AttributesIndex

Verity
engine

mkvdk

indexing

applica-

or other

tions
Collection
4-6 K2 Toolkit Search System Administration V2.2

Collections and Search Performance
How Collections Work
Using mkvdk

The mkvdk utility is an indexing application, provided with K2 Toolkit, that can be used
in various ways to create and maintain collections. It is a command line utility that can be
used within other applications or shell scripts to provide more sophisticated scheduling
and other capabilities. The following is the basic syntax of the command:

mkvdk -collection path [option] [dockey]

Multiple options and dockeys can be included, as needed. If dockey is a list of files, it
should consist of an at-sign (@) followed by the file name that contains a simple list of
files, as in @filelist. The options for mkvdk are described in Appendix A.

The following operations occur when you use mkvdk to create a new collection:

1. New collection directories are created and the specified style files are copied to the
style subdirectory.

2. The style file settings are read and the required information is passed to the Verity
search engine.

3. The gateway is used to open the document files, which are parsed according to the
settings in various style files.

4. A new partition is created, which includes an index and an attribute table.

5. Assist data is generated, which may include a spanning word list.

When problems occur during an operation, mkvdk writes error messages to the system
log file (sysinfo.log). You can direct error and other messages to the console by using
mkvdk with the -outlevel option. You can direct messages to a file of your choice by
using the -loglevel and -logfile options.

The format of the log file is shown below:

You can use the log file to view details about what happens during the collection building
process. Use the mkvdk -loglevel and specify the numeric identifier for the message
level you want, as summarized in the following table.

(Sun Jul 13 10:06:40 1997): Info M2-0106 (Document Index): Writing document index

Date Time Level Code Component Description
K2 Toolkit Search System Administration V2.2 4-7

Collections and Search Performance
How Collections Work
To calculate the numeric parameter, add up the numbers for the message types you want
to include. The default for both -outlevel and -loglevel is 15, which selects fatal,
error, warning, and status messages (1+2+4+8).

Type Number

Fatal 1

Error 2

Warning 4

Status 8

Info 16

Verbose 32

Debug 64
4-8 K2 Toolkit Search System Administration V2.2

Collections and Search Performance
Using the merge Utility
Using the merge Utility

The merge utility lets you combine multiple collections into a single, large collection.
This is useful for merging smaller collections built from different sources into one
collection. You can then use the merge utility again to break up the collection into smaller
collections of a roughly uniform size.

Breaking up a large collection helps to optimize K2 Server search performance, because it
allows many brokers, servers, and search services to perform multiple concurrent search
requests over the different collections. After breaking up a large collection, you can also
discard older collections to reclaim limited disk storage space and to further improve
search performance.

To obtain help for the merge utility, enter the following command:

merge -help

Note: after running the merge utility, you must use the mkvdk -optimize option to rebuild
the collection contents, including the word index and ngram index.

Merging Collections

The following is the syntax for using the merge utility to merge multiple collections into
a single collection:

merge <newCollection> <srcCollection1> <srcCollection2>
[srcCollectionN]

The utility reads srcCollection1, srcCollection2 and so on and merges them into
a single collection with the directory name given for newCollection. If the directory
name given for newCollection doesn’t exist, then it is created.

Splitting Collections

The following is the syntax for using the merge utility to split a single large collection
into smaller collections:

merge -split <srcCollection> <newCollection1> <newCollection2>
[newCollectionN]

The utility reads srcCollection and splits it in roughly equal-sized pieces, using the
filenames given for newCollection1 and so on.

If you want to split a very large collection into a large number of new collections, you can
use the following option instead of explictly naming each new collection:

merge -split -number newCollection srcCollection
newCollectionXX
K2 Toolkit Search System Administration V2.2 4-9

Collections and Search Performance
Using the merge Utility
The utility reads the collection identified by srcCollection and splits it into the
number of segments specified by the -number option. The name of the first new
collection is generated by appending the first two letters in the alphabet (aa) to the
directory name given for newCollection. Each subsequent filename is generated by
incrementing one of the appended letters (up to zz) for a maximum of 676 partitions. For
example, if the value of -number is 3, and the value of newCollection is
Collection1, the collections are named, Collection1aa, Collection1ab, and
Collection1ac.

Note: the maximum length of the directory name given for newCollection is 2 characters less
than the length allowed by the filesystem.
4-10 K2 Toolkit Search System Administration V2.2

Collections and Search Performance
Using the Incremental Squeeze Feature
Using the Incremental Squeeze Feature

The incremental squeeze is a collection optimization feature. Using incremental squeeze,
the application administrator can save on the disk space required for squeezing a
collection.

Incremental squeeze uses significantly less disk space to squeeze a collection than a
normal squeeze. If normal squeezing is performed, the disk space required can be up to
double the size of a collection. When a squeeze is performed on a collection, all of the
collection’s partitions that have deleted documents are recreated without the deleted
documents so that continuous access to the collection is possible. After the reap interval
time, the original partitions (with the deleted documents) are removed. Before the reap
interval time, both old and new partitions exist, sometimes occupying almost double the
space.

Using incremental squeeze, the Verity engine first brings down the collection, and then
squeezes the partitions in the collection one by one. After each partition is squeezed into
a new partition, the corresponding old partition is removed immediately before the next
partition is squeezed. After squeezing all of the partitions, the engine brings the
collection back up. The behavior of incremental squeeze ensures that the extra disk space
required to squeeze a collection is equal to the size of the largest partition at most.

To implement incremental squeeze, you run the mkvdk command-line tool with a set of
style files, including a style.plc file that has a special /incremental_squeeze=YES
entry. The mkvdk syntax used to invoke the incremental squeeze feature is:

mkvdk -collection coll -optimize squeeze

where coll_name represents the collection name.

The style.plc entry for incremental squeeze is specified as an attribute to the indexing
mode used. A sample style.plc file is below.

$control: 1
 policy:
 {
 mode: default
 /inherit=generic
 /incremental_squeeze=yes
 }

With the sample style.plc file, the Verity engine uses the incremental squeeze feature
when an mkvdk call is made with -optimize squeeze. The default indexing mode
does not implement incremental squeeze.
K2 Toolkit Search System Administration V2.2 4-11

Collections and Search Performance
Using the Incremental Squeeze Feature
4-12 K2 Toolkit Search System Administration V2.2

5
Verity KeyView Filters

Verity KeyView Filters V6.5 are packaged with this version of the Verity K2 Toolkit. The
KeyView filters support indexing and viewing documents stored in many popular
desktop publishing, word processing, and presentation formats. This chapter covers
these topics:

• Key Features

• Supported Formats

• New Features and Enhancements

Verity KeyView Filters
Key Features
Key Features

The KeyView filters offer these key features:

• Threadsafe filtering of simultaneous documents

• Fast, reliable performance

• Filters for popular formats, including word processing, desktop publishing,
spreadsheets and presentations

• Viewing with highlights and navigational features

• Memory managment

• Multiplatform support

• Automatic extraction of OLE properties as Verity fields
5-2 K2 Toolkit Search System Administration V2.2

Verity KeyView Filters
Supported Formats
Supported Formats

The KeyView feature list table below identifies supported formats and filter names. For
each format, information about meta data extraction is provided. These keys are used in
the feature list table:

• Format—The document format and platform limitations. All KeyView filters are
supported on all Verity-supported platforms with one exception. The Lotus Word Pro
filter is supported on the Windows NT platform only.

• Version—The version(s) supported.

• Filter Name—The filter executable used to filter the document format.

• Summary Info—A characterization of the summary information extracted for the
document format. For each filter format,

• YES indicates OLE summary information properties are extracted.

• PARTIAL indicates the filter is invoked to extract partial meta information, whatever
meta information it can.

• NO indicates the filter does not extract meta information.

• Character Set—Specifies whether the filter passes character set information.

• YES indicates the filter can determine the character set information is in and pass
that information up stream.

• NO indicates the filter does not pass any character information.

Features List

Format Version Filter Name Summary
Info

Character
Set

ASCII text All afsr NO NO

Applix Spreadsheet v4.0 to 4.4 assr NO NO

Applix Word v4.2, 4.37, 4.4 awsr NO NO

MS Excel cvsr format csvsr NO NO

DCA-RTF SC23-0758-1 dcasr NO YES

IBM DisplayWrite v1.0, v1.1 dw4sr NO YES

HTML All htmlsr PARTIAL YES

Lotus 1-2-3 ‘96, ‘97 l123sr PARTIAL YES

Lotus AMI Pro v2.0, v3.0 lasr PARTIAL YES
K2 Toolkit Search System Administration V2.2 5-3

Verity KeyView Filters
Supported Formats
Lotus Word Pro (NT only) ‘96, ‘97 lwpsr PARTIAL YES

MS Word for Mac v4.x, 6.x mbsr NO NO

MS Word for Mac ‘98 ‘98 mbsr YES NO

Adobe FrameMaker MIF v5.5 mifsr NO YES

MS Word v1.x, v2.0 misr NO NO

MS Microsoft Works v3.0, v4.0 mswsr NO NO

MS Word v6.0, v7.0 mw6sr YES YES

MS Word v8, 2000 mw8sr YES YES

MS Word for DOS v2.2 to v5.0 mwsr NO NO

MS Works Spreadsheet mwssr NO YES

MS PowerPoint PC v4.0 ppcsr PARTIAL NO

MS PowerPoint ‘95, ‘97 pptsr PARTIAL YES

Lotus Freelance ‘96, ‘97 przsr NO NO

Corel QuattroPro v7.0, v8.0 qpssr PARTIAL YES

MS Rich Text Format rtfsr PARTIAL YES

Corel Presentations v7.0, v8.0 shwsr YES NO

UNICODE unisr NO YES

Lotus 1-2-3 v2, v3, v4 wkssr NO YES

Word Perfect for DOS v5.0, v6.0 wosr NO YES

Word Perfect for Windows v7.0 wp6sr PARTIAL YES

Word Perfect for Mac v2.0, v3.0 wpmsr NO YES

MS Excel v3, 4, 5, ‘96, ‘97,
2000

xlssr YES YES

XyWrite v4 xywsr NO NO

Features List

Format Version Filter Name Summary
Info

Character
Set
5-4 K2 Toolkit Search System Administration V2.2

Verity KeyView Filters
Supported Formats
KeyView Filters—Limitations

Lotus Word Pro filter is supported on Windows NT only. This filter is not supported on
UNIX platforms.

The output of the KeyView filters is in the character set of the current Verity locale. If the
filters output characters which are not present in the target Verity locale’s character set,
the characters appear as ? (question mark) or ~ (tilde). For example, when the “n
superior” character is not defined in the target character set, the “n superior” character
appears as a ? in the filtered text.
K2 Toolkit Search System Administration V2.2 5-5

Verity KeyView Filters
New Features and Enhancements
New Features and Enhancements

This release includes the following new features and enhancements:

• Support for indexing headers and footers in word processing documents. See
“Headers and Footers” below for implementation details. When headers and footers
are indexed, they can be searched.

• New page break handler improves tokenization. More accurate tokenization improves
the quality of searches.

• WordPerfect character mapping is no longer hard coded to code page 1252. Now the
WordPerfect filter uses the internal character mapping mechanism used by the other
KeyView filters.

Headers and Footers

The KeyView filters can now index and search header and footer information. When
indexed, the header and footer information becomes part of the virtual document. Any
full text search will search and display the header and/or footer text.

By default, headers and footers are not indexed unless you make modifications to the
collection’s style.uni file. Headers and footers will not be displayed unless the filter
type definition in the style.uni file is edited.

In the style.uni file, edit the /format-filter modifier (under the type: statement
for each filter type), by adding the -headfoot flag. For example, to support headers and
footers in Microsoft Word documents, change the default style.uni file, so the
/format-filter modifier looks like this:

type: "application/msword"
 /format-filter = "flt_kv -headfoot"
 /charset = guess
 /def-charset = 8859

NOTE: The /format-filter modifier value must be enclosed in quotation marks, as
shown above.
5-6 K2 Toolkit Search System Administration V2.2

6
XML Support

Verity K2 Toolkit V2.2 includes support for XML documents. This chapter describes the
new XML filter and how to use it. These topics are covered:

• Requirements for Data Files

• Implementation Summary

• Style File Configuration

• Indexing XML Documents

XML Support
Requirements for Data Files
Requirements for Data Files

To be properly indexed, XML data files must be well-formed XML documents as
specified in the Extensible Markup Language Recommendation
(http://www.w3.org/TR/REC-xml).

Briefly stated, a well-formed XML document contains elements that begin with a start tag
and terminate with an end tag. One element, which is called the root or document
element, cannot appear in the content of another element. For all other elements, if the
start tag is in the content of another element, the end tag is also in the content of the same
element.

The XML data files must have an .xml extension if the universal filter is used. If
documents do not have an .xml extension, you can index XML documents into an XML-
only collection by specifying the XML filter in the style.dft file.
6-2 K2 Toolkit Search System Administration V2.2

http://www.w3.org/TR/REC-xml

XML Support
Implementation Summary
Implementation Summary

Verity support for XML documents is implemented by a new XML filter and controlled
using a number of style files.

XML Filter

The new XML filter (flt_xml.dll, flt_xml.sl, flt_xml.so) resides in the bin
directory for the installed platform.

Style Files

The following style files are required to enable indexing of XML files. Default style files
reside in the \common\style directory.

Style File Description

style.uni Invokes the XML filter for indexing XML documents.

style.xml Modifies the default behavior of the XML filter. (optional)

style.ufl Defines custom fields in XML documents. The fields must also be defined in
the style.xml file.

style.dft Invokes the Verity universal filter by default so all document types can be
indexed into one collection. You can modify the style.dft file to invoke the XML
filter instead of the universal filter, as described below.
K2 Toolkit Search System Administration V2.2 6-3

XML Support
Style File Configuration
Style File Configuration

This section discusses style file configuration used to support XML document filtering.

style.uni File

To index XML documents, the style.uni must include the following lines:

type: "text/xml"
/format-filter = "flt_xml"
/charset = guess
/def-charset = 8859

NOTE: Some versions of the style.uni specify that text/xml content be handled by
flt_zone. This specification should be replaced with the above construct.

style.xml File

By default, the XML filter indexes regions of the document delimited by XML tags as
zones, with the zones given the same name as the XML tag. META tags are automatically
indexed as fields unless they are in a suppressed region.

The style.xml file enables administrators to change the default behavior of the indexer
for XML documents. Administrators can specify field and zone indexing for regions of
the document delimited by XML tags and skip regions of the document delimited by
XML tags.

Command Syntax

<command attribute="value"/>
6-4 K2 Toolkit Search System Administration V2.2

XML Support
Style File Configuration
Command Summary

Command Examples

The following command ignores all XML tags in the document, indexing only the
content:

<ignore xmltag = "*"/>

The following command skips indexing the specified xmltag but indexes the content
between the start and end tags of the specified xmltag:

<ignore xmltag = "section_1"/>

The following command indexes xmltag as a zone if there is also an ignore
xmltag="*" command:

<preserve xmltag = "section_1"/>

The following command suppresses the entire element identified by xmltag. The tag,
attribute, and content are not indexed:

<suppress xmltag = "section_1"/>

The following command indexes the content between the start and end tags of the
specified xmltag as a field, which is given the same name as xmltag:

<field xmltag = "column_1"/>

Command Description

field Indexes the content between the pair of specified XML tags as field values. By
default, the field name is the same as the xmltag value, unless otherwise
specified by the fieldname attribute.
Attributes:
xmltag
fieldname
index

ignore Skips indexing of xmltag but indexes the content between the pair of specified
XML tags.
Attributes:
xmltag

preserve Indexes specified xmltag as a zone if preceded by ignore xmltag="*".
Attributes:
xmltag

suppress Suppresses every xmltag embedded within the specified xmltag.
Attributes:
xmltag
K2 Toolkit Search System Administration V2.2 6-5

XML Support
Style File Configuration
The following command indexes the content between the start and end tags of the
specified xmltag as a field, which is given the name specified in thefieldname
attribute:

<field xmltag = "column_2" fieldname = "vdk_field_2"/>

The following command indexes the content between the start and end tags of the
specified xmltag as a field, overriding any existing value of the field:

<field xmltag = "column_2" index = "override"/>

NOTE: Both fieldname and index attributes can be used in a field command.

style.ufl File

If administrators have defined custom fields to be populated in the style.xml file, the
fields must also be defined in the style.ufl file or style.sfl file, using standard
syntax.

style.dft File

To create a collection that contains only XML documents, administrators can modify the
style.dft file to invoke the XML filter directly. In this case, the XML documents do not
need an .xml extension.

The style.dft must include the following lines:

$control: 1
dft:
{
 field: DOC

filter="flt_xml"
}

6-6 K2 Toolkit Search System Administration V2.2

XML Support
Indexing XML Documents
Indexing XML Documents

To prepare for indexing XML documents:

1. Make sure that the XML filter (flt_xml.dll, flt_xml.sl, flt_xml.so) resides in
the bin directory for the installed platform.

2. Make sure that the style.uni contains the directive for invoking the XML filter.

3. If custom fields or zones are required, define them in the style.ufl file.

4. Specify custom fields to be populated in the style.xml file, as appropriate.

Indexing using mkvdk

To index XML documents using a command-line indexer, issue these commands:

mkvdk -create -style styledir -collection collname
mkvdk -collection collname file1.xml file2.xml filen.xml

Or using a file list (flist.txt):

mkvdk -create -style styledir -collection collname @flist.txt

The specified style directory must contain the modified style.uni and style.xml
files to enable XML document indexing support.

Searching using rcvdk

Use rcvdk to search and view a collection containing XML documents. The following
illustration provides a typical command sequence.
K2 Toolkit Search System Administration V2.2 6-7

XML Support
Indexing XML Documents
6-8 K2 Toolkit Search System Administration V2.2

7
Verity Locales

Verity provides many predefined locales that you can use right away. Locales have
several components including a linguistics package (stemmer, tokenizer, natural
language processing capabilities). The linguistics package is based on technology from
Inxight LinguistX.

Verity applications include multibyte support and new localization. The multibyte
support enables Verity applications to be localized into most languages, including Asian
languages.

Verity Locales
Verity Locales and their Components
Verity Locales and their Components

Verity packages support for each language (or region) as a separate locale. A Verity locale
includes all the components specific to the language, such as a character set mapping,
date formats, a message database, a linguistics package (stemmer, tokenizer, natural
language processing capabilities).

Predefined Locales

For English, a Verity locale including a linguistics package is included in the standard
product. For languages other than English, you can install and use predefined locales to
localize your application. The linguistics package available from Verity incorporates
technology from Inxight LinguistX.

Verity Locales Using LinguistX are bundled with K2 Toolkit and are available from Verity
upon request. Locales are available for these languages: English, French, German,
Danish, Dutch, Finnish, Italian, Norwegian, Portuguese, Spanish, Swedish.

Custom Locales

Tools and templates are available for creating a custom locale for implementing a custom
localization. For further information about building a custom locale, contact your Verity
sales representative.

In the case of many Asian languages, the localization process must be complemented by
the development of a binary-compatible library that conforms to K2 Toolkit interface
requirements for text analysis.

Tokenization for Locales other than English

For locales such as English that can interpret spaces as word separators and do not
require a locale-based tokenizer (word breaker), the search engine can interpret words,
phrases, and sentences appropriately. For other locales, such as Japanese and Chinese,
the application needs to provide a tokenizer to determine how to break up words and
interpret sentences and phrases appropriately. If your application uses a custom
tokenizer, some of the query language description in this guide may not be accurate
based on your tokenizer implementation.

Locales from Verity Partners

Some Verity OEM partners have produced custom locales for languages requiring
specialized linguistics packages. Currently, locales from our partners are available in
these languages: Chinese (simplified and traditional), Japanese, Korean. Other locales are
under development now. For information about these locales, please contact your Verity
sales representative.
7-2 K2 Toolkit Search System Administration V2.2

Verity Locales
About Verity Locales
About Verity Locales

Predefined locales using LinguistX for numerous languages are available from Verity.
The LinguistX technology offers these basic components:

• Stemmers—Used to stem words during indexing

• Tokenizers—Used to tokenize documents in streams

• Lexical analysis—Used to do part-of-speech recognition, important for some Verity
features like clustering, summarization, QBE parsing

• Phrase extraction—Used to extract phrases, important for some Verity features like
clustering, summarization, QBE parsing

• Thesaurus—Allows users to search for synonyms, using the Verity THESAURUS
operator

NOTE: The natural language processing capabilities (lexical analysis and phrase
extraction) are used by the Verity engine to perform feature extraction. Without these
capabilities, the performance of clustering, summarization, and query-by-example (QBE)
parsing within a K2 Toolkit application degrades significantly.
K2 Toolkit Search System Administration V2.2 7-3

Verity Locales
About Verity Locales
Verity Locales Using LinguistX

Verity offers predefined locales for several languages.

Upgrading from IntelliScope to LinguistX Locales

If your application used an IntelliScope locale and you upgrading your application using
a LinguistX locale, you must reindex your collections.

Language
Locale
Name

Locale’s
Internal
Character
Set

Bokmal bokmalx 8859

Danish danishx 8859

Dutch dutchx 8859

English englishx 8859

Finnish finnishx 8859

French frenchx 8859

German germanx 8859

Italian italianx 8859

Nynorsk nynorskx 8859

Portuguese portugx 8859

Spanish spanishx 8859

Swedish swedishx 8859
7-4 K2 Toolkit Search System Administration V2.2

Verity Locales
About Verity Locales
Using the THESAURUS Operator

A thesaurus is not included with all LinguistX locales at this time.

If the thesaurus operator is used without a thesaurus present in the locale, the search
engine finds stemmed variations of the search term given. The first time the THESAURUS
operator is used during a K2 Toolkit session, warnings are reported stating “error
initializing vdk20.thd” and “no support for <Thesaurus>”. These messages are warnings
only.

If you have topic names with the THESAURUS operator in them and/or you anticipate
users will try to use the operator, you can suppress the warning messages by creating an
empty thesaurus file and copying it into the locale directory.

1. Create an empty synonyms file, named myfile.ctl, which looks like this:

$control:1
synonyms:
{
}
$$

2. Run the mksyd utility to create a thesaurus file:

mksyd -syd vdk20.syd -f myfile.ctl

As a result, a thesaurus file named vdk20.syd is created.

3. Copy the resulting vdk20.syd file into the locale directory.
K2 Toolkit Search System Administration V2.2 7-5

Verity Locales
Installing Predefined Locales
Installing Predefined Locales

Verity Locales Using LinguistX are bundled on a CD separate from K2 Toolkit. There is a
separate installation program for the locales CD. For complete information about
running the installation program refer to Verity Locales Using LinguistX Release Notes.

The installation program stores Verity locales in this directory:

installdir/common/

For each language installed, two locale directories are installed (except for English). For a
language other than English, there is a root locale name plus a locale name ending in “x”.
The contents of the root locale name and the locale name ending in “X” are identical.

For example, if you installed the Portuguese locale, there will be two directories in
install_dir/common:

portug
portugx

If you are installing the LinguistX-based locale for English, note that the installation
program only installs one locale directory called “englishx”. The “english” directory
contains the default locale directory included with the product.

Important! Do not delete the default “english” directory, even if your application will
not use the default english locale. The Verity search engine uses the default english
directory and it must be present to ensure proper functioning of your application.

The following table lists the locale directory names with the files contained in each.

xlt.clg xlt.da xlt.dct xlt.ds xlt.hmm xlt.ia xlt.is xlt.npr xlt.tok html.dct

bokmalx x x x x x x x x

danishx x x x x x x x x

dutchx x x x x x x x x

englishx x x x x x x x x x

finnishx x x x x x x x x

frenchx x x x x x x x x

germanx x x x x x x x x

italianx x x x x x x x x

nynorskx x x x x x x x x

portugx x x x x x x x x
7-6 K2 Toolkit Search System Administration V2.2

Verity Locales
Installing Predefined Locales
spanishx x x x x x x x x

swedishx x x x x x x x x

xlt.clg xlt.da xlt.dct xlt.ds xlt.hmm xlt.ia xlt.is xlt.npr xlt.tok html.dct
K2 Toolkit Search System Administration V2.2 7-7

Verity Locales
Localized Query Language
Localized Query Language

The Verity locales include translated query language operators and modifiers, as shown
in the tables below. The Verity search engine allows the English representation of
operators and modifiers when enclosed in angle brackets. This section covers:

• Operator Names in Danish, Dutch, Finnish, French, German

• Operator Names in Italian, Norwegian, Portuguese, Spanish, Swedish

• Using English Query Language for Locales other than English

Operator Names in Danish, Dutch, Finnish, French, German

English Danish Dutch Finnish French German

Not Ikke Not Ei Sauf Nicht

Case Tilfælde Case Tapaus Casse Fall

Many Mange Many Monta Plusieurs Viele

Accrue Påløbe Accrue Lisää Cumul Aufbau

Or Eller Or Tai Ou Oder

And Og And Ja Et Und

All Alle Alle Kaikki All Alle

Paragraph Paragraf Paragraph Kappale Paragraphe Absatz

Sentence Sætning Sentence Lause Phrase Satz

Phrase Frase Phrase Ilmaus Expression Phrase

Any Enhver Elk MikäTahansa Quelconque Beliebig

Topic Emne Topic Aihe Concept Topic

Field Felt Veld Kenttä Champ Feld

Word Ord Word Sana Mot Wort

Stem Stilk Stem Runko Racine Stem

Soundex Soundex Soundex Soundex Consonnance Soundex

Thesaurus Thesaurus Thesaurus Tesaurus Synonyme Thesaurus

Wildcard Wildcard Wildcard Yleismerkki Troncature Wildcard

Substring Understring Substring Alamerkkijono SousChaîne Substring

Starts Starter Starts Alkaa Début Start

Ends Slutter Ends Loppuu Fin Ende

Matches Matches Matches Täsmää Correspon-
dance

Übereinstim-
mungen

Through Igennem Through Läpi Intervalle Durch
7-8 K2 Toolkit Search System Administration V2.2

Verity Locales
Localized Query Language
Operator Names in Italian, Norwegian, Portuguese, Spanish, Swedish

Contains Indeholder Contains Sisältää Contenu Enthält

Near Nær Near Lähellä Proche Nahe

In I In Kohteessa Dans In

Order Bestilling Order Pyyntö Ordre Bestellung

When Når Wanneer Kun Quand Wenn

English Italian Norwegian Portuguese Spanish Swedish

Not Non Ikke Salvo Excepto Inte

Case Cassa Case Cas Caso Fall

Many Molti Mange Muitos Muchos Många

Accrue Cumulo Akkumulering Acumulação Cúmulo Addera

Or Opp Eller Ou O Eller

And E Og E Y Och

All Tutti Alle Tudo Todo Alla

Paragraph Paragrafo Avsnitt ParGrafo P Paragraf

Sentence Frase Setning Frase Frase Mening

Phrase Espressione Frase Expressão Expresión Fras

Any Qualsiasi Vilkårlig Um Cualquiera Någon

Topic Tema Emne Tópico Concepto Ämne

Field Campo Felt Campo Campo Fält

Word Parola Ord Palavra Palabra Ord

Stem Radice Stamme Raiz Raíz Huvud

Soundex Consonanza Soundex Consonância Consonancia Soundex

Thesaurus Thesaurus Thesaurus Sinónimos Sinónimo Lexikon

Wildcard CarattereJolly Jokertegn Car Comodín Joker

Substring Sottostringa Delstreng Subcadeia Subcadena Delsträng

Starts Inizio Starter Início Inicio Startar

Ends Fine Ender Fim Fin Avslutar

Matches Concordanza Samsvar Corre-
spondência

Correspon-
dencia

Matchar

Through Intervallo t.o.m. Intervalo Intervalo Genom

Contains Contenuto Inneholder Conteúdo Contenido Innehåller

English Danish Dutch Finnish French German
K2 Toolkit Search System Administration V2.2 7-9

Verity Locales
Localized Query Language
Using English Query Language for Locales other than English

If you are using a locale other than English, and your application has defined locale-
specific names for the query language in the message database, users can use English
query language to compose their queries. To specify English query language, you need
to:

• Enclose the English operator/modifier name in braces

• Prefix the operator/modifier name with a pound sign (#)

• If multiple query language elements are used, prefix each element with a pound
sign (#)

For example, to search for the phrase “Verity Inc” when using a non-English locale, you
enter the following query:

<#Phrase> Verity Inc

Using explicit syntax you can specify the above query, as follows:

<#Phrase> (Verity, Inc)

If you want to search for stemmed variations of the word “computer,” you can enter the
following query:

<#Many><#Stem> computer

English operator/modifier names can be used by putting a pound sign in front of each
operator or modifier name, regardless of which localization is running. For some
languages, using the pound sign will resolve ambiguities. For example, the word
“Phrase” means “Sentence” in French.

Near Vicino Nær Próximo Cercano Nära

In In In Em En I

Order Ordine Orden Ordem Orden Ordning

When Quando Når Quando Cuando När

English Italian Norwegian Portuguese Spanish Swedish
7-10 K2 Toolkit Search System Administration V2.2

A
Reference for mkvdk

This appendix provides syntax reference for mkvdk, a command-line tool to build and
maintain collections for use with Verity software. This appendix is divided into the
following sections:

• Overview

• Basic Operations

• Optimization, Modes, and Service Options

• Advanced Features

Overview
Overview

Default Behavior

The default behavior of mkvdk is to submit and index documents specified in the
command, and to service the specified collection. mkvdk automatically sets the service
level to support the work you request. Indexing work is queued to happen in the
background as resources become available. This includes inserts, updates, deletes,
building the word list, and service. You can cause indexing work to happen immediately
by using the -synch option.

Document Path Names in Collections

A Verity collection of files stores the paths to those files in one of two ways:

• The relative path tells how to get to the file relative to the directory that contains the
collection

• The absolute path indicates a global file name

For a document, either a relative or absolute path can be stored in the collection. Verity
collections can contain a mixture of relative and absolute path names. When indexing a
document, the Verity search engine uses the type of path specified in the command line
or in the file list. The concept of “current working directory” has no significance to the
engine.

In general, relative paths are the most versatile and portable. We recommend their use
whenever possible, particularly with the Verity search engine. An easy way to manage at
once a set of documents and its associated collection is to set up a parent directory.The
collection and document text can then easily be moved as a unit by using the parent
directory as a handle.

However, there are two situations in which absolute paths are preferable:

• Collections on Windows require absolute paths unless the search is being conducted
from the same drive that contains the collection and the documents. This is because
these systems use drive letters. It is not possible to create a relative path that crosses
from one drive letter to another. Thus, relative paths cannot be used if a document
exists on a different drive from the collection.

• Absolute paths are also required when the collection and document text will not be
moved together as a unit. This might happen when the two are stored in directories far
removed from each other. This would also be the case when the data are owned by
another application.
A-2 K2 Toolkit Search System Administration V2.2

Overview
In general, UNIX systems are the most flexible. Their symbolic linking facilities can be
used to work around tricky situations. When collections are built on Windows with
absolute paths (starting with drive letters), symbolic links with names like E: can be
created on UNIX in order to use the collections.

Basic Syntax

The following syntax is valid for mkvdk:

mkvdk -collection path [option] [...] [dockey] [...]

Brackets ([]) indicate optional items. An ellipsis (...) indicates repetition of the
previous item. Thus, [dockey] [...] indicates an optional series of dockey items.
dockey can be a document file name, or a list of document file names. If dockey is a list
of files, it should consist of an at-sign (@) followed by the file name containing the list, as
in @filelist.

You must provide the path of the collection to work on. Additional options are described
in the tables that follow. All options must precede the first dockey.
K2 Toolkit Search System Administration V2.2 A-3

Basic Operations
Basic Operations

This section describes the options used for the following collection building operations:

• General Options

• Creating New Collections

• Updating Existing Collections

• Managing Collection Disk Space

• System Messages

General Options

The following table summarizes required and options and options that can be used for a
variety of operations.

Option Description

-collection path This option specifies the path of the collection to create or open.
This is required to execute mkvdk.

-datapath path This option specifies the datapath to use to find documents being
added to the specified collection. All relative document paths will
be relative to this setting. If you do not set this option, mkvdk looks
for documents next to the collection directory.

-common This option specifies the path of the Verity common directory. If
you do not use this option, the Topic engine looks for the common
directory in the directory containing the mkvdk executable, and
then along the executable search path, determined by your
operating system environment settings.

-help This option displays mkvdk syntax options.

-debug This option runs mkvdk in debugging mode.

-about This option shows information about the collection, such as its
description and the date when it was last modified.

-nolock This option turns off file locking. Locking is on by default.

-synch This option performs work immediately. If this option is not used,
indexing work is done in the background, as time permits.

-noexit Windows and Mac only. This option causes the I/O window to
remain after the program is finished. By default, the window closes
and the program exits so that scripts calling mkvdk will not hang.
A-4 K2 Toolkit Search System Administration V2.2

Basic Operations
Creating New Collections

The following table summarizes the options that are used when creating a new collection.

Updating Existing Collections

The following table summarizes the options used to update existing collections.

Option Description

-create This option creates a collection in the specified -collection
directory. It creates the directory structure, determines the index
contents and sets up the documents table schema according to the
style files used, If the specified collection already exists, mkvdk
exits rather than overwriting the existing collection.

-style dir This option specifies the style directory that contains the style files
to use in creating a collection. This option can only be used with
the -create option. If you do not specify this option when you
use mkvdk to create a collection, mkvdk uses the style files in the
common/style directory.

-description desc This option sets the collection’s description. Enter any
alphanumeric text you like, surrounded by quotes (such as “This
collection contains electronic mail from ABC Company.”)

-words This option builds the word list for each of the individual
partitions in the collection.

-topicset path This option creates a topic index for the collection based on the
specified topic set and stores it in the collection directory. This
facilitates efficient searches over the collection when using topics.

Option Description

-insert This option adds documents to the collection. This is the default
option for mkvdk.

-update This option adds documents to the collection, replacing all
previous information about the specified documents.

-delete This option marks the specified documents as deleted and makes
them unavailable for searches. To actually remove deleted
documents from the collection’s internal documents table and
word indexes, use the squeeze keyword.

-persist This option services the collection repeatedly, at default intervals
of 30 seconds. Use the -sleeptime option to set a different
interval.

-sleeptime sec This option specifies the interval between service calls when
mkvdk is run with the -persist option.
K2 Toolkit Search System Administration V2.2 A-5

Basic Operations
Managing Collection Disk Space

The following table summarizes the options for managing the disk space used by a
collection.

Managing System Messages

The following table summarizes the options for controlling the messages generated when
you run mkvdk.

Option Description

-backup dir This option backs up the collection into the specified directory.

-purge This option waits the amount specified by the purgewait option
and then deletes all documents in the collection, but not the
collection itself; it leaves the collection directory structure intact.
To specify a different wait period, use the -purgewait option
instead of -purge. If you do not use purgewait, the dfault is 600
seconds. Note that -purge deletes all documents in a collection,
but does not delete the collection itself. To delete a collection, use
operating system commands such as the rm command on UNIX to
remove the collection directory structure and control files.

-purgeback This option, used with the -purge option, performs a purge in the
background.

-purgewait sec This option specifies to the -purge option how many seconds to
wait. If you do not specify sec, the default is 600.

Option Description

-quiet This option displays only fatal and error messages to the console.
It overrides the -outlevel setting.

-outlevel (num) This option indicates which message types to display to the
console. Valid values are determined by adding numbers together
that correspond to the desired message types. Fatal=1, Error=2,
Warning=4, Status=8, Info=16, Verbose=32, Debug=64, The default
value is 15.

-logfile file name This option saves messages in the specified file.

-loglevel (num) This option indicates which message types to route to the optional
log file. Valid values are determined by adding numbers together
that correspond to the desired message types. The default value is
15.
A-6 K2 Toolkit Search System Administration V2.2

Optimization, Modes, and Service Options
Optimization, Modes, and Service Options

This section describes options for optimizing collections, setting indexing modes, and
determining service levels provided when running mkvdk.

Optimizing Collections

The following option performs various optimizations on the collection, depending on the
value of spec:

-optimize spec

The specifier, spec, is a string consisting of keywords separated by hyphens, such as
maxmerge-squeeze-readonly. The following table summarizes the keywords for the
-optimize option.

Keyword Description

maxclean This keyword performs the most comprehensive housekeeping
possible, and removes out-of-date collection files. This
optimization is recommended only when you are preparing an
isolated collection for publication. Note that when using this
type, if the collection is being searched, sometimes files get
deleted too early and this affects search results.

maxmerge This keyword performs maximal merging on the partitions to
create partitions that are as large as possible. This creates
partitions that can have up to 64000 documents in them.

readonly This keyword makes the collection read only. When used,
mkvdk marks the collection as read-only and unchanging after
the function call is done. This is appropriate for CD-ROM
collections.

spanword This keyword creates a spanning word list across all the
collection’s partitions. A collection consists of numerous
smaller units called partitions each of which includes a word
list.

squeeze This keyword squeezes deleted documents from the collection.
Squeezing deleted documents recovers space in a collection,
and improves search performance. Using this option
invalidates the search results.
K2 Toolkit Search System Administration V2.2 A-7

Optimization, Modes, and Service Options
Indexing Modes

The following option controls the way the collection is built, depending on the value of
mode:

-mode mode

If you do not set a mode, the default is generic. The following table summarizes the
function of each mode.

vdbopt Each collection consists of smaller units called Verity databases
(VDBs). The vdbopt keyword configures the collection’s VDBs.
This keyword has the effect of linearizing the data in a VDB,
and making the collection metadata contained in the VDB more
streamlined. It also allows the VDB to grow to a much larger
size.

tuneup This keyword is a convenience keyword that includes
maxmerge, vdbopt, and spanword.

publish This keyword is a convenience keyword that includes all of the
optimization types. Use this keyword to optimize the collection
for the best possible retrieval performance, such as for
publication to a network on a server or on a CD-ROM.

Mode Name Description

generic The generic mode is the default if no mode is specified. It is the
base mode from which all other modes inherit their
metaparameters. It is optimized to give the best overall
performance without assuming anything about the desired
indexing rates of documents, how many searches are occurring
simultaneously, and so on.

fastsearch The fast search mode is optimized to index documents so that
retrievals happen as quickly as possible. This mode causes the K2
Server engine to do more work at indexing time.

bulkload The bulk load mode is for indexing large numbers of documents in
large batches with bulk insert. It is primarily intended to create
new collections from a large number of preexisting documents.

readonly The read only mode is not an indexing mode, but is useful for
accessing a collection on a read-only medium such as CD-ROM.

Keyword Description
A-8 K2 Toolkit Search System Administration V2.2

Optimization, Modes, and Service Options
Service Options

The following table summarizes the options that you can use to control the kind of
service provided by mkvdk.

newsfeedidx The news feed indexing mode is optimized to accept a large
number of documents in a short amount of time where the
documents arrive in small batches. It is meant to be able to keep up
with the high arrival rates of news feeds without falling behind in
the indexing. This mode is different from the bulk load mode in
that news feed indexing processes small frequent batches of
documents, while the bulk load mode indexes large infrequent
batches of documents.

newsfeedopt The news feed optimizing mode merges partitions created by the
news feed indexing mode into large, optimized partitions. This
action optimizes an existing collection for fast searches.

Option Description

-repair This option repairs the collection, performed by an API call.

-noservice This option prevents collection servicing (servicing includes
indexing) by this instance of mkvdk, performed by an API call.

-nooptimize This option prevents optimization by this instance of mkvdk.
Using this option turns off the service level
VdkServiceType_Optimize. The service types determine what
type of work the K2 Server engine and its self-administration
features will execute on a collection.

-nohousekeep This option prevents housekeeping by this instance of mkvdk.
Housekeeping includes deleting files that are no longer needed.
Using this option turns off the service level VdkServiceType

-noindex This option prevents indexing by this instance of mkvdk.
Documents will not be inserted or deleted. Using this option turns
off the service level VdkServiceType_Index.

-servlev level Service level. The specifier, level, is a string consisting of
keywords separated by hyphens, such as search-index-
optimize.

Mode Name Description
K2 Toolkit Search System Administration V2.2 A-9

Optimization, Modes, and Service Options
Service Level Keywords

The following table summarizes the keywords for the -servlev option:

Keyword Description

search Enable search and retrieval

insert Enable adding and updating documents

optimize Enable opportunistic collection optimization

assist Enable building of word list

housekeep Enable housekeeping of unneeded files

delete Enable document deletion

backup Enable backup

purge Enable background purging

repair Enable collection repair

dataprep Same as search-index-optimize-assist-housekeep

index Same as insert-delete
A-10 K2 Toolkit Search System Administration V2.2

Advanced Features
Advanced Features

This section describes advanced options that can be used with mkvdk, including the
following

• Bulk Submit

• Field Extraction

• Formats, Locales, and Characters Sets

Bulk Submit

The following table summarizes the options to use with the bulk submit feature for
populating field values in the attribute table for a collection.

Field Extraction

The following table summarizes the options to use with the field extraction feature for
populating field values in the attribute table for a collection.

Option Description

-bulk This option tells mkvdk to interpret dockey as a bulk submit file.
The option can be used with -insert, -update, and -delete.

-offset num This option specifies the offset into a bulk submit file or files. Note
that if you specify multiple bulk submit files and use the -offset
option, the offset is applied to all of the bulk submit files.

-numdocs num This option specifies the number of documents to insert or delete
from the bulk insert file or files. Note that if you specify multiple
bulk insert or delete files and use the -numdocs option, the
-numdocs setting is applied to all of the bulk insert or delete files.

-autodel This option deletes the bulk submit file or files when the bulk
submission work is finished.

Option Description

-extract This option extracts field values from documents, using the field
extraction rules specified in the style.tde file.
K2 Toolkit Search System Administration V2.2 A-11

Advanced Features
Formats, Locales, and Character Sets

The following table summarizes the options.

-nosave Specifies that a work list, which is generated by mkvdk automati-
cally when the -extract option is used, will not be saved in the
collection directory in a file called worklist (in the Verity bulk
submit file format). By default, mkvdk saves the work list in the
worklist file.

-nosubmit Specifies that a work list, which is generated by mkvdk automati-
cally when the -extract option is used, will not be submitted to
the indexing engine and will be saved in the collection directory in
a file called worklist (in the Verity bulk submit file format). This
option allows mkvdk to process field extraction separately from
other indexing tasks.

Option Description

-charmap name Names the character set that you would like all strings mapped to
for your application. You should set this to name a character set
that your system can display properly. In the English version of the
search engine, the character set that any version of Windows
displays is 8859, the character set that a Mac would display is mac
or mac1. Note that this is NOT the name of the character set of
documents being indexed, it is only the name of the character set
that your display can handle properly.Valid options are 850, 8859,
mac. The default is no mapping.

-locale name Names the language in which you would like to perform searches.
The language name corresponds to the name of a directory
underneath common that contains language configuration files.
The search engine uses these configuration files to know how to
perform searches in different languages. Valid options are
english, deutsch, and francais. The default is english.

-datefmt format This option is used to convert a date field value into Verity’s
internal data representation, and can be used in conjunction with
the mkvdk options -extract (for the field extraction feature) and
-bulk (for the bulk submit feature). The named format string
identifies to the date parsing routines as to what order dates are
written in when the date string only consists of a sequence of
numbers (for example, 03/03/96). The default is MDY.

Option Description
A-12 K2 Toolkit Search System Administration V2.2

Advanced Features
Date Format Keywords

The following table summarizes the keywords supported by the -datefmt option.

Format Variable Description

MDY Dates written as month-day- year (US format, the default)

DMY Dates written as day-month-year (European formats)

YMD Dates written as year-month-day (ISO international format)

YDM Dates written as year-day-month (Swedish format)

USA Dates written in US format (the same as MDY)

EUR Dates written in European format (the same as DMY)
K2 Toolkit Search System Administration V2.2 A-13

Advanced Features
A-14 K2 Toolkit Search System Administration V2.2

B
Using Verity Topics

This appendix describes how to build and use pre-defined queries called topics to create
virtual collections. These subjects are covered:

• Using mktopics to Create Virtual Collections

• mktopics Syntax Reference

• Topic Set Limits

Using mktopics to Create Virtual Collections
Using mktopics to Create Virtual Collections

The previous sections described how to build collections to ensure consistent and
responsive search performance. As explained earlier, to ensure optimum response,
collections may be designed to optimize searches over the entire collection system. In
cases where users typically search a subset of the document set, you can build topics to
create virtual collection, which allow limiting the search to documents from specific
sources.

For further information about making topics refer to Appendix B of this guide.

The command-line syntax for the mktopics utility is shown below.

mktopics -topicset topicset_dir -outline file.otl
To update topic indexes: [-collection collection|@list]
To indicate topic indexing mode: [-indexType normal|namedOnly]
To reset topics: [-reset]
To run in quiet mode: [-quiet]
To import topic definitions: [-outline file.otl options]
 Import Options:
 To show warnings for undefined topics: [-warnundef]
 To not show warnings for undefined topics: [-nowarnundef]
 To do precedence resolution: [-precres]
 To not do precedence resolution: [-noprecres]
To export topic definitions:
 [-fullotl file.otl [-topic name] [-options]]
 Export Options:
 To create a deep dump: [-deep]
 To create a shallow dump: [-shallow]
To copy output into a log file: [-logfile logfile]
B-2 K2 Toolkit Search System Administration V2.2

mktopics Syntax Reference
mktopics Syntax Reference

Element Description

mktopics The mktopics utility name.

-topicset topicset_dir The required -topicset argument specifies the name of a
new or existing topic set directory, depending on the other
mktopics syntax supplied.

-collection collection|@list The optional -collection argument specifies a collection
directory or an ASCII file containing a list of collection
directories (each on a separate line); the name of such a list
file must be preceded by an at-sign. This argument specifies
which collection(s) the topic set will be indexed against.
When specified, the topic set index is updated in the specified
collection directories. Maintaining a topic index in a
collection facilitates quick and efficient searches over the
collection data when using topics.

-indexType normal|namedOnly The optional -indexType argument specifies the type of
topic set index to be built when the topic set is indexed
against a collection. Valid values are: normal for indexing
topics in the outline file with a precedence rating of
incremental or lowest, and namedOnly for indexing only
named topics in the outline file. The default is normal. For
information about topic precedence ratings, refer to the Verity
Introduction to Topics Guide, Chapter 3.

-reset The optional -reset argument deletes and replaces an
existing topic set, rather than updating it.

-quiet The optional -quiet argument suppresses status messages.
By default, mktopics runs in verbose mode.

-outline file.otl The full or relative path and name of the outline file from
which the new topic set will be built. Use .otl as the file
name extension.

-fullotl file.otl The optional -fullotl argument is followed by the full or
relative path and name of the file to which you want to export
a copy of the topic set. Use .otl as the file name extension.

-topic name The optional -topic argument is followed by the name of
the topic in the specified topic set that you want to export to
a topic outline file. This argument must be specified with
-fullotl file.otl described above.
K2 Toolkit Search System Administration V2.2 B-3

mktopics Syntax Reference
-warnundef The optional -warnundef argument specifies that you will
be warned if there are any undefined topics when importing
topic definitions from an outline file. Only meaningful when
used with -outline. This is the default.

-nowarnundef The optional -nowarnundef argument specifies that you
will not be warned if there are any undefined topics when
importing topic definitions from an outline file. Only
meaningful when used with -outline. The default is
-warnundef.

-precres The optional -precres argument specifies that topic
precedence checking will occur when the topic set is built or
updated. This argument is the default. Only meaningful
when used with -outline.

-noprecres The optional -noprecres argument specifies that topic
precedence checking will not occur when the topic set is built.
If this argument is set, then topics with precedence errors are
rewritten at query time, making the performance of topic
searching slow. The default is -precres. Only meaningful
when used with -outline.

-deep The optional -deep argument specifies that a dump of a
topic set to an outline file will dump each top level topic as far
down as possible. Only meaningful when used with
-fullotl. This is the default.

-shallow The optional -shallow argument specifies that a dump of a
topic set to an outline file will dump each topic down to the
next named topic. Only meaningful when used with
-fullotl. The default is -deep.

-logfile filename The optional -logfile argument followed by a log file
name indicates the a log file will be generated. For the log file
name, you can specify the file name and path. If a path is not
specified with the file name, the log file is put in the current
working directory.

Element Description
B-4 K2 Toolkit Search System Administration V2.2

Topic Set Limits
Topic Set Limits

Although the overall limits on the size of a topic set have been raised to 500,000 nodes
and 800,000 links, there are some search time limitations on the size of a single topic.
These limits apply to the topic which is built from the query you type in, which may be a
combination of query terms and pre-defined topics from a topic set.

Unfortunately, the search time limitations are not simple to describe accurately since they
are implementation limitations of various portions of the search engine, rather than a
straightforward, uniformly-enforced limit on the physical number of nodes/links.

By way of background, the Verity search engine is built on the notion that topics
represent search concepts. Queries that go beyond a single word or phrase typically
involve the ACCRUE-class operators (ACCRUE, AND, OR) to combine several branches
of evidence in a topic tree. At search time, the combined evidence is evaluated by a
stack-based engine.

The stack engine imposes some restrictions for ACCRUE-class topics. Its limited stack
space imposes the restriction of 1024 children for any single ACCRUE-class node and
about 5,300 total notes (16000/3 to be precise), in a topic. These limits are detected
gracefully while building the query (before running the search), and result in an error.
The second limit can be worked around by having named sub-nodes in a large topic and
building the topic set with this mktopics option:

-indextype namedonly

The above option causes separate queries to be built for each named sub-topic, leaving
more space for each query. Carrying this process to the extreme, however, will reduce the
effectiveness of the topic index for the top-level topic.

There are some limits with regards to the use of operators:

• There can be a maximum of 8K children for the ANY operator. If a topic exceeds this
limit, an error message is not always reported.

• The NEAR operator will evaluate only 64 children. If a topic exceeds this limit, no
message is reported.

Say you have a large topic that uses the ACCRUE operator with 8365 children. This topic
exceeds the 1024 limit for any ACCRUE-class topic and the 16000/3 limit for the total
number of nodes. In this case, you could not substitute ANY for ACCRUE since that
would cause the topic to exceed the 8K limit for the maximum number of children for the
ANY operator. To get this large topic functional, you could build a bushier/deeper tree
structure, by grouping topics, with some named sub-nodes.
K2 Toolkit Search System Administration V2.2 B-5

Topic Set Limits
B-6 K2 Toolkit Search System Administration V2.2

C
Date Formats

You can specify both import and export date formats using K2 Toolkit. This appendix
lists the variables available for both. These sections are included:

• Export Date Format

• Import Date Format

Export Date Format
Export Date Format

A date export format can be specified per search using the dateOutputFormat in
K2SearchNewArgRec. Date export format constructs can be used to output date field
values when dates are formatted for output. Typically, date fields are output to results
lists.

Valid values are listed in the following table.

Variable Description

${yyyy} Represents a year as a four-character variable, as in 1996.

${q} Represents a quarter as a one-character variable, as in 3. Note that the $q variable
assumes that January through March is 1, April through June is 2, July through
September is 3, and October through December is 4.

${mm} Represents a month as a two-character variable, as in 09.

${ddd} Represents a specific day of the year as a three-character variable between 001
and 366, as in 225.

${dd} Represents a day of the month as a two-character variable between 01 and 31, as
in 29.

${hh24} Represents an hour in 24-hour time format as a two-character variable between 00
and 23, as in 15.

${hh12} Represents an hour in 12-hour time format as a two-character variable between 01
and 12, as in 08. ${hh12} and ${hh} are interchangeable.

${hh} Same as ${hh12} above.

${mi} Represents a minute as a two-character variable between 01 and 59, as in 45.

${ss} Represents a second as a two-character variable between 01 and 59, as in 23.

${w} Represents a day since the previous Sunday as a two-character variable between
00 and 06, as in 01.

${month} Represents a month using the full month name, as in september.

${mon} Represents a month using a three-character abbreviation, as in aug.

${day} Represents a day using the full day name, as in tuesday.

${dy} Represents a day using a three-character abbreviation, as in wed.

${am} Represents AM or PM, as appropriate.

${ap} Represents AM or PM, as appropriate, using a single-character variable, such as a.
C-8 K2 Toolkit Search System Administration V2.2

Export Date Format
Choosing Case

You can choose to display dates in lower case, with initial capitals, or in upper case, by
entering the variable in the desired style, as follows.

Date Punctuation and Spaces

You can specify date display punctuation and spaces in date format strings, as desired.
Date punctuation typically includes commas (,), slashes (/), and dashes (-).

Example Variable Case Example Display Case

${month} may

${Month} May

${MONTH} MAY
K2 Toolkit Search System Administration V2.2 C-9

Import Date Format
Import Date Format

The Verity engine can parser a variety of date formats. A single date format string can
include a calendar format plus an optional time format. The import date format specifies
the date format users must enter in field searches on a search form. This format is
specified in the inputDateFormat configuration parameter in the k2server.ini file.
For example:

inputDateFormat = DMY

If there is no specified value for inputDateFormat, the K2 engine interprets the
numbers in MDY format, where M represents a two-digit month, D represents a two-
digit day, and Y represents a two-digit year.

Elements

The following key tables list the valid calendar and time elements which can be used in
the supported date formats.

Calendar Elements

Time Elements

K2 Server understands time formats that have one of the following structures:

HH:MI

HH:MI:SS

HH:MI:SS AM|PM

HH:MI:SS AM|PM TIMEZONE

A definition for each of the time format elements in the above structures is provided
below.

Calendar Format
Element

Description

MM Represents a one or two-digit numeric month.

Mon Represents an alphabetic month, 3 or more characters in length.

DD Represents a one or two-digit numeric day of the month.

YY Represents a two or four-digit numeric year.

time Represents a time format, as described in the following section.
C-10 K2 Toolkit Search System Administration V2.2

Import Date Format
.

Numeric-only Date Formats

Supported date formats composed entirely of numeric elements are listed in the
following table.

The date format constructs described below resolve ambiguities in numerical-only date
expressions. By default, dates input into the documents table are assumed to be in
American numeric date format, MM-DD-YY. This means that if a user enters a date for a
field search query in the same format, the Verity engine can interpret the date and
perform the appropriate retrieval. Numeric date formats can be delimited by spaces or
slashes in addition to dashes.

If users want to enter date field search criteria in a different format, such as English or
European numeric date format, then you must specify which date format to use when
interpreting date formats of the form XX-YY-ZZ. Specify one of the following date
formats for the importDateFormat parameter in the k2server.ini configuration
file.

Time Format Element Description

HH This element represents the hours.

MI This element represents the minutes.

SS This optional element represents the seconds.

AM This optional element represents the AM hours.

PM This optional element represents PM hours.

TIMEZONE This optional element represents a time zone.

Date Format Examples Description

MDY 5 17 96
05-17-96
05/17/1996

Month-day-year, American numeric date format.
This is the default.

DMY 17 05 96
17-5-96
17/05/1996

Day-month-year, English numeric date format

YMD 96 05 17
96-5-17
1996/5/17

Year-month-day, European numeric date format

YDM 96 17 05
96-17-5
1996/17/5

Year-day-month, Swedish numeric date format
K2 Toolkit Search System Administration V2.2 C-11

Import Date Format
Alphanumeric Date Formats

Supported date formats composed of both numeric and alphanumeric elements are listed
in the following table.

Special Date Formats

Supported date formats which are special in format, applicable situations or both are
listed in the following table.

Date Format Examples Description

DD Mon YY 17 Feb 96
17 February 1996

Day (numeric), month (alphabetic), year
(numeric)

DD Mon YY time 17 Feb 96 23:59
17 February 96 01:50

Day (numeric), month (alphabetic), year
(numeric), time. See “Time Elements” above for
valid time element formats.

Mon DD YY Feb 17 96
February 17 1996

Month (alphabetic), day (numeric), year
(numeric)

Mon YY Mar 96
Jan 97

Month (alphabetic), year (numeric)

MM YY 02 96
12 97

Month (numeric), year (numeric)

YYDDDD 96364
20001

Julian Date format

HH Min DD MM YY 23 59 25 12 91
00 00 01 01 32

Dow Jones date format

DDHHMMZ Mon YY 252312Z JAN 94
310101Z JAN 94

Zulu date format

Date Format Examples Description

YYDDDD 96364
20001

Julian date format

HH Min DD MM YY 23 59 25 12 91
00 00 01 01 32

Dow Jones date format

DDHHMinZ Mon YY 252312Z JAN 94
310101Z JAN 94

Zulu date format
C-12 K2 Toolkit Search System Administration V2.2

Import Date Format
Time Formats with the Zulu Date Format

K2 Server assumes that the time in Zulu date format is in Greenwich Mean Time (GMT).
If you use a different time format when you enter search criteria, local time is assumed.
Local time depends on the time and time zone settings of your operating system.

Thus, if you enter the following date as the DATE field value for a document:

252312Z JAN 94

and your computer is set to Pacific Standard Time (PST), a Verity client finds this
document if you query the following DATE field value:

Jan 25 94 15:12

This is because PST is 8 hours behind GMT.
K2 Toolkit Search System Administration V2.2 C-13

Import Date Format
C-14 K2 Toolkit Search System Administration V2.2

Index

A

-about A-4
absolute path

mkvdk A-2
accessProfile 3-5
assist A-10
attribute table 4-3
attributes

collections 4-3
-autodel A-11

B

background information vii
-backup A-6
backup A-10
basic operations

mkvdk A-4
broker() 3-4
browse.exe 4-3
-bulk A-11
bulk insert and delete options

mkvdk A-11
bulkload A-8

C

character setsmkvdk A-12
charMap 3-5, 3-7
-charmap A-12
client/server overview 1-1
collAlias 3-6
-collection A-4
 B-3

collection
disk space, managing A-6
partitions 4-2

collection disk space
mkvdk A-6

collection maintenance A-1
collection management 2-5
collection redundancy 1-10
collection sections

K2 Server 3-6
collection state 2-5
collections

attributes 4-3
distributing 2-6
document path names in A-2
fields 4-3
how they work 4-2
indexes for documents from different

sources, illustration 2-7
merging 4-9
new creating with mkvdk A-5
optimizing, mkvdk A-7
segmented 2-8
splitting 4-9
using with K2 Server 2-6
virtual, creating with mktopics B-2

collPath 3-6
command line

mktopics utility B-2
-common A-4
configuration file

K2 Server 3-3
configuration overview

K2 Server 2-2
connTimeout 3-12, 3-13
content summary viii
conventions

typeface x
create A-5

Index
D

-datapath A-4
dataprep A-10
date formats 13

export 8
import 10
mkvdk A-13
Zulu date format 13

-datefmt A-12
Debug

log level 4-8
-debug A-4
-deep B-4
-delete A-5
delete A-10
description A-5
didump.exe 4-4
directory structure

illustration 4-2
distributing collections 2-6
document key 2-5
document management 2-5
document path names

in collections A-2

E

Error
log level 4-8

-extract A-11

F

fastsearch A-8
Fatal

log level 4-8
features

K2 Server and K2 Client API 1-1
field extraction

mkvdk A-11
K2 Toolkit Search System Administration V2.2
fields
collections 4-3
permanent 4-4
transitory 4-4

formats
mkvdk A-12

-fullotl B-3

G

generic A-8

H

-help A-4
housekeep A-10

I

illustration
brokered system 1-8
collections with indexes for documents

from different sources 2-7
configuration overview, K2 Server 2-2
directory structure of typical collection

4-2
indexing application interaction with

Verity search engine 4-5
K2 Broker 1-6, 3-9
K2 Server configuration overview 2-2
K2 Server TCP acceptor 2-2
K2 servers and brokers 1-8
load balancing 2-6
log file format 4-7
segmenting indexes 2-8

incremental squeeze 4-11
index A-10
indexes 1-4
indexing application

interaction with Verity search engine,
illustration 4-5

mkvdk 4-7
Index-2

Index
indexing modes
mkvdk A-8

indexing process 4-5
-indexType normal B-3
Info

log level 4-8
-iniEmit 3-3, 3-9
-iniFile 3-2, 3-9
inputDateFormat 3-8
-insert A-5
insert A-10

K

K2
client/server overview 1-1
Server reference 2-1

K2 Broker 2-5
illustration 2-5, 3-9
llustration, concurrent client

connections 3-10
node section 3-13
reference 3-1
starting 3-9

K2 collection state 2-5
K2 document key 2-5
K2 Server

collection sections 3-6
configuration file 3-3
configuration keywords 3-3
configuration overview 2-2
keywords 3-3
reference 2-1
starting 3-2
TCP acceptor, illustration 2-2
using collections with 2-6

keywords
Server 3-3

knowledgeBase 3-5, 3-7
K2 Toolkit Search System Administration V2.2
L

listeners 2-3
llustration

K2 Broker, concurrent client
connections 3-10

load balancing
illustration 2-6

-locale A-12
locale 3-5, 3-8
locales

components 7-3
custom 7-2
from Verity partners 7-2
installation 7-6
language support 7-4
mkvdk A-12
predefined 7-2
upgrading 7-4
using THESAURUS operator 7-5

log file format
illustration 4-7

-logfile A-6, B-4
-loglevel A-6

M

maxclean A-7
maxColSize 3-4, 3-7
maxFiles 3-4, 3-7
maxmerge A-7
merge utility 4-9
merging collections 4-9
mkbulk 2-8
mktopics

creating virtual collections B-2
Index-3

Index
mktopics utility
command line B-2
suppressing status messages B-3
syntax B-2
syntax defined, -fullotl B-3
syntax defined, -outline B-3
syntax defined, -quiet B-3
syntax defined, -reset B-3
syntax defined, -topic B-3
syntax usage, -topicset B-2

mkvdk utility 4-7
advanced features A-11
basic operations A-4
basic syntax A-3
bulk insert and delete options A-11
creating new collections A-5
date format options A-13
default behavior A-2
field extraction A-11
formats, locales, character sets A-12
general options A-4
indexing modes A-8
managing collection disk space A-6
managing system messages A-6
optimization keywords options A-7
optimizing collections A-7
reference A-1
service level keywords A-10
service options A-9
servlev A-10

multitiered, brokered system 1-8

N

namedOnly B-3
new collections, creating with mkvdk A-5
newsfeedidx A-9
newsfeedopt A-9
node section

K2 Broker 3-13
nodeSpec 3-13
-noexit A-4
K2 Toolkit Search System Administration V2.2
-nohousekeep A-9
-noindex A-9
-nolock A-4
-nooptimize A-9
-noprecres B-4
-nosave A-12
-noservice A-9
-nosubmit A-12
-nowarnundef B-4
-ntService 3-2, 3-3, 3-9
-numdocs A-11
numListeners 3-4, 3-12
numThreads 3-3, 3-7, 3-12, 3-13

O

-offset A-11
onLine 3-7, 3-13
optimization keywords options

mkvdk A-7
optimize A-10
options

mkvdk A-4
-outlevel A-6
-outline B-3

P

partitions 4-2
permanent fields 4-4
-persist A-5
ping communications 1-10
-port 3-2, 3-9
portNo 3-4, 3-11
-precres B-4
publish A-8
-purge A-6
purge A-10
-purgeback A-6
-purgewait A-6
Index-4

Index
Q

-quiet A-6
Font>-quiet B-3

R

rck2 Utility 3-16
readonly A-7, A-8
relative path

mkvdk A-2
-repair A-9
repair A-10
-reset B-3
resultCacheEnabled 3-6, 3-12
resultCacheMaxInBytes 3-6, 3-12
resultCacheQuota 3-6, 3-12
resultCacheTimeout 3-5, 3-12

S

search A-10
search engine 1-2, 4-5
search performance

optimizing 2-3
segmented collections 2-8
segmenting indexes

illustration 2-8
Server

reference 2-1
Server reference 2-1
Server section 3-3
serverAlias 3-3
service level keywords

mkvdk A-10
service options

mkvdk A-9
-servlev A-9
servlev

mkvdk A-10
Setting Up K2service.ini file

K2 Server 3-3
K2 Toolkit Search System Administration V2.2
-shallow B-4
-sleeptime A-5
sortTruncDocs 3-5
spanword A-7
splitting collections 4-9
squeeze A-7
Status

log level 4-8
style A-5
style.ddd 4-3
style.sfl 4-3
style.ufl 4-3
-synch A-4
syntax

mktopics utility B-2
mkvdk A-3

system messages
 mkvdk A-6

system messages, managing A-6

T

time formats 10
-topic B-3
topic set

exporting to outline file B-3
size limits B-5

topics
export definition to outline file B-3
size limits B-5

topics, support for 1-11
topicSet 3-5, 3-7
-topicset

 B-3
topicset A-5
transitory fields 4-4
typeface conventions x

U

-update A-5
URL, Verity’s Web site vii
Index-5

Index
V

vdkHome 3-5, 3-11
vdkSortingFlag 3-5, 3-12, 3-14
Verbose

log level 4-8
-verbose 3-9
Verity

Web site vii
Verity collections 1-4
Verity Locales 1-4, 7-1
Verity Locales Using LinguistX

installing 7-6
languages 7-4

Verity Query Language
using English for locales other than

English 7-10
Verity query language

localized 7-8
Verity search engine 1-2
virtual collections

creating with mktopics B-2

W

Warning
log level 4-8

-warnundef B-4
Web site, Verity’s vii
word index 4-4
words A-5

X

XML documents 6-1
XML filter 6-1
XML support 6-1
K2 Toolkit Search System Administration V2.2
 Index-6

	Preface
	Content Summary
	Conventions Used

	K2 Search System
	K2 Search System Overview
	Advanced Search and Retrieval
	Verity Document Filters
	Verity Locales

	Scalability
	Simple Design with Single K2 Server
	Advanced Design with K2 Broker and Multiple K2 Servers

	Load Balancing
	Intelligent Routing of Search Requests
	Parallel Data Architecture

	Flexible System Design
	Redundancy
	Ping Communications
	Multiple Language Search
	Verity Topics

	Operation and Administration
	K2 Broker and K2 Server Administration
	Self-Monitoring Features
	Server Status
	Collection Status

	Remote Administration

	K2 System Configuration
	K2 Configuration Overview
	Document and Collection Management
	K2 Collection State
	K2 Document Key

	Using Collections with K2 Server
	Load Balancing
	Distributing Collections

	Setting Up K2 Servers and K2 Brokers
	Setting Up a K2 Server
	k2server Command-line Tool
	k2server.ini Configuration File
	Server Section
	Server Administration Keywords
	Search Thread Keywords
	Collection Sections

	Setting Up a K2 Broker
	k2broker Command-line Tool
	k2broker.ini Configuration File
	Broker Section
	Node Section

	Sorting Results at the Collection Level
	Result Caching
	Using rck2 as a Search Client
	rck2 Syntax
	rck2 Command Options

	Collections and Search Performance
	How Collections Work
	Collection Partitions
	Attributes and Fields
	The Word Index
	Using mkvdk

	Using the merge Utility
	Merging Collections
	Splitting Collections

	Using the Incremental Squeeze Feature

	Verity KeyView Filters
	Key Features
	Supported Formats
	KeyView Filters—Limitations

	New Features and Enhancements
	Headers and Footers

	XML Support
	Requirements for Data Files
	Implementation Summary
	XML Filter
	Style Files

	Style File Configuration
	style.uni File
	style.xml File
	style.ufl File
	style.dft File

	Indexing XML Documents
	Indexing using mkvdk
	Searching using rcvdk

	Verity Locales
	Verity Locales and their Components
	Predefined Locales
	Custom Locales
	Tokenization for Locales other than English

	Locales from Verity Partners

	About Verity Locales
	Verity Locales Using LinguistX
	Upgrading from IntelliScope to LinguistX Locales

	Using the THESAURUS Operator

	Installing Predefined Locales
	Localized Query Language
	Using English Query Language for Locales other than English

	Reference for mkvdk
	Overview
	Default Behavior
	Document Path Names in Collections
	Basic Syntax

	Basic Operations
	Optimization, Modes, and Service Options
	Advanced Features

	Using Verity Topics
	Using mktopics to Create Virtual Collections
	mktopics Syntax Reference
	Topic Set Limits

	Date Formats
	Export Date Format
	Import Date Format

